宽谱衍射微光学结构的设计与制作研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于衍射微光学原理,设计并制作了红光高清衍射物镜原理性样片及红外、THz波段的衍射波前结构,分别实现了输出面上的光强控制和相位控制。红光高清衍射物镜用于下一代红光高清光电存储系统,要求能将红光激光在3mm焦距处聚焦为0.5μm直径的焦斑。衍射波前结构要求能够产生可控的红外及THz波前,用于模拟自适应光学系统中的大气湍流。
     采用基于标量衍射理论的平面波角谱衍射理论设计衍射光学元件(Diffractive Optical Element,DOE),与使用基于严格电磁波理论的矢量衍射理论设计结果相近。但设计过程更简单,数据处理量也较少。借鉴传统的衍射光学元件设计方法——盖师贝格-撒克斯通算法(Gerchberg-Saxton Algorithm,GS算法)的思想,将角谱衍射理论与GS算法相结合,设计了迭代角谱算法。用该算法设计了用于光强控制的红光高清衍射物镜,及用于相位控制的衍射波前结构。数值仿真结果显示,设计所得结果满足预期需要。
     本论文中采用的衍射微光学元件的制作方法,摈弃了传统的多步套刻的方式,而采用了单步光刻的方法,可最大限度的提高精度。在光刻时,根据所制衍射微光学元件特征尺寸的大小,合理选择光刻的方式。对红光高清衍射物镜,采用了单步电子束光刻的方法,以适应其表面处的精细图形结构。对衍射波前结构,由于其面特征尺寸较大,选用了单步掩模光刻的方法。后期腐蚀中,皆采用了相对廉价的湿法腐蚀工艺,节省了器件制作费用。对所制衍射微光学元件进行表面形貌及光学性能测试显示,红光高清衍射物镜和衍射波前结构的表面均存在极精细结构,表面粗糙度都达到了光学镜面水平,初步实现了预期目的。为下一步的实用化,提供了可借鉴的理论与实验基础。
In this thesis, the principle diffractive objective lenses for Red-Laser-High-Definition storage system and the diffractive micro-optics structures for controlling wavefront transmission in infrared and THz wavelength range, are designed and fabricated based on the complex diffractive micro-optics theory. Both the intensity or amplitude and the phase of light wave out from the devices mentioned above, can be processed efficiently. The fabricated diffractive objective lens will be used in the next generation of Red-Laser-High-Definition storage system. The basic requirements for diffractive objective lens include: having 3mm focal length and then focusing red incident beam into a very small focal spot of 0.5μm diameter. The diffractive micro-optics structures can be used to generate several wavefronts for simulation the light field in atmospheric turbulence so as to valuate the imaging efficiency of adaptive optical system.
     Based on the planar wave scalar angular spectrum diffraction theory, several diffractive optical elements, which are similar to that designed by the strict electromagnetic wave theory, are designed. Compared to common method, the current design processes are easier and then the processed data is fairly small. The iterative angular algorithm is constructed through combining the angular spectrum diffraction theory with the Gerchberg-Saxton (GS) algorithm, which is one of the traditional methods for designing diffractive optical elements. The new algorithm has been used to design the diffractive objective lens and then the diffractive wavefront structures by controlling both the light intensity and phase, simultaneously. Numerical simulation shows that the designed results already meet the requirements to diffractive elements.
     The method for fabrication diffractive elements in this thesis is only consist of single mask photolithography, so as to completely eliminate the traditional multistep photolithography processes and therefore improve the fabrication precision, remarkably. The rational mask layouts are selected according to the feature size and the phase map of diffractive elements. For diffractive objective lens, a single step electron beam photolithography has been used so as to meet the fineness requirements of micro-nano-structures formed over the surface of silicon wafer. The same single step photolithography has also been used to fabricate the diffractive micro-optics structures with large feather size. In the etching process, the low cost wet KOH etching is employed to achieve the fabrication of devices. Surface morphology and optical performance test of the fabricated diffractive elements show that desired fine microstructure patterns are formed efficiently over the surface of silicon wafer, and then their surface roughness has reached the optical mirror level. The constructed theory and obtained experiments will highlight further applications.
引文
[1]梁铨廷著.物理光学. (第三版).北京:电子工业出版社, 2008. 78 ~ 80
    [2]张德霈.光的衍射的应用.物理, 1960, 7: 300 ~ 306
    [3]何杰,夏建白主编.半导体科学与技术. (第一版).北京:辞学出版社, 2007. 306 ~ 311
    [4]崔铮.微纳米加工技术及其应用( Micro-Nanofabrication Technologies and Applications).北京:高等教育出版社,2005
    [5] W. Veldkamp. Binary optics: An emerging diffractive optics technology. Optics News, 1986, 12(12):15
    [6] D .H. Close. Holographic Optical Elements. Opt. Eng,1985 ,15: 408~ 409
    [7] Wilfrid. B. Veldkamp, Thomas. J. McHugh. Binary Optics. Scientific American,1992, 266(5): 92~97
    [8] R. J. Collier, C. B. Bcickharat, L. H. Lin. Optical Holography. New York: Academia press, 1971. 266~276
    [9] VELDKAMP, WB, Binary Optics: A new approach to optical design and fabrication, Optics News, 1988, 14(12):29~30
    [10] D. Just, R. Hauck, and O. Bryngdahl, Computer-generated holograms: structure manipulation, JOSA A, 1985, 2(5):644~648
    [11] H. P. Herzig. Micro-Optics Elements, Systems and Applications. Taylor & Francis Inc., 1997
    [12]陈岩松.二元衍射光学.量子电子学. 1996, 13(3):193~200
    [13]徐平,张晓春,郭履容等.二元光学元件制作误差分析与模拟.光学学报. 1996, 16(6):833~838
    [14]米凤文.衍/折红外混和光学系统及其测试技术研究: [博士论文].浙江:浙江大学,2001
    [15] Thomas Stone, Nicholas George. Hybrid diffractive-refractive lenses and achromats, Applied Optics, 1988, 27(14):2960~2971
    [16] A.P.Wood, Design of infrared hybrid refractive-diffractive lenses, 1992, 31(13):2253~2258
    [17] Yuichiro Ori, Kyu Takada, Junji Hashimura, and Nobuo Mushiake, Diffractive/refractive hybrids for blue LD optical storage. Optical Society of America, Diffractive Optics and Micro-Optics, 2004
    [18] T. Stone, N. George. Hybrid diffractive-refractive telescope. Optics News, 1989, 15(12):40~41
    [19]冷家开.长焦距高分辨率折衍射混合光学系统的研究: [硕士论文].长春:长春理工大学,2008
    [20]娄迪.谐衍射光学设计理论和应用研究: [博士论文].浙江:浙江大学,2008
    [21]汤跃科,陈晨,赵珉等.复杂图像转换为掩模版图的研究.微细加工技术. 2006
    [22]胡勇.微光刻图形处理及数据格式转换: [硕士论文].北京:中国科学院,2002
    [23] Daschner Walter, Long Pin, Larsson Michael, et al. Fabrication of Diffractive Optical Elements using a Single Optical Exposure with a Gray Level Mask. Journal of Vacuum Science & Technology B, 1995, 13(6): 2729~2731
    [24]冯伯儒,陈宝钦等.无铬相移掩模光刻技术.光子学报. 1996,25(4):328~332
    [25] Liu M, Chen B Q. Electron beam/optical stepper mixes and matches lithography using i-line photo-resist. SPIE 25th Annual Symposium on Micro-Lithography, 2000
    [26]顾文琪著.电子束曝光微纳加工技术.北京:北京工业大学出版社, 2004
    [27] Li B. Chtenberg, Gallagher M C. Numerical modeling of diffractive device using the finite element method. Optical Engineering, 1994,33:3518~3526
    [28] D. W. Prather, M. S. Mirotznik, J. N. Mait. Design of subwavelength diffractive optical elements using a hybrid finite element-boundary element method. SPIE, 1996,2689:14~23
    [29] Song Peng, G. Michael Morris. Efficient implementation of the rigorous coupled-wave analysis for surface-relief gratings. J.Opt.Soc.Am.A, 1995,12(5):1087~1096
    [30] Wataru Nakagawa, Rong-Chong Tyan, Pang-Chen Sun, et al. Ultrashot pulse propagation in near-field periodic diffractive structures by rigorous coupled-wave analysis. J.Opt.Soc.Am.A,2001,18(5):1072~1081
    [31] Stephen D. Mellin, Gregory P. Nordin. Limits of scalar dif- fraction theory and aniterative angular spectrum algorithm for finite aperture diffractive optical element design. Optics Express, 2001,8(13):705-722.
    [32] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase form image and diffractive plane pictures. Optic. 1972, 35:237~246
    [33] Gu B, Yang G, Dong B. General theory for performing an optical transform. Appl. Opt. 1996, 11(25):3197~3206
    [34] Myung Soo Kim ,Clark C. Guest. Simulated annealing algorithm for binary phase only filters in pattern classification. Applied Optics, 1990 ,29(8): 1203~1208
    [35] Nobukazu Yoshikawa, Toyohiko Yatagai. Phase optimization of a kinoform by simulated annealing. Applied Optics, 1994, 33(5): 863~868
    [36] Guo-zhen Yang, Bi-zhen Dong, Ben-yuan Gu, et al. Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison. Applied Optics, 1994,33(2):209~218
    [37]李俊昌,熊秉衡等著.信息光学理论与计算(第一版).北京:科学出版社, 2009. 113 ~ 114
    [38] Don L. Kendall, William P. Eaton, Ron Manginell. Micro- mirror arrays using KOH:H2O micromachining of silicon for lens templates, geodesic lenses, and other applications. Optical Engineering, 1994, 33(11):3758-3588.
    [39]孙润等著. Tanner集成电路设计工具教程.北京:北京希望电子出版社, 2002
    [40] R. D. Compton. PECVD:A Versatile Technology. Semiconductor Int.60. 1992
    [41]刘明,谢常春,王从舜等著.微细加工技术.北京:化学工业出版社, 2004:106~133
    [42]耿则勋,陈波,王振国等著.自适应光学图像复原理论与方法.北京:科学出版社, 2010
    [43]刘虹.哈特曼-夏克方法在激光光束波前和光束质量检测中的应用研究: [硕士论文].北京:北京工业大学,2001
    [44] Lane. R G, Tallon, M. Wave-front reconstruction using a Shack-Hartmann sensor. Applied Optics, 1992,31(32):6902~6908
    [45]刘若凡.沈峰.曲率波前传感器波前重构算法的研究.光电工程. 2005,32(10):6~9
    [46]许晓军,陆启生,刘泽金.剪切干涉仪与哈特曼波前传感器的波前复原比较.强激光与粒子束. 2000,12(3):269~272
    [47]胡谋法.自适应光学波前重构算法研究: [硕士论文].长沙:国防科学技术大学,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700