飞秒激光微细加工电介质材料与微光器件制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对于飞秒激光烧蚀电介质材料特性以及基于飞秒激光微细加工技术的微光器件制备及应用进行了理论和实验研究。主要内容包括:
     (1)基于固体的能带理论建立了一个描述飞秒激光脉冲与电介质材料相互作用时载流子随时间、空间变化的简化理论模型。讨论了材料的烧蚀阈值与激光脉宽、光子能量之间的关系;讨论了多光子电离、隧道电离和雪崩电离机制在飞秒激光对材料烧蚀过程中的不同地位。
     (2)实验研究了飞秒激光对两种具有代表性的无机硅材料的烧蚀机理和损伤规律,结果表明,硅片是由缺陷中的导带电子作为种子电子引发雪崩电离导致材料烧蚀,而熔石英玻璃是由多光子电离激发出导带电子进而引发雪崩电离导致材料烧蚀。在烧蚀实验的基础上,进行了飞秒激光微细加工硅片的系统工艺研究,制作了应用于微机电系统(MEMS)的高质量微型硅模具。
     (3)实验研究了飞秒激光与非线性光学晶体KTP(KTiOPO4)的相互作用。在烧蚀区域周围观测到了尺寸约为30nm的周期性微结构,并且发现当能量较高时,结构的改变伴随有材料的熔融过程。从理论上分析了烧蚀“弹坑”的形状特征以及纳米尺寸周期性结构现象的原因。最后在非线性晶体内部实现了多层阵列光波导的刻写。
     (4)首次采用飞秒激光直写技术在非线性光学晶体BBO(β-BaB2O4)表面成功制备了高衍射效率的一维、二维和圆形光栅。对于光栅的形貌特征和衍射特性进行了详细的研究。通过对材料表面的空间周期调制导致晶体中基频波的非共线传播,通过改变入射光条件,可以在衍射级次之间达到共线和非共线相位匹配,从而可以获得多重的、非共线的、高强度的二次谐波(相干)光束,并且可以对二次谐波光束的空间分布进行控制。
In this dissertation, theoretical and experimental studies on the femtosecond laser ablation of dielectrics and fabrication of micro-optics devices based on femtosecond laser micromachining are presented. The main contents are classified as follows.
     (1) A theoretical model based on solid state energy band theory and energy conservation is developed which can describe temporal and spatial distribution of carriers in dielectric materials during laser-induced damage. The relation between damage threshold and laser pulse duration, photon energy is studied by this model. The respective roles of multi-photon ionization, tunnel ionization, and avalanche ionization in laser-induced damage are examined.
     (2) Femtosecond laser ablation of Si wafer and fused silica are studied by experiments. It was found that avalanche ionization is seeded by electrons due to defects, which is the main process during laser-induced damage in Si wafer and that avalanche ionization is seeded by electrons excited by multi-photon ionization, which is the main process during laser-induced damage in fused silica. It was found that the energy deposition is initiated by multiphoton ionization rather than having to rely on impurities or defects to start an electron avalanche in transparent materials. Based on the ablation and cutting of Si wafer, a micro-mould for MEMS application is fabricated with an accuracy of ~1μm.
     (3) The morphology of structural changes in KTP crystal induced by single femtosecond laser pulse has been investigated. The structurally changed region is depressed at energies close to the threshold for producing a structural change and melting ablation morphologies are observed as pulse energy is increased. Furthermore, periodic nanostructures are formed around the edge of the laser-induced craters. The crater shape and the periodic nanostructures of femtosecond laser ablation of dielectrics are analyzed. And the femtosecond laser ablation technique was then employed for micromachining of mutilayer optical waveguides.
     (4) Surface relief diffraction gratings were written at the entrance surface of BBO crystal under irradiation with femtosecond laser pulses. Probe-beam diffraction and atomic force microscopy (AFM) were employed to characterize the diffraction properties and the microstructures of gratings. This periodic spatial modulation of the material surface induces noncollinear propagation of the input fundamental signal in the crystal. By slightly changing the angle of the incident beam, collinear and noncollinear phase matching can be achieved between different diffraction orders, in this way allowing the efficient generation of several second-harmonic beams.
引文
[1] K.Yamane, T. Kito, R. Morita et al. 2.8-fs transform-limited optical-pulse generation in the monocycle region in Conf. Lasers and Electro-Optics, Optical Society of America, Washington, D.C., 2004, postdeadline paper PDC2: 1~3
    [2] U. Keller. Recent developments in compact ultrafast lasers. Nature, 2003, 424(14): 831~838
    [3] P. F. Moulton. Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am. B, 1986, 3: 125~132
    [4] D. E. Spence, P. N. Kean, W. Sibbett. 60 fs pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett., 1991, 16(1): 42~44
    [5] G. Cerullo, S. De Silvestri, V. Magni. Resonators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers. Opt. Lett., 1994, 19(11): 807~809
    [6] G. Cerullo, S. De Silvestri, V. Magni. Self-starting Kerr lens mode-locking of a Ti:sapphire laser. Opt. Lett., 1994, 19(14): 1040~1042
    [7] A. F. Gibson, M. F. Kimmitt, B. Norris. Generation of bandwidth-limited pulses from a TEA CO2 laser using p-type germanium. Appl. Phys. Lett., 1974, 24(7): 306~307
    [8] E. P. Ippen, D. J. Eichenberger, R. W. Dixon. Picosecond pulse generation by passive modelocking of diode lasers. Appl. Phys. Lett., 1980, 37(3): 267~269
    [9] M. N. Islam. Color center lasers passively mode locked by quantum wells. IEEE J. Quantum Electron., 1989, 25(12): 2454~2463
    [10] R. Paschotta, U. Keller. Passive mode locking with slow saturable absorbers. Appl. Phys. B, 2001, 73(7): 653~662
    [11] D. H. Sutter. Semiconductor saturable-absorber mirror-assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. Opt. Lett., 1999, 24(9): 631~633
    [12] R. Ell. Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Opt. Lett., 2001, 26(6): 373~375
    [13] M. Nisoli. Compression of high energy laser pulses below 5 fs. Opt. Lett., 1997,22(8): 522~524
    [14] A. Shirakawa, I. Sakane, M. Takasaka et al. Sub-5-fs visible pulse generation by pulsefront-matched noncollinear optical parametric amplification. Appl. Phys. Lett., 1999, 74(16): 2268~2270
    [15] R. L. Fork, O. E. Martinez, J. P. Gordon. Negative dispersion using pairs of prisms. Opt. Lett., 1984, 9(5): 150~152
    [16] M. T. Asaki. Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser. Opt. Lett., 1993, 18(12): 977~979
    [17] P. F. Curley. Operation of a femtosecond Ti:sapphire solitary laser in the vicinity of zero group delay dispersion. Opt. Lett., 1993, 18(1): 54~56
    [18] J. Zhou. Pulse evolution in a broad-bandwidth Ti:sapphire laser. Opt. Lett., 1994, 19(15):1149~1151
    [19] R. Szip?cs, K. Ferencz, C. Spielmann et al. Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett., 1994, 19(3): 201~ 203
    [20] A. Stingl, M. Lenzner, Ch. Spielmann et al. Sub-10-fs mirror-dispersioncontrolled Ti:sapphire laser. Opt. Lett., 1995, 20(6): 602~604
    [21] F. X. K?rtner. Design and fabrication of double-chirped mirrors. Opt. Lett., 1997, 22(11): 831~833
    [22] N. Matuschek, F. X. K?rtner, U. Keller. Analytical design of double-chirped mirrors with customtailored dispersion characteristics. IEEE J. Quantum Electron., 1999, 35: 129~137
    [23] N. Matuschek, L. Gallmann, D. H. Sutter et al. Back-side coated chirped mirror with ultra-smooth broadband dispersion characteristics. Appl. Phys. B, 2000, 71(4): 509~522
    [24] G. Steinmeyer, D. H. Sutter, L. Gallmann et al. Frontiers in ultrashort pulse generation: pushing the limits in linear and nonlinear optics. Science, 1999, 286(5444): 1507~1512
    [25] L. Xu. Route to phase control of ultrashort light pulses. Opt. Lett., 1996, 21(24): 2008~2010
    [26] D. J. Jones. Carrier-envelope phase control of femtosecond mode-locked lasers anddirect optical frequency synthesis. Science, 2000, 288(5466): 635~639
    [27] A. Apolonski. Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett., 2000, 85(4): 740~743
    [28] F. W. Helbing, G. Steinmeyer, J. Stenger et al. Carrier-envelope-offset dynamics and stabilization of femtosecond pulses. Appl. Phys. B, 2002, 74(1): S35~S42
    [29] G. G. Paulus. Absolute-phase phenomena in photoionization with few-cycle laser pulses. Nature, 2001, 414(8):182~184
    [30] A. Baltuska. Attosecond control of electronic processes by intense light fields. Nature, 2003, 421(6): 611~615
    [31] M. A. oyama, K. Ya makawa, Y. Akahane et al. 0.85PW, 33fs Ti:sapphire laser. Opt. Lett., 2003, 28 (17): 1594~1596
    [32] E. Innerhofer. 60 W average power in 810-fs pulses from a thin-disk Yb:YAG laser. Opt. Lett., 2003, 28(5): 367~369
    [33] T. Südmeyer. Femtosecond fiber-feedback OPO. Opt. Lett., 2001, 26(5): 304~306
    [34] R. Paschotta. Diode-pumped passively mode-locked lasers with high average power. Appl. Phys.B, 2000, 70(7): S25~S31
    [35] A. Giesen. Scalable concept for diode-pumped high-power solid-state lasers. Appl. Phys. B, 1994, 58(5): 363~372
    [36] L. Krainer, R. Paschotta, M. Moser et al. 77 GHz soliton modelocked Nd:YVO4 laser. Electron. Lett., 2000, 36: 1846~1848
    [37] L. Krainer. Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz. IEEE J. Quantum Electron., 2002, 38: 1331~1338
    [38] L. Krainer. Tunable picosecond pulse-generating laser with a repetition rate exceeding 10 GHz. Electron. Lett., 2002, 38: 225~227
    [39] A. Rousse. Non-thermal melting in semiconductors measured at femtosecond resolution. Nature, 2001, 410(01): 65~68
    [40] S. C. Zeller. Passively modelocked 40-GHz Er:Yb:glass laser. Appl. Phys. B, 2003, 76(7): 787~788
    [41] E. Yoshida, M. Nakazawa. 80~200GHz erbium doped fibre laser using a rational harmonic modelocking technique. Electron. Lett., 1996, 32: 1370~1372
    [42] S. Arahira, Y. Matsui, Y. Ogawa. Mode-locking at very high repetition rates morethan terahertz in passively mode-locked distributed-Bragg-reflector laser diodes. IEEE J. Quantum Electron., 1996, 32: 1211~1224
    [43] S. Hoogland. Passively mode-locked diode-pumped surface-emitting semiconductor laser. IEEE Photon. Technol. Lett., 2000, 12: 1135~1138
    [44] R. H?ring. High–power passively mode–locked semiconductor lasers. IEEE J. Quantum Electron., 2002, 38: 1268~1275
    [45] J. Shah. Ultrafast spectroscopy of semiconductors and semiconductor nanostructures. 2nd enlarged ed. Edition. Berlin: Springer-Verlag, 1996. 1~518
    [46] A. H. Zewail. Femtochemistry: Recent progess in studies of dynamics and control of reactions and their transition states. J. Phys. Chem., 1996, 100(31): 12701~12724
    [47] A. H. Zewail. Femtochemistry: atomic-scale dynamics of chemical bond. J. Phys. Chem. A, 2000, 104(24): 5660~5694
    [48] R. Ramaswami, K. Sivarajan. Optical Networks: A Practical Perspective. 2nd edition. Morgan Kaufmann, 2001. 1~864
    [49] L. F. Mollenauer. Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons. Opt. Lett., 2000, 25(10): 704~706
    [50] D. A. B. Miller. Optical interconnects to silicon. IEEE J. Sel. Top. Quantum Electron., 2000, 6: 1312~1317
    [51] A. V. Krishnamoorthy, D. A. B. Miller. Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap. IEEE J. Sel. Top. Quantum Electron., 1996, 2: 55~76
    [52] J. A. Valdmanis, G. A. Mourou. Subpicosecond electrooptic sampling: principles and applications. IEEE J. Quantum Electron., 1986, 22: 69~78
    [53] K. J. Weingarten, M. J. W. Rodwell, D. M. Bloom. Picosecond optical sampling of GaAs integrated circuits. IEEE J. Quantum Electron., 1988, 24: 198~220
    [54] A. Hatziefremidis, D. N. Papadopoulos, D. Fraser et al. Laser sources for polarizedelectron beams in cw and pulsed accelerators. Nucl. Instrum. Meth. A, 1999, 431: 46~52
    [55] L. F. Mollenauer, P. V. Mamyshev. Massive wavelength-division multiplexing with solitons. IEEE J. Quantum Electron., 1998, 34: 2089~2102
    [56] L. Boivin, M. Wegmueller, M. C. Nuss, W. H. Knox. 110 Channels x 2.35 Gb/s from a single femtosecond laser. IEEE Photonics Technology Lett., 1999, 11: 466~468
    [57] E. A. D. Souza, M. C. Nuss, W. H. Knox et al. Wavelength-division multiplexing with femtosecond pulses. Opt. Lett., 1995, 20(10): 1166~1168
    [58] G. J. Spühler. Novel multi-wavelength source with 25-GHz channel spacing tunable over the Cband. Electron. Lett., 2003, 39: 778~780
    [59] R. Holzwarth. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett., 2000, 85(11): 2264~2267
    [60] R. Holzwarth, M. Zimmermann, T. Udem et al. Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb. IEEE J. Quantum Electron., 2001, 37: 1493~1501
    [61] J. Stenger. Phase-coherent frequency measurement of the Ca intercombination line at 657 nm with a Kerr-lens mode-locked femtosecond laser. Phys. Rev. A, 2001, 63(2): 021802
    [62] H. R. Telle. Carrier-envelope offset phase control: A novel concept for asolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B, 1999, 69(4): 327~332
    [63] M. Drescher. X-ray pulses approaching the attosecond frontier. Science, 2001, 291(9): 1923~1927
    [64] X. Liu, D. Du, G. Mourou. Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Quantum Electron., 1997, 33: 1706~1716
    [65] S. Nolte. Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B, 1997, 14: 2716~2722
    [66] von der Linde, D. K. Sokolowski-Tinten, J. Bialkowski et al. Laser-solid interaction in the femtosecond time regime. Appl. Surf. Sci., 1997, 109/110(1): 1~10
    [67] C. W. Siders. Detection of nonthermal melting by ultrafast X-ray diffraction. Science, 1999, 286(12): 1340~1342
    [68] F. H. Loesel, M. H. Niemz, J. F. Bille et al. Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model. IEEE J. Quantum Electron., 1996, 32: 1717~1722
    [69] D. X. Hammer. Experimental investigation of ultrashort pulse laser induced breakdown thresholds in aqueous media. IEEE J. Quantum Electron., 1996, 32: 670~678
    [70] T. Juhasz. Corneal refractive surgery with femtosecond lasers. IEEE J. Sel. Top. Quantum Electron., 1999, 5: 902~910
    [71] T. Südmeyer. Nonlinear femtosecond pulse compression at high average power levels using a large area holey fiber. Opt. Lett., 2003, 28(20): 1951~1953
    [72] M. Ferray. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B: At. Mol. Opt. Phys., 1988, 21(3): L31~L35
    [73] M. Lewenstein, P. Balcou, M. Y. Ivanov et al. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A, 1994, 49(3): 2117~2132
    [74] M. M. Murnane, H. C. Kapteyn, M. D. Rosen et al. Ultrafast X-Ray pulses from laser produced plasmas. Science, 1991, 251(1): 531~536
    [75] O. Schmidt. Time-resolved two-photon photoemission electron microscopy. Appl. Phys. B, 2002, 74(3): 223~227
    [76] M. Bauer. Direct observation of surface chemistry using ultrafast soft-X-ray pulses. Phys. Rev. Lett., 2001, 87(2): 025501-1~025501-4
    [77] J. Ihlemann. Excimer lasers ablation of fused silica. Appl. Surf. Sci., 1992, 54(1): 193~200
    [78] S. August, D. Strickland, D. D. Meyerhofer et al. Tunneling inozation of noble gases in a high-intensity laser field. Phys. Rev. Lett., 1989, 63(20): 2212~2215
    [79] P. Bado, W. Clark, A. Said. An Introduction to Micromachining with Femtosecond Laser Pulses, Version 2.2. Clark-MXR, Inc., 2002. 1~100
    [80] A. H. Chin, R. W. Schoenlein, T. E. Glover et al. Ultrafast structural dynamics in InSb probed by time-resolved X-Ray diffraction. Phys. Rev. Lett., 1999, 83(2): 336~339
    [81] J. R. Goldman, J. A. Prybyla. Ultrafast dynamics of laser-excited electron distributions in silicon. Phys. Rev. Lett., 1994, 72: 1364~1367
    [82] N. B. Chichkov, C. Momma, S. Nolte. Femtosecond, picosecond, nanosecond laser ablation of solids. Appl. Phys. A, 1996, 63(2): 109~115
    [83] K. Satoshi, H. Sun, Tanaka. T. Finer features for functional microdevices. Nature,2001, 412(16): 697~698
    [84] T. Tomakazu, H. Sun, K. Satashi. Rapid sub-diffraction-limit laser micro/ nanoprocessing in a threshold material system. Appl. Phys. Lett., 2002, 80(2): 312~314
    [85] M. D. Perry, B. C. Strart, P. S. Banks et al. Ultrafast-pulse laser machining of dielectric materials. J. Appl. Phys., 1999, 85(9): 6803~6810
    [86] P. Bado. Micromaching: Ultrafast pulses create waveguides and microchannels. Laser Focus World, 2000, 4(1): 192~196
    [87] C. Reinhardt, S. Passinger, B. N. Chichkov. Laser-fabricated dielectric optical components for surface plasmon polaritons. Opt. Lett., 2006, 31(9): 1307~1309
    [88] Y. Kondo, K. Nouchi, T. Mitsuyu. Fabrication of long-period fiber grating by focused irradiation of infrared femtosecond laser pulses. Opt. Lett., 1999, 24(10): 646~648
    [89] E. Fertein, C. Przygodzki, H. Delbarre. Refractive-insex changes of standard telecommunication fiber through exposure to femtosecond laser pulse at 810nm. Appl. Opt., 2001, 40(21): 3506~3508
    [90] Stephen J. Mihailov, Dan Grobnic, Huimin Ding et al. Femtosecond IR Laser Fabrication of Bragg Gratings in Photonic Crystal Fibers and Tapers. IEEE Photonics Technology Letters, 2006, 18(17): 1837~1839
    [91] B. H. Cumpston, S. P. Ananthavel, S. Barlow et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 1999, 398(04): 51~54
    [92] J. Hendrik, K. Wiele, P. Simon. Fabrication of periodic nanostructures by phase controlled multiple-beam interference. Appl. Phys. Lett., 2003, 83(23): 4707~4709
    [93] Y. Cheng, H. L. Tsai1, K. Sugioka et al. Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining. Appl. Phys. A, 2006, 85: 11~14
    [94] E. N. Glezer, M. Milosavljevic, L. Huang et al. Three-demensional optical storage inside transparent materials. Opt. Lett., 1996, 21(24): 2023~2025
    [95] K. Venkatakrishnan, B. K. A. Ngoi, P. Stenley et al. Laser writing techniques for photomask fabrication using a femtosecond laser. Appl. Phys. A, 2002, 74(4): 493~496
    [96] A. V. Rode. Subpicasecond laser ablation of dental enamel. J. Appl. Phys., 2002, 92(15): 2153~2158
    [97] T. Juhasz, G. Djotyan, F. H. Loesel et al. Applications of femtosecond lasers in corneal surgery. Laser Physics, 2000, 10: 1~6
    [98] K Konig, I Riemann. Nanodissection of human chromosomes with near-infraed femtosecond laser pulses. Opt. Lett., 2001, 26(11): 819~821
    [99] U. K. Tirlapur, K. Konig. Cell biology Targeted transfection by femtosecond laser. Nature, 2002, 418(18): 290~291
    [100] N. Shen, D. Datta. S. Kumar. Nanosurgery in a live cell using femtosecond laser pulses. Proceedings of SPIE, 5695: 230~235
    [101] P. S. Banks, M. D. Feit, A. M. Rubenchik et al. Material effects in ultrashort pulse laser drilling of metals. Appl. Phys. A, 1999, 69(7): S377~S380
    [102] A. V. Lugovskoy, I. Bray. Ultrafast electron dynamics in metals under laser irradiation. Phys. Rev. B, 1999, 60(5): 3279~3288
    [103] B. Rethfeld, A. Kaiser, M. Vicanek et al. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B, 2002, 65(21): 214303~214313
    [104] M. H. Niemz. Threshold dependence of laserinduced optical breakdown on pulse duration. Appl. Phys. Lett., 1995, 66(10): 1181~1183
    [105] M. Lenzner, J. Krüger, S. Sartania et al. Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett., 1998, 80(18): 4076~4079
    [106] D. V. Linde, H. Schüler. Breakdown threshold and plasma formation in femtosecond laser-solid interaction. J. Opt. Soc. Am. B, 1996, 13: 216~223
    [107] F. H. Loesel, M. H. Niemz, J. F. Bille et al. Laser-induced optical breakdown on hard and soft tissues and its dependence on the pulse duration: experiment and model. IEEE J. Quant. Electron, 1996, 32: 1717~1722
    [108] B. N. Chichkov, A. Ostendorf, F. Korte et al. Femtosecond laser ablation and nanostructuring. Proceedings of SPIE, 2002, 4760: 19~24
    [109] J. G. Fujimoto, J. M. Liu, E. P. Ippen et al. Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures. Phys. Rev.Lett., 1984, 53(19): 1837~1840
    [110] H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot et al. Time -resolved observation of electron-phonon relaxation in copper. Phys. Rev. Lett., 1987, 58(12): 1212~1215
    [111] R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto et al. Femtosecond studies of nonequilibrium electronic processes in metals. Phys. Rev. Lett., 1987, 58(16): 1680~1683
    [112] S. D. Brorson, A. Kazeroonian, J. S. Moodera et al. Femtosecond room-temperature measurement of the electronphonon coupling constant gamma in metallic superconductors. Phys. Rev. Lett., 1990, 64(18): 2172~2175
    [113] C. D. Decker, W. B. Mori, J. M. Dawson et al. Nonlinear collisional absorption in laser-driven plasmas. Phys. Plasmas, 1994, 1(12): 4043~4049
    [114] E. Bésuelle, R. R. E. Salomaa, D. Teychenné. Coulomb logarithm in femtosecond-laser-matter interaction. Phys. Rev. E, 1999, 60(2): 2260~2263
    [115] K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri et al. Transient states of matter during short pulse laser ablation. Phys. Rev. Lett., 1998, 81(1): 224~227
    [116] B. Wolff-Rottke, J. Ihlemann, H. Schmidt et al. Influence of the laser-spot diameter on photo-ablation rates. Appl. Phys. A, 1995, 60(1): 13~17
    [117] A. Kaiser, B. Rethfeld, M. Vicanek et al. Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses. Phys. Rev. B, 2000, 61(17): 11437~ 11450
    [118] F. Ladieu, P. Martin, S. Guizard. Measuring thermal effects in femtosecond laser-induced breakdown of dielectrics. Appl. Phys. Lett., 2002, 81(6): 957~959
    [119] E. Mevel, P. Breger, R. Trainhan et al. Atoms in strong optical fields: evolution from multiphoton to tunnel ionization. Phys. Rev. Lett., 1993, 70(4): 406~409
    [120] A. Tien, S. Backus, H. Kapteyn et al. Short-pulse laser damage in transparent materials as a function of pulse duration. Phys. Rev. Lett., 1999, 82(19): 3883~3886
    [121] K. Wong, S. Vongehr, V. V. Kresin. Work functions, ionization potentials, and in between: scaling relations based on the image-charge model. Phys. Rev. B, 2003, 67(3): 035406~035414
    [122] A. Kaiser, B. Rethfeld, M. Vicanek et al. Microscopic processes in dielectricsunder irradiation by subpicosecond laser pulses. Phys. Rev. B, 2000, 61(17): 11437~11450
    [123] P. P. Pronko, P. VanRompay, A. Horvath et al. Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses. Phys. Rev. B, 1998, 58(5): 2387~ 2390
    [124] B. C. Stuart, M. D. Feit, S. Herman et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B, 1996, 53(4): 1749~1761
    [125] M. D. Perry, B. C. Stuart, P. S. Banks et al. Ultrashortpulse laser machining of dielectric materials. J. Appl. Phys., 1999, 85: 6803~6810
    [126] B. C. Stuart, M. D. Feit, A. M. Rubenchik et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses. Phys. Rev. Lett., 1995, 74(12): 2248~ 2251
    [127] M. Li, S. Menon, J. P. Nibarger et al. Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics. Phys. Rev. Lett., 1999, 82(11): 2394~2397
    [128] N. Bloembergen. Laser-induced electricbreakdown in solids. IEEE J. Quantum Electron, 1974, QE-10: 375~386
    [129] E. G. Gamaly, A. V. Rode, B. Luther-Davies et al. Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics. Phys. of Plas., 2002, 9(3): 949~957
    [130] M. V. Exter, A. Lagendijk. Ultrashort surface-plasmon and phonon dynamics. Phys. Rev. Lett., 1988, 60(1): 49~52
    [131] P. C. Becher, H. L. Fragnito, C. H. Brito el al. Femtosecond photon echoes from bad-to-band transitions in GaAs. Phys. Rev. Lett., 1988, 61(14): 1647~1649
    [132] K. Sokolowski-Tinten, J. Bialkowski, D. von der Linde. Ultrafast laser-induced order-disorder transitions in Semiconductors. Phys. Rev. B, 1995, 51(21): 14186~ 14190
    [133] P. Stampfli, K. H. Bennemann. Dynamical theory of the laser-induced lattice instability of silicon. Phys. Rev. B, 1992, 46(17): 10686~10692
    [134] V. P. Krainov, A. S. Roshchupkin. Dynamics of the Coulomb explosion of large hydrogen iodide clusters irradiated by superintense ultrashort laser pulses. Phys. Rev. A., 2001, 64(6): 063204~063208
    [135] R. Stoian, A. Rosenfeld, D. Ashkenasi et al. Surface charging and impulsive ionejection during ultrashort pulsed laser ablation. Phys. Rev. Lett., 2002, 88(9): 097603~097606
    [136] K. K. Thornber. Application of Scaling to Problems in High-field Electronic Transport. J. Appl. Phys., 1981, 52(1): 279~290
    [137] L. V. Keldysh. Ionization in the Field of a Strong Electromagnetic Wave. Sov. Phys. JETP, 1965, 20(5): 1307~1314
    [138] C. W. Carr, H. B. Radousky, A. M. Rubenchik et al. Localized Dynamics during Laser-Induced Damage in Optical Materials. Phys. Rev. Lett., 2004, 92(8): 087401-1~4
    [139] P. T. Mannion, J. Magee, E. Coyne et al. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl. Surf. Sci., 2004, 233: 275~287
    [140] J. Bonse, P. Rudolph, J. Kruger et al. Femtosecond pulse laser processing of TiN on silicon. Appl. Surf. Sci., 2000, 154-155: 659~663
    [141] S. E. Kirkwood, A. C. Van Popta, Y. Y. TSUI et al. Single and multiple shot near-infrared femtosecond laser pulse ablation thresholds of copper. Appl. Phys. A, 2004, 81(4): 729~735
    [142] F. Schrempel, Th. Opfermann, J. P. Ruske et al. Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP. Nuclear Instruments and Methods in Physics Research B, 2004, 218: 209~216
    [143] L. Jiang, H. L. Tsai. Prediction of crater shape in femtosecond laser ablation of dielectrics. J. Phys. D: Appl. Phys., 2004, 37: 1492~1496
    [144] S. Guizard, A. Semerok, J. Gaudin et al. Femtosecond laser ablation of transparent dielectrics measurement and modelisation of crater profiles. Appli. Surf. Sci., 2002, 186: 364~368
    [145] A. S. Zakharov, M. V. Volkov, I. P. Gurov et al. Interferometric diagnostics of ablation craters formed by femtosecond laser pulses. J. Opt. Technol., 2002, 69(7): 478~480
    [146] M. Lapczyna, K. P. Chen, P. R. Herman et al. Ultra high repetition rate (133 MHz) laser ablation of aluminum with 1.2-ps pulses. Appl. Phys. A, 1999, 69(Suppl.): S883~S886
    [147] K. Furusawa, K. Takahashi, S H Cho et al. Femtosecond laser micromachining of TiO2 crystal surface for robust optical catalyst. J. Appl. Phys., 2000, 87(4): 1604~ 1607
    [148] Y. Shimotsuma, P. G. Kazansky, J. Qiu et al. Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses. Phys. Rev. Lett., 2003, 91(24): 247405-1~4
    [149] J. Reif, F. Costache, M. Henyk et al. Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics Appl. Surf. Sci., 2002, 197-198: 891~895
    [150] Y. Dong, P. Molian. Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C–SiC by the femtosecond pulsed laser. Appl. Phys. Lett., 2004, 84(1): 10~12
    [151] Z. Wang, G. Xu, J. Liu et al. Noncollinear second-harmonic generation in BiB3O6. J. Opt. Soc. Am. B, 2004, 21(7): 1348~1350
    [152] J. A. Giordmaine. Mixing of Light Beams in Crystals. Phys. Rev. Lett., 1962, 8(1): 19~20
    [153] A. R. Tunyagi, M. Ulex, K. Betzler. Noncollinear Optical Frequency Doubling in Strontium Barium Niobate. Phys. Rev. Lett., 2003, 90(24): 243901-1~4
    [154] G. C. Bhar, A. K. Chaudhary, P. Kumbhakar et al. A comparative study of laser-induced surface damage thresholds in BBO crystals and effect of impurities. Optical Materials, 2004, 27: 119~123
    [155] D. B. Studebaker, G. T. Stauf, T. H. Baum et al. Second harmonic generation from beta barium borate (β-BaB2O4) thin films grown by metalorganic chemical vapor deposition. Appl. Phys. Lett., 1997, 70(5): 565~567
    [156]姚建铨.非线性光学频率变换及激光调谐技术. (第一版).北京:科学出版社, 1995. 1~400

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700