角隅和直角内圆锥面全反镜激光谐振腔
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高能激光的产生﹑传输和应用是现代激光技术和光学工程的重要发展方向。高能激光器设计中的主要问题是,如何在高热负载下保持光学谐振腔的稳定;如何获得尽可能大的模体积和好的横模鉴别能力,以实现高功率单模运转,从而既能从激活物质中高效率地提取能量,又能保持高的光束质量。
     本论文讨论了高能激光的主要特性,分析了角隅反射镜和直角内圆锥面反射镜的光学特性以及制造误差对反射镜光学性质的影响,设计了用于高能激光器的角隅反射镜和直角内圆锥面反射镜,提出了采用角隅反射镜和直角内圆锥面反射镜作为全反镜,平行平面镜作为输出镜组成的两种新型激光谐振腔,并从理论和实验两方面研究了角隅全反镜谐振腔和直角内圆锥面全反镜谐振腔的输出特性。主要研究结果有:
     (1)角隅腔和直角内圆锥腔输出能量大。两种谐振腔激光器的单脉冲输出能量与放电电压均呈线性关系,在放电电压28kv时,角隅腔和直角内圆锥腔单脉冲输出能量分别为14.6J和25.5J,和相同条件下的平凹腔输出相当。
     (2)角隅腔和直角内圆锥腔抗失调能力强。在角隅全反镜失调角为53.4角分时,角隅腔激光器的单脉冲输出能量下降9.2%,在直角内圆锥面全反镜失调角为46.8角分时,直角内圆锥腔激光器的单脉冲输出能量下降24%;全反镜失调时两种谐振腔的近场输出光斑均没有明显变化。
     (3)角隅腔和直角内圆锥腔光束指向稳定性高。在输出镜正前方近3m处用热敏纸测量,当角隅全反镜和直角内圆锥全反镜分别偏转56.4角分和18角分时,激光器输出光斑均与不失调时的输出光斑重合。
     (4)角隅腔和直角内圆锥腔激光器近场光强分布均匀。
     角隅全反镜谐振腔和直角内圆锥面全反镜谐振腔结构简单,抗失调能力强,指向稳定性高,可以达到改善高能激光器光束质量的目的,特别适用于对光束稳定性有特殊要求的应用领域。
Making and propagation and application of high-energy laser are an important direction of modern laser technology and optics engineering. The primary problem in the design of the high energy laser are, how to keep the stabilization of the optical resonators in the high heat load; how to make the model volume as large as possible and distinguish the transverse models as good as possible, so as to realize the single model operation, distill the energy from the activation matter effectively, keep the beam quality excellent.
     The dissertation discusses the main characteristics and the controlling methods of the beam quality of the high energy lasers, analyses the optical characteristics of the corner cube mirror and the right angle cone mirror and the influence of the fabricating errors on the optical characteristics of the mirrors, devises the corner cube mirror and the right angle cone mirror applying to the high energy lasers, puts the corner cube mirror and the right angle cone mirror forward as the totally reflecting mirror respectively and the plane parallel mirror as the output mirror forming two new laser resonators, researches the output characteristics of the corner cube mirror cavity and the right angle cone mirror cavity in the theory and experiment aspect.The main research results are as follows.
     (1)The corner cube mirror cavity and the right angle cone cavity have the large laser energy output. It is linear relation between the gas discharge voltage and the single-pulse output energy both of the two laser cavity, when the voltage is 28kv the single-pulse output energy of the corner-cube cavity and the right angle cone cavity are 14.6J and 25.5J respectively, the same as the output of the plane concave cavity in the same condition.
     (2)The corner cube mirror cavity and the right angle cone mirror cavity have the great advantages in the anti-misalignment stability. When the misalignment angle of the corner cube mirror is 53.4 minutes, the single-pulse output energy of the corner cube cavity decrease 9.2%, when the misalignment angle of the right angle cone mirror is 46.8 minutes, the single-pulse output energy of the right angle cone mirror cavity decrease 24%, the near-field laser spot figures have little change when both totally reflecting mirrors are misaligned.
     (3)The corner cube mirror cavity and the right angle cone mirror cavity have the great advantages in the beam directional stability. When the measuring place stands about 3m in front of the output mirrors and the misalignment angles of the corner cube mirror and the right angle cone mirror are 56.4 minutes and 18 minutes respectively, the output laser spots are coincident with the alignment laser spots.
     (4)The near-field beam intensity distribution of the plane-cone mirror cavity laser and the plane-corner cube mirror cavity laser are near to the plane wave.
     The corner cube mirror cavity lasers and the right-angle-cone mirror cavity lasers have the great advantages in the anti-misalignment stability and the beam directional stability. With the simple structure, they are easy to install and adjust, will improve the beam quality, especially apply to the high power laser system requiring beam stability.
引文
[1]杜祥琬.高能激光与应用光学的几个问题.中国工程科学,2001,3(2):21-24
    [2]吕百达.强激光的传输与控制(第一版).北京:国防工业出版社,1999.371-472
    [3]Gerald Wilson, Bruce R. Gravesb, Stanley P. Pattersonb. Deuterium fluoride laser technology and demonstrators. In:Laser Technologies for Defense and Security. Gary L. Wood eds. Proceedings of SPIE 5414 (2004):41-51
    [4]John R Albertine. History of Navy HEL Technology Development and Systems Testing.In:Laser and Beam Control Technologies. Santanu Basu eds. Proceedings of SPIE 4632 (2002).32-37
    [5]John R. Albertine. Recent high energy laser system tests using the MIRACL/SLBD. SPIE 1871(1993):229-239
    [6]B. R. Graves, W. A. Duncan, and S. P. Patterson. Optical system design, modelling, and analysis of selected line HF and DF Lasers. SPIE 2119(1994):68-79
    [7]Josef Shwartz,Gerald T. Wilson,Joel Avidor. Tactical High Energy Laser.In:Laser and Beam Control Technologies. Santanu Basu eds. Proceedings of SPIE 4632 (2002):10-20
    [8]Steven B. Lamberson. The Airborne Laser. In: Laser and Beam Control Technologies. Santanu Basu eds. SPIE 4632 (2002):1-9
    [9]W.P.Latham,Jr. A.H.Paxton, G.C.Dente, et al. Laser with 90-degree beam rotation. In: Optical Resonators. SPIE 1224(1990):265-282
    [10]刘岩,金玉奇,桑凤亭等.氧碘化学激光器谐振腔腔镜失调测量与研究.强激光与粒子束,2003,15(3):221-224
    [11] P. K. Kennedy and K. C. Sun. Geometric modes of an unstable ring resonator with 90o beam rotation. In: Optical Resonators, SPIE 1224(1990):163-171
    [12]Susan J. Thornton. Airborne Laser, the integration challenge. In: XV InternationalSymposium on Gas Flow, Chemical Lasers, and High-Power Lasers. Jarmila Kodymováed. Proc. SPIE 5777 (2005):1008-1010
    [13]Steven E. Lamberson. The Airborne Laser. In:XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference. Antonio Lapucci eds. SPIE 4184 (2001):1-6
    [14]Hagop Injeyan,Randall J,St.Pieret,et al. Laser with two orthogonal zig-zag slab gain media for optical phase distortion compensation.US6178040,2001.1-11
    [15]Stephen G. Post. High average power diode-pumped solid-state laser illuminators for HEL beam control. In: Laser Technologies for Defense and Security. Gary L. Wood eds. SPIE 5414 (2004):85-100
    [16]H. P. Chou, Yu-Lin Wang, Victor Hasson,et al. A Compact Nd:YAG DPSSL using Diamond-Cooled Technology.In:XV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers. Jarmila Kodymováed. Proc. SPIE 5777 (2005):354-357
    [17]H. P. Chou, Yu-Lin Wang, Victor Hasson. Compact and efficient DPSS laser using diamond-cooled technology.In:High-Power Laser Ablation V. Claude R. Phipps ed. Proceedings of SPIE 5448 (2004):550-560
    [18]Hsian P. Chou, Isaac Sadovnik, Eric J. Tammaro, Thermo-Mechanical and Optical Analysis and Modeling for a Diamond-Cooled Solid-State Nd:YAG Laser.In:Laser Source and System Technology for Defense and Security II, Gary L. Wood eds, Proc. of SPIE 6216(2006):62160E(1-15)
    [19]Hagop Injeyan, Gregory Goodnol, Hiroshi Komine. High Power Scalable Nd:YAG Laser Architecture.In:2005 Conference on Lasers & Electro-Optics (CLEO):165
    [20]John Vetrovec. Ultrahigh-Average Power Solid-State Laser. In: High-Power Laser Ablation IV. Claude R. Phipps ed. Proceedings of SPIE 4760 (2002):491-505
    [21]Komine Hiroshi. High average power solid-state laser system with phase front control. United States Patent 6,404,784, 2002.1-9
    [22]John Vetrovec. Solid-State Laser High-Energy Laser.In:Laser and Beam Control Technologies. Santanu Basu eds. Proceedings of SPIE 4632 (2002):104-114
    [23]Gary L. Wood, Larry D. Merkle, Mark Dubinskii,et al.Path Toward a High Energy Solid-State Laser.In:Laser Technologies for Defense and Security. Gary L. Wood eds. SPIE 5414 (2004):69-84
    [24]V.Hasson, F.B. Mead, Jr.Launching of Micro-satellites Using Groundbased High-power Pulsed Lasers. In: Third International Symposium on Beam Energy Propulsion. A.V.Pakhomov eds. American Institute of Physics 2005:32-45
    [25]V.Hasson, F.B. Mead, Jr.,C.W. Larson. Launching of micro-satellites using ground-based highpower pulsed lasers. In:High-Power Laser Ablation V. Claude R. Phipps ed. Proceedings of SPIE 5448(2004):18-36
    [26]Victor Hasson. Review of design concepts and diagnostics for 100 KW-class repetitively pulsed CO2 lasers. In: XIV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers. Krzysztof M. Abramski eds. SPIE 5120 (2003):717-730
    [27]David Froning, Leon McKinney,Franklin Mead, et al. Some results of a study of the effectiveness and cost of a laserpowered“lightcraft”vehicle system. In: High-Power Laser Ablation V. Claude R. Phipps ed. SPIE 5448 (2004):477-484
    [28]Claude R. Phipps, James P. Reilly, Jonathan W. Campbel.Laser Launching a 5-kg Object into Low Earth Orbit. In:High-Power Laser Ablation Il. Claude R Phipps ed. Proceedings of SPIE 4065 (2000):502-510
    [29]H. E. Bennett. Laser power beaming: an emerging technology for power transmission and propulsion in space. In: SPIE 2988(1997):256-245
    [30]Jordin T. Kare. Modular Laser Options for HX Laser Launch. In: Third International Symposium on Beam Energy Propulsion. A.V.Pakhomov eds. American Institute of Physics 2005:128-139
    [31]Jordin T. Kare, James Early, William F. Krupke,et al.New Technology and LunarPower Funding Option for Power Beaming Propulsion.In: Third International Symposium on Beam Energy Propulsion. A.V.Pakhomov eds. American Institute of Physics 2005:140-151
    [32]Andrew V. Pakhomov, Jun Lin, Kenneth A. Herren. Effect of air pressure on propulsion with TEA CO2 laser. In: High-Power Laser Ablation V. Claude R. Phipps ed. SPIE 5448 (2004):1017-1027
    [33]Leik.N.Myrabo. Laser Propelled Vehicle. United State Patent 6488233B1.2002, 1-15
    [34]L.N. Myrabo, C.A. Borkowski,D.A. Kaminski.Analytical Investigation of an Airbreathing Repetitively Pulsed LSC-Wave Thruster: Part 1.In: Fourth International Symposium on Beam Energy Propulsion. K.Komurasaki eds. American Institute of Physics 2006:58-71
    [35]C.A. Borkowski, D.A. Kaminski, L.N. Myrabo. Analytical Investigation of an Airbreathing,Repetitively Pulsed LSC-Wave Thruster: Part 2.In: Fourth International Symposium on Beam Energy Propulsion. K.Komurasaki eds. American Institute of Physics 2006:72-80
    [36]J.C. Richard, C. Morales, W.L. Smith,et al. Earth-to-Orbit Laser Launch Simulation for a Lightcraft Technology Demonstrator. In: Fourth International Symposium on Beam Energy Propulsion. K.Komurasaki eds. American Institute of Physics 2006:564-575
    [37]Joung R. Cook,Salvatore J. Cusumano,Mathew R.et al. Potential Use of CW High Energy Laser on an Airborne Platform. In: Fourth International Symposium on Beam Energy Propulsion. K.Komurasaki eds. American Institute of Physics 2006:400-410
    [38]Sean D. Knecht, Franklin B. Mead, Michael M. Micci,et al. Trajectory Simulations, Qualitative Analyses and Parametric Studies of A Laser-Launched Micro-Satellite Using OTIS.In: Fourth International Symposium on Beam Energy Propulsion.K.Komurasaki eds. American Institute of Physics 2006:522-533
    [39]Leik N. Myrabo,Donald G. Messitt. Ground and Flight Tests of a Laser Propelled Vehicle. AIAA.1998, 98-1001:1-10
    [40]Leik N. Myrabo.Brief History of the Lightcraft Technology Demonstrator(LTD) Project.In: First International Symposium on Beam Energy Propulsion A.V.Pakhomov eds. American Institute of Physics 2003:49-60
    [41]Koichi Mori, Akihiro Sasoh, and LeikN. Myrabo. Experimental Investigation of Airbreathing Laser Propulsion Engines: CO2 TEA vs.EDL. In:Third International Symposium on Beam Energy Propulsion. A.V.Pakhomov eds.American Institute of Physics 2005:155-165
    [42]C.G. Ballard, K.S. Anderson, L.N. Myrabo. Flight Dynamics Simulation of Lightcraft Propelled by Laser Ablation. In:High-Power Laser Ablation VI. Claude R. Phipps ed. Proc. of SPIE 6261(2006): 62611Z(1-8)
    [43]Michael Libeau and Leik Myrabo. Off-Axis and Angular Impulse Measurements on a Lightcraft Engine.In: In:Third International Symposium on Beam Energy Propulsion.A.V.Pakhomov eds.American Institute of Physics 2005:166-177
    [44]L.N. Myrabo, M.A. Libeau, E.D. Meloney, et al. Pulsed Laser Propulsion Performance of 11-cm Parabolic 'Bell' Engines Within the Atomsphere. In:High-Power Laser Ablation V. Claude R. Phipps ed. SPIE 5448 (2004):450-464
    [45]Koichi Mori, Akihiro Sasoh, Leik N. Myrabo. Pulsed Laser Propulsion Performance of 11-cm Parabolic‘Bell’Engines: CO2 TEA vs. EDL. In: Fourth International Symposium on Beam Energy Propulsion. K.Komurasaki eds. American Institute of Physics 2006:38-47
    [46]Franklin B. Mead, Jr, C. William Larson, and Sean D. Knecht. An Overview of the Experimental 50-cm Laser Ramjet (X-50LR) Program.In: Fourth International Symposium on Beam Energy Propulsion. K.Komurasaki eds. American Institute of Physics 2006:534-552
    [47]Sean D. Knecht, C. William Larson, Franklin B. Mead. Comparison of Ablation Performance in Laser Lightcraft and Standardized Mini-Thruster.In: Fourth International Symposium on Beam Energy Propulsion. K.Komurasaki eds. American Institute of Physics 2006:615-627
    [48]V.P.Kalinin,D.A.Goryachkin, V.M.Gromovenko. Feasible configurations of reptitively-pulscd TEA CO2 laser with small angular divergence and 1 kJ-pulse energy. In: SPIE 3574(1998):187-202
    [49]V.D. Bulaev, V.S. Gusev, I.P. Zhigan,et al. The Experimental Laser Facility Based on the High-Power Repetitively-Pulsed E-beam-sustained CO2 Laser. In: Third International Symposium on Beam Energy Propulsion.A.V.Pakhomov eds. American Institute of Physics 2005:361-372
    [50]V. E. Sherstobitov, N. A. Kaliteevskiy, V. I. Kuprenyuk,et al. Computer Simulation of a Solid-State Laser System for Propulsion of a Space "Tugboat" from LEO to GEO. In: Third International Symposium on Beam Energy Propulsion. A.V.Pakhomov eds. American Institute of Physics 2005:347-360
    [51]V.M.Irtuganov, V.P.Kalinin, V.V.Sergeev,et al. Experimental Investigation of Air-breathing Mode of Laser Propulsion with Elongate Cylindrical Models and CO2 Lasers of Different Pulse Durations. In: Third International Symposium on Beam Energy Propulsion. A.V.Pakhomov eds. American Institute of Physics 2005:195-204
    [52]V.V.Apollonov, V.V.Kijko, V.I.Kislov,et al. High-frequency pulse-periodic mode for highpower lasers. In: Second International Symposium on Beam Energy Propulsion. American Institute of Physics 2004:357-366
    [53]Yuri A. Rezunkov. Investigations of Propelling of Objects by Light :Review of Russian Studies on Laser Propulsion. In: Second International Symposium on Beam Energy Propulsion. American Institute of Physics 2004:46-57
    [54]Wolfgang O. Schall. Removal of small space debris with orbiting lasers. In:High-Power Laser Ablation. SPIE 3343(1998):564-574
    [55]W. Mayerhofer, E.Zeyfang, W. Riede. Design data of a repetitively pulsed 50kW multigas laser and recent experimental results. In:SPIE 3574(1998):644-648
    [56]Willy L Bohn. Laser Lightcraft Performance. In High-Power Laser Ablation II. Claude R. Phipps eds.SPIE 3885 (2000):48-53
    [57]Frederick P. Boody. PALS—The optimal laser for determining optimal ablative laser propulsion parameters? In: Third International Symposium on Beam Energy Propulsion. A.V.Pakhomov eds. American Institute of Physics 2005:373-381
    [58]Wolfgang O. Schall. Propulsion by laser power. In:XV International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers. Jarmila Kodymováed, SPIE 5777 (2005):993-998
    [59]G. Renz, M. Jung ,W. Mayerhofer, E. Zeyfang. Pulsed CO2-Iaser with 15 kW average power at 100 Hz rep-rate. In: SPIE 3092(1997):114-117
    [60]T.Yabe,C.Phipps,M.Yamaguchi et al. Microairplane propelled by laser driven exotic target. Applied Physics Letters,2002,80(23):4318-4320
    [61]Keiko Watanabe and Akihiro Sasoh. Laser impulse generation required for space debris deorbiting. In: High-Power Laser Ablation V. Claude R. Phipps ed. SPIE 5448 (2004):422-427
    [62]Akihiro Sasoh, Toshiro Ohtani and Xilong Yu. Detailed Impulse Generation Mechanisms in the Laser-Driven In-Tube Accelerator. In: Third International Symposium on Beam Energy Propulsion. A.V.Pakhomov eds. American Institute of Physics 2005:178-182
    [63]Koichi Mori, Keiko Watanabe, and Akihiro Sasoh. Large impulse launch using 300-J CO2 TEA Laser.In: Third International Symposium on Beam Energy Propulsion. A.V.Pakhomov eds. American Institute of Physics 2005:385-393
    [64]Sadao NAKA. Progress of Power Laser and its Application to Space.In: Second International Symposium on Beam Energy Propulsion. K.Komurasaki eds.American Institute of Physics 2005:3-19
    [65]Duluo ZUO, Hong LU, and Zuhai CHENG. Studies on a 100-Joule-Class UV-Preionized TEA CO2 Laser.In:XV International Symposium on Gas Flow, Chemical Lasers, and High-PowerLasers. Jarmila Kodymováed. SPIE 5777 (2005):442-445
    [66]Rongqing Tan, Yijun Zheng, Changjun Ke, et al. Experimental Study on Laser Propulsion of Airbreathing Mode. In: Fourth International Symposium on Beam Energy Propulsion. K.Komurasaki eds. American Institute of Physics 2006:114-120
    [67]John R. Albertin, Sadegh Siahatgara, Hal B. Bennett. High-power beam control: results to date and relevance to power beaming.SPIE 2988(1997):257-263
    [68]Donald Ruffattoa, Donald Browna, Richard Pohlea.et al, Stabilized High-Accuracy Optical Tracking System(Shots).In:Acquisition, Tracking, and Pointing XV, Michael K. Masten eds, Proceedings of SPIE 4365 (2001):10-18
    [69]Paul Merritt and Mark Kramer. Field test of active tracking of a ballistic missile in the boost phase. SPIE 3086(1997):2-9
    [70]Maj Bryan L. Kelcimer, Capt Ronald Dauk. ABL Beam Control Segment. In: Airborne Laser Advanced Technolociy. Orlando ed. SPIE 3381(1998):8-13
    [71]Charles Higgs. Overview of the ABL-Firepond active-tracking and compensation facility. In:Airborne Laser Advanced Technology. SPIE 3381(1998):14-22
    [72]C. Higgs,H. T. Barclay. Multibeam laser illuminator approach. In: Airborne Laser Advanced Technology II. SPIE 3706(1999):206-215
    [73]Kenneth W. Bilimana, Bruce A. Horwitz', and Paul L. Shattucka. Airborne Laser System Common Path/Common Mode Design Approach. In:Airborne Laser Advanced Technology II. SPIE 3706(1999):196-203
    [74]苏毅,万敏.高能激光系统(第一版).北京:国防工业出版社,2004.
    [75]C. Higgs, H. Barclay, J. Kansky, D. Murphy. Adaptive-optics compensation usingactive illumination. In: Airborne Laser Advanced Technology. SPIE 3381(1998):47-56
    [76]C. Higgs, H. Barclay. Active tracking using multibeam illumination. In:Airborne Laser Advanced Technology.SPIE 3381(1998):160-167
    [77]Paul Merritt,Salvatore Cusumano,Mark Kramer. Active tracking of a ballistic missile in the boost phase.SPIE 2739(1996):19-29
    [78]Steven M. Daigneaulta, Kenneth W. Bi11man, Jan E. Kanskyc. ABL Subscale Deformable Mirror Risk Reduction Tests. In: Airborne Laser Advanced Technolocw II.SPIE 3706(1999):304-311
    [79]Kenneth W. Bilimana, John A. Breakwell, Richard B. Holmesh. ABL Beam Control Laboratory Demonstrator. In: Airborne Laser Advanced Technology II.SPIE 3706(1999):172-179
    [80]Donald J. Link, Richard St. John. Simulation and modeling of high energy laser systems. In:Laser Technologies for Defense and Security. Gary L. Wood eds. SPIE 5414 (2004):26-40
    [81] David K. Barton,David Monctony,Roger Falcone,et al. Report of the American Physical Society Study Group on Boost-Phase Intercept Systems for National Missile Defense: Scientific and Technical Issues. Rev. Mod. Phys.,2004,76(S1): S291-S339
    [82] Glen P. Perram, Michael A. Marciniak, and Matthew Goda. High energy laser weapons: technology overview. In:Laser Technologies for Defense and Security, Gary L. Wood eds. SPIE 5414 (2004).1-25
    [83]John M. Fleischer. Laser beam width, divergence, and propagation factor: Status and experience with the draft standard. In: Laser Beam Diagnostics.SPIE 1414 (1991):2-11
    [84]George N. Lawrence. Beyond Beam Divergence. In: SPIE 2375(1995): 201-213
    [85]孙承伟主编;陆启生等编著,激光辐照效应(第一版).北京:国防工业出版社, 2002.
    [86]Halil Tanyer Eyyuboglu. Analysis of reciprocity of cos-Gaussian and cosh-Gaussian laser beams in a turbulent atmosphere. OPTICS EXPRESS,2004, 12(20):4659-4674
    [87]Yangjian Cai and Sailing He. Average intensity and spreading of an elliptical Gaussian beam propagating in a turbulent atmosphere. OPTICS LETTERS,2006,31(5):568-570
    [88]Yangjian Cai and Sailing He. Propagation of various dark hollow beams in a turbulent atmosphere. OPTICS EXPRESS,2006,14(4):1353-1367
    [89]Mohammad H. Mahdieh,Babak Lotfi. Two-dimensional-simulation of thermal blooming effects in ring pattern laser beams. Optical Engineering ,2005,44(9): 096001(1-8)
    [90]叶嘉雄,余永林著,自适应光学(第一版).武汉:华中理工大学出版社, 1992.
    [91]Brent W. Grime, Won B. Roh, Thomas G. Alley. Phasing of a two-channel continuous-wave master oscillator–power amplifier by use of a fiber phase-conjugate mirror. OPTICS LETTERS,2005, 30(18): 2415-2417
    [92]Valeri I. Kovalev. 300 W quasi-continuous-wave diffraction-limited output from a diode-pumped Nd:YAG master oscillator power amplifier with fiber phaseconjugate stimulated Brillouin scattering mirror. OPTICS LETTERS,2005,30(24):3386-3388
    [93]丘军林,程祖海等编著.工业激光技术(第一版).武汉:华中科技大学出版社, 2002.111-132
    [94]Gleb Vdovin and Mikhail Loktev. Deformable mirror with thermal actuators. OPTICS LETTERS,2002,27(9):677-679
    [95]Julia W. Evans, Bruce Macintosh, Lisa Poyneer. Demonstrating sub-nm closed loop MEMS flattening. OPTICS EXPRESS,2006,14(12):5558-5570
    [96] Byren W. Robert, Trafton F. Alvin. System and method for effecting high-powerbeam control with adaptive optics in low power beam path. United States Patent 6,809,307, 2004:1-21
    [97] Alexander A.Betin,Robert W.Byren,Dana P.Franz.Self-adjusting Interferometric Outcoupler and Method.US6992818,2006.1-13
    [98]吕百达.激光光学(第三版).北京:高等教育出版社,2003.
    [99]Hodgson N, Weber H. Optical Resonators(1st edition). London: Springer-Verlag Press, 1997.
    [100]Norman Hodgson, Horst Weber. Laser resonators and beam propagation(2nd edition). New York : Springer, 2005.
    [101]方洪烈.光学谐振腔理论(第一版).北京:科学出版社,1981.260-274
    [102]Anthony E. Siegman. Laser Beams and Resonators: The 1960s.IEEE Journal Of Selected Topics In Quantum Electronics, 2000,6(6): 380-1388
    [103]Anthony E. Siegman. Laser Beams and Resonators: Beyond the 1960s.IEEE Journal of Selected Topics In Quantum Electronics, 2000,6(6): 1389-1399
    [104]Alan H. Paxton, William P. Latham, Jr. Unstable resonators with 90o beam rotation. APPLIED OPTICS,1986, 25(17): 2939-2946
    [105]V.S.Srikanth. Corner cube prism Resonator with polarized output: New configuration. in: Laser Resonators and Beam Control VIII. Alexis V. Kudryashov eds. SPIE 5708 (2005):303-310
    [106]Weiqing Gao, Gongmin Yao, Lixin Xu. Passively Q-switched Nd3+:YAG laser with corner cube. CHINESE OPTICS LETTERS,2006,14(6):332-335
    [107]Guosheng Zhou, Anthony J. Alfrey, Lee W. Casperson. Modes of a laser resonator with a retroreflecting corner cube mirror. Applied Optics,1982, 21(9):1670-1674
    [108]Guosheng Zhou,Lee W. Casperson. Modes of a laser resonator with a retroreflecting roof mirror. APPLIED OPTICS.1981, 20(20):3542-3546
    [109]Guo-Sheng Zhou,Lee W. Casperson. Modes of a laser resonator with aretroreflective mirror. APPLIED OPTICS,1981,20(9):1621-1625
    [110]Shen Meixiao,Wang Shaomin,Hu Laigui et al.Mode properties produced by a corner-cube cavity.Applied Optics,2004,43(20):4091-4094
    [111]J.Y.Liou,C.J.Chen,M.Y.Hwang, Misalignment characteristics of resonators formed by 900 cone and mirror. Applied Optics,1980,19(15):2569-2573
    [112]Junewen Chen, Cone-mirror resonator Q-switched operation. Applied Optics,1982,21(23):4329-4330
    [113]Shaomin Wang, Daomu Zhao, Laigui Hua, et al. Corner cube recognized as super-conjugator. in: High-Power Lasers and Applications II. Dianyuan Fan eds. Proceedings of SPIE 4914 (2002):187-192
    [114]程祖海,李宏棋,余文峰.带角隅反射镜的激光谐振腔.中国发明专利.ZL200310111411.X, 2006:1-9
    [115]李宏棋,程祖海.直角内圆锥面反射镜激光谐振腔.中国发明专利.ZL200410012717.4, 2006:1-10
    [116]石岩,金挺,李松等,定向棱镜激光腔模式模拟研究.红外与激光工程.2005,34(5):521-525
    [117]程守澄.光学仪器检校(第一版).北京:兵器工业出版社,1992.1-26
    [118]李晓彤编著.几何光学和光学设计(第一版).杭州:浙江大学出版社,1997.
    [119]EDSON R. PECK. Theory of the Corner-Cube Interferometer. Journal of the Optical Society of America,1948,38(12):1015-1024
    [120]Marija S. Scholl. Complex Reflectivity of a Corner Cube Retroreflector. in: Infrared Spaceborne Remote Sensing II. Marija S. Scholl ed. SPIE 2268(1994):422-430
    [121]P. R. YODER, JR. Study of Light Deviation Errors in Triple Mirrors and Tetrahedral Prisms. Journal of the Optical Society of America,1958, 48(7): 496-499
    [122]K. N. CHANDLER.On the Effects of Small Errors in the Angles of Corner-CubeReflectors. Journal of the Optical Society of America,1960, 50(3):203-206
    [123]H. D. Eckhardt. Simple Model of Corner Reflector Phenomena. APPLIED OPTICS, 1971, 10(7): 1559-1566
    [124]David A. Thomas and J. C. Wyant. Determination of the dihedral angle errors of a corner cube from its Twyman-Green interferogram. J. Opt. Soc. Am.,1977, 67(4): 467-472
    [125]Chiayu Ai and Kenneth L. Smith. Accurate measurement of the dihedral angle of a corner cube. APPLIED OPTICS,1992,31(4):519-527
    [126]V. A. Dement, P. I. Lamekin. Fraunhofer diffraction at a nonideal corner reflector with flat faces. J. Opt. Technol,2005,72(11):837-842
    [127]聂辉,翁兴涛,李松等.角锥棱镜的远场衍射特性.光学学报,2003,23(12):1470-1474
    [128]叶一东,彭勇,陈天江.角锥后向反射器的数值模拟研究.光学学报,2003,23(4):486-490
    [129]袁景和,陈波,曾红军等.微正方形角锥棱镜定向反射特性.光学学报,2000,20(7):973-978
    [130]梁倩,施翔春,付文强.立方反射镜失调特性的研究.中国激光,2005,32(3): 306-310
    [131]Reiner Hofmann,Reinhard Katterloher,Peter Essenwanger. Corner cube reflector for cryogenic interferometric use. Applied Optics,1986,25(24):4614-4617
    [132]James Joseph Lyons III,Patricia Ann Hayes. High Optical Quality Cryogenic Hollow Retroreflectors. SPIE 2540(1995):94-100
    [133]耿素杰,王文成,梁荣.锥体棱镜的加工与检验.光学技术,2000,26(6):538-540
    [134]S. Madhusudana Rao. Method for measurement of the angles of a tetragonal or corner cube prism. Opt. Eng,2002,41(7):1612-1614
    [135]Jan Burkea, Bozenko F. Oreba, Benjamin C. Plattb,et al. Precision metrology of dihedral angle error in prisms and corner cubes for the Space InterferometryMission.In:Optical Manufacturing and Testing VI. H. Philip Stahl ed. Proc. of SPIE 5869(2005):58690W(1-11)
    [136]J. W. Y. LIT, E. BRANNEN. Optical Properties of a Reflecting Cone. Journal of the Optical Society of America,1970, 60(3): 370-371
    [137]S.FUJIWARA. Optical Properties of Conic Surfaces. I. Reflecting Cone. Journal of the Optical Society of America,1962, 52(3):287-292
    [138]JOHN W. Y. LIT. Image Formation of a Reflecting Cone for an Off-Axis Source. Journal of the Optical Society of America,1970, 60(8): 1001-1006
    [139]Л.A.魏因施泰因.开放腔和开放波导(第一版).徐承和等译.北京:科学出版社,1987.
    [140]Hongqi Li, Zuhai Cheng. Output characteristics of right angle cone mirror cavity laser. Chinese Optics Letters,2005,3(11):650-652
    [141]李宏棋,程祖海.角隅全反镜谐振腔激光器的输出特性.强激光与粒子束,2006,18(3):357-361
    [142]李宏棋,程祖海,余文峰.高能激光器抗失调谐振腔的输出特性.激光与红外,2006,36(7):548-550
    [143]李宏棋,程祖海.直角内圆锥面全反镜折叠腔激光器的输出特性.激光技术,2006,30(4):409-411
    [144]Richard C. Wade. Annular resonators for high-power chemical lasers. SPIE 1868(1993):334-366
    [145]Chun Ching Shih. Modeling of rear cone misalignment in the annular resonator. in: Alvin D. Schnurr ed. Modeling and Simulation of Laser Systems III. SPIE 2117(1994):128-135
    [146]Masamori Endo.Numerical simulation of an optical resonator for generation of a doughnut-like laser beam. OPTICS EXPRESS,2004,12(9):1959-1964
    [147]David Fink. Polarization effects of axicons. Appl.Opt.,1979,18(5):581-582
    [148]Stephen D. Fantone.Simple method for testing an axicon. Applied Optics, 1981,20(20): 3885-3886
    [149]J.K.Guha,John.L.Martin,Roger A.Mickish et al, Performance of a coated cone in an annular resonator. Applied Optics, 1981,20(18):3089-3090
    [150]Jeffrey B. Shellan. Novel resonators for high power HF overtone lasers. In: Optical Resonators, SPIE 1224 (1990):302-311
    [151]W. R. Edmonds. The Reflaxicon, a New Reflective Optical Element, and Some Applications. Applied Optics,1973, 12(8): 1940-1945
    [152]Tomoo Fujioka,Masamort Endoh. Cylindrical straight slab type gas laser. United States Patent 6975662B2.2005.1-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700