基于无衍射光的大景深成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大景深光学成像系统具有更大的成像空间,不需要进行机械调焦和用于三维显示等优点,长期以来倍受研究者关注。本文根据无衍射光具有线焦的特性,将其应用于成像系统中以增大光学系统的景深。
     本文的主要研究工作及创新如下:
     研究了轴锥镜在不同光源下所产生光场的光学特性,建立了其理论数学模型。基于平行单色光照射轴锥镜的衍射特性,推导了轴上点产生的发散、会聚球面波照射轴锥镜的衍射特性。同时根据光源的光谱特性,建立了准单色光和复色光照射轴锥镜的衍射图样。
     分析了两束无衍射光的干涉理论。利用两小孔产生两束相干的无衍射光,依据单束倾斜平行光照射轴锥镜的衍射场,分析出这两束无衍射光产生的干涉场为每束无衍射光的无衍射场的线性叠加,即为两个零阶贝塞尔函数的叠加。根据暗条纹的计算公式,推导出干涉条纹的轨迹为双曲线。设计并研制了三种常用的大景深成像原理实验装置。利用轴锥镜能产生无衍射光的特性,分析了将其应用到成像系统中增大景深的原理。根据应用的不同,分别设计了大景深1:1成像系统、显微成像系统和望远成像系统。
     以设计的1:1成像系统为例,推导了无衍射光大景深成像系统的点扩散函数的形式和变化规律,重点分析了点扩散函数中心光斑的变化规律,这个变化规律为系统所成的像的变化原因以及进行图像复原提供了理论依据。还从光学传递函数、分辨率、对比度和景深等方面对成像系统进行了深入的理论分析。
     介绍了四种常用的图像复原方法:维纳滤波,约束最小二乘方,Lucy-Richardson法和盲复原法,并比较了这四种方法对无衍射光成像系统的恢复结果。针对无衍射光成像系统的成像特性,提出了多幅图像叠加法。由于无衍射光成像系统的点扩散函数扩散较开,使得所成的像对比度很低,图像细节淹没在大量噪声中,为了提高图像的对比度和清晰度,提出了这种有效的算法。
     用设计的成像系统分别对字符、图案和空间连续的物体进行了成像实验。成像实验表明,本文设计的三种基于无衍射光大景深成像系统比普通光学系统有更大的景深,因此,本文提出的方法能有效的增大非相干成像系统的景深。
An optical imaging system with large depth of field has features of greater imaging space, without requiring mechanical focusing and displaying 3-D objects. Therefore, it has been an active research topic to extend the depth-of-field of optical imaging systems. The non-diffracting beam has the characteristics of focal segment, so it can be used to extend the depth-of-field of an imaging system.
     The main research and innovations are as follows:
     The diffracting patterns produced by the axicon in different light illuminating are analyzed, and the mathematical models of these patterns are theoretically established. Based on the diffraction pattern of the axicon in monochromatic parallel light illumination, the diffraction patterns of the axicon illuminated by converging and diverging waves produced by an axis point are derived. Moreover, the diffraction patterns of the aixcon illuminated by quasi-monochromatic light and polychromatic light are presented based on their spectrum characteristics.
     The interference pattern of two non-diffracting beams is analyzed. Two non-diffracting beams are gene rated when an axicon is illuminated by two coherent beams, which are produced by two pinholes illuminated by a monochromatic wave. Based on the non-diffracting property of an axicon in oblique illumination, the interference field is the linear superposition of each non-diffracting field of non-diffracting beam, namely the interference intensity is the sum of the two zero-order Bessel functions. The locus of inte rfe rence f ringes is analyzed to be hyperbola according to the formula of dark fringe.
     Three common large depth of field imaging systems are designed and produced. The axcion can produce a non-diffracting beam, and it is used to extend depth of field of optical imaging system, and the theorem of this method is analyzed in this paper. According to the different applications, three optical systems with large depth of field 1:1 imaging system, microscopic imaging system and telescopic imaging system are designed.
     The form and characteristics of the point spread function (PSF) of the designed imaging systems are derived based on the 1:1 imaging system. The changing rule of the point spread function centre spot is analyzed, and the rule gives the reason of the changing of the images quality, and provides a theoretical basis for image restoration. The imaging system is analyzed theoretically from OTF (optical transfer function), resolution, contrast and depth of field.
     Four tranditional image restoration methods: wiener filtering, constrained least squares filtering, Lucy-Richardson algorithm and blind deconvolution are introduced, and the experimental results used these four methods are compared. A multiple images superposition algorism is introduced based on the properties of the pictures imaged by the designed optical system. Since the PSF except the center spot spreads out on the full image, which makes the contrast be lower, and makes the details of image immerse in large noise. In order to improve the contrast and definition of the image, this effective algorism is presented.
     Imaging experiments were steped to use the designed three imaging systems to image with the objects of letter, pattern and space continuous object. Experimental results show that these three imaging systems, designed based on the non-diffracting beam, have larger depth of field than ordinary optical systems. Therefore, the performed experiments validate the effect and feasibility of non-diffracting beam for imaging with extending depth of field.
引文
[1] J. Ojeda-Castaneda, L. R. Berriel-Valdos. Zone plate for arbitrarily high focal depth. Appl. Opt., 1990, 29, 994-997
    [2] J. Ojeda-Castaneda, L. R. Berriel-Valdos, and E. Montes. Spatial Filter for Increasing the Depth of Focus, Opt. Lett. 1985, 10, 520- 522
    [3] M. Mino, Y. Okano. Improvement in the optical transfer function of a defocused optical system through the use of shaded apertures. Appl. Opt. 1971, 10, 2219-2225
    [4] J. Ojeda-Castaneda, P. Andres, and A. Diaz. Annular apodizers for low sensitivity to defocus and to spherical aberration. Opt. Lett., 1986, 11, 487-489
    [5] J. Ojeda-Castaneda, E. Tepichin, and A. Diaz. Arbitrary high focal depth with a quasioptimum real and positive transmittance apodizer. Appl. Opt., 1989, 28, 2666-2670
    [6] J. Ojeda-Castaneda, L. R. Berriel-Valdos, and E. Montes. Line-Spread function relatively insensitive to defocus. Opt. Lett. 1983, 8(8), 458-460
    [7] J. Ojeda-Castaneda, J. C. Escalera, and M. J. Yzuel. Supergaussian rings: Focusing properties. Opt. Comm., 1995, 189-193
    [8] J. Ojeda-Castaneda, L. R. Berriel-Valdos. Arbitrarily High Focal Depth with Finite Apertures. Opt. Lett., 1988, 13, 183-185
    [9] E. R. Dowski, Jr. and W. T. Cathey. Extended depth of field through wave-front coding. Appl. Opt., 1995, 34, 1859-1866
    [10] S. Bradburn, W. T. Cathey, E. R. Dowski, et al.. Realizations of focus invariance in optical-digital systems with wave-front coding. Appl. Opt., 1997, 36, 9157-9166
    [11] H. B. Wach, E. R. Dowski, Jr., et al.. Control of chromatic focal shift through wave-front coding. Appl. Opt., 1998, 37, 5359-5367
    [12] W. T. Cathy, E. R. Dowski. New paradigm for imaging systems. 2002, Appl. Opt., 41, 6080-6090
    [13] Gonzalo Muyo, Andrew R Harvey. Wavefront coding for athermalization of infrared imaging systems. 2004, SPIE, 5612, 227-235
    [14] Kenneth S. KUbala, E. Dowski and W. T. Cathy. Reducing complexity in computational imaging systems. Opt. Express, 2003, 11, 2102-2108
    [15] E. R. Dowski, Jr., and Kenneth S. KUbala. Modeling of Wavefront Coded Imaging Systems. SPIE, 2002, 4736, 116-126
    [16] Angel Sauceda, Jorge Ojeda-Castaneda. High focal depth with fractional-power wave fronts. Optics Letters, 2004, 29(6), 560-562
    [17] S. C. Tucker, W. T. Cathey, and E. R. Dowski, et al.. Extended depth of field and aberration control for inexpensive digital microscope systems. Opt. Express. 1999, 4, 467-474
    [18] P Zemlo, M Sypek, A Kolodziejczyk, Z Jaroszewicz. Imaging properties of the light sword optical element. SPIE, 2169, 34-44
    [19] A. Ko?odziejczyk, S. Bara, Z. Jaroszewicz, et al.. The light sword optical element—a new diffraction structure with extended depth of focus. J. Mod. Opt., 1990, 37, 1283-1286
    [20] E R Dowski, W T Cathey. Aspheric optical elements for extended of field imaging. SPIE, 1995, 2537:279-288
    [21] B Forster, D V Deville, J Berent et al.. Complex wavelets for extended depth-of-field: a new method for the fusion of multichannel microscopy images. Microscopy Research and Technique, 2004, 64,33-42
    [22] N George, W Chi. Extended depth of field using a logarithmic asphere. J. Opt. A: Pure Appl. Opt., 2005, 5,157-163
    [23] Z Zalevsky, S Ben-Yaish. Extended depth of focus imaging with birefringent plate. Opt. Exp., 2007, 15, 7202-7210
    [24] J. N. Brittingham. Focus wave modes in homogeneous Maxwell's equations: transverse electric mode. J. Appl. Phys. , 1983, 54,1179-1189
    [25] Durnin J.. Exact Solutions for Nondiffracting Beams.Ι: the scalar theory. JOSA (A), 1987, 4, 651-654
    [26] Durnin J.. Diffraction-free Beams. Phys. Rev. Lett., 1987, 58, 1479-1501
    [27] J.Turuenen, A. Vasara, and A. T. Friberg. Holographic generation of diffraction-free beams. Appl. Opt., 1988, 27(19), 3959-3962
    [28] Vasara, J. Tutunen, A. T. Friberg. Realization of gerneral nondiffracting beams with computer-generated holograms. J. Opt. Soc. Am., 1989, A6, 1748-1754
    [29] M. V. Perez. Diffraction patterns and zone plates produced by thin linear axicons. Optica Acta, 1986, 33(9), 1161-1176
    [30] G. Scott, N. McArdie. Efficient generation of nearly diffraction-free beams using an axicon. Opt. Eng. 1992, 31(12), 2640-2643
    [31] M.V.Perez, C.Gomez-Reino, J.M.Cuadrado. Diffraction patterns and zone plates produced by thin linear axicons. Optica Acta, 1986, 33(9), 1161-1176
    [32] Z.Jaroszewicz, J.F.Roman Dopazo, C.Gomez-Reino. Uniformization of the axial intensity of diffraction axicons by polychromatic illumination. Applied optics. 1996, 35(7), 1025-1031
    [33] Narupon Chattrapiban. Generation of nondiffracting Bessel beams by use of a spatial light modulator. Optics letters, 2003, 28(22), 2183-2185
    [34] J. Cox, D. C. Dibble. Nondiffracting beam from a spatially filtered Fabry-Petor resonator. J. Opt. Soc. Am., 1992, (A9), 282-286
    [35] J. Cox, J. D. Anne. Constant-axial-intensity nondiffracting beams. Opt. Lett., 1992, (17), 232-234
    [36] Liu, Rong. Generation of nondiffracting beams by diffractive phase elements. Journal of the Optical Society of America. A, Optics and image science. 1998, 15(9), 2362-2364
    [37]吕百达,张彬,蔡邦维等.有限束宽无衍射光束特性的研究.科学通报, 1994, 39 (2),125-128
    [38] J. H. Mcleod. The axicon: a new type of optical element. J. Opt. Soc. Am., 1954, 44, 592-597
    [39] Zbgniew Jaroszewicz, Ana burvall, and Ari T.friberg. axicon-the most important optical element. Optics &Photonics News, 2005, 4, 34-35
    [40]周莉萍,赵斌,郭军等.锥形透镜对球面波的传输变换特性.华中理工大学学报, 1997, 25(9), 7-9
    [41] Zhao Bin, Li Zhu. Diffraction property of an axicon in oblique illuminate. Applied optics, 1998, 37(13), 2563-2568
    [42] Zbigniew Jaroszewicz, Anna Thaning, AriT. Friberg, et al.. Design of diffractive axicon doublets for variable illumination angles. SPIE, 2003, 5259, 92-96
    [43] S Y Popov and A T Friberg. Design of diffractive axicons for partially coherent light. Opt. Lett., 1998, 23, 1639-1641
    [44] A T Friberg, S Y Popov. Effects of partial spatial coherence with uniform-intensity diffractive axicons. J. Opt. Soc. Am., 1999, A16, 1049-1058
    [45] A Thaning, A T Friberg and Z Jaroszewicz. Synthesis of diffractive axicons for partially coherent light based on asymptotic wave theory. Opt. Lett., 2001, 26,1648-1650
    [46] Z Jaroszewicz, J F Román Dopazo and C Gomez-Reino. Uniformization of axial intensity of diffractive axicons by a polychromatic illumination. Appl. Opt., 1996, 35, 1025-1031
    [47] Sergei Yu. Popov, Ari T. Friberg. Linear axicons in partially coherent light. Opitcal Engineering, 1995, 34(9), 2567-2573
    [48] Sergei Yu. Popov, Ari T. Friberg. Design of diffractive axicons for partially coherent light. Optics Letters, 1998, 23(21), 1639-1641
    [49]黄宜军.刘金岭.胡卫东.无衍射贝塞尔光束杨氏弹性模量测量系统.激光与红外. 2003, 3, 215-218
    [50] Anatol N. Khilo, Eugeny G. Katranji, and Anatol A. Ryzhevich. Axicon-based Bessel resonator: analytical description and experiment. J. Opt. Soc. Am. A, 2001, 18(8), 1986-1992
    [51]张新宝,赵斌,李柱等.一种基于锥镜的光学非接触位移测量的新方法.武汉汽车工业大学学报, 2000, 22(6), 51-54
    [52]赵斌.无衍射光莫尔条纹空间直线度测量的原理与实验.计量学报, 2002, 2, 81-86
    [53]赵斌.无衍射光莫尔条纹法直线度测量仪.光学仪器, 2003, 25(2), 43-46
    [54]周莉萍,赵斌,李柱.无衍射光束在激光三角测量系统中的应用研究.激光技术,1998, 22(1), 22-25
    [55] Guerineau Nicolas. Nondiffracting array generation using an N-wave interferometer. Journal of the Optical Society of America. A, Optics and image science. 1999, 16(2), 293-298
    [56] Zdenek Bouchal. Controlled spatial shaping of nondiffracting patterns and arrays. Optics letters. 2002, 27(16), 1376-1378
    [57] J. Rosen. Pseudonondiffracting slit like beam and its analogy to the pseudo -nondiffracting palse. Optics letters.1995, 20, 423-425
    [58]吕乃光.傅里叶光学.第二版,机械工业出版社, 2006
    [59] J.W. Goodman. Introduction to Fourier optics. 2nd ed., McGraw-Hill, 1996
    [60] J. J. Stamnes. Waves in focal regions. Hilger, 1986
    [61] A. T. Friberg. Stationary-phase analysis of generalized axicons. J. Opt. Soc. Am.,1996, A13, 743-750
    [62] M. Born, E. Wolf. Principles of optics. Cambridge, 1999
    [63]《现代数学手册》编纂委员会.现代数学手册·经典数学卷.华中科技大学出版社, 2000, 381-390
    [64] Chávez-Cerda, E. Tepichín, M.A. Meneses-Nava, et al., Experimental observation of interfering Bessel beams, Optics Express , 1998, 3 (13), 524-529
    [65] M.波恩, E.沃耳夫.光学原理.电子工业出版社, 2006
    [66]金尚忠,王东辉,周文等.发光二极管光谱参数测试方法的研究.光电子·激光, 2002, 13(8), 825-827
    [67]李俊韬,朱健,王自鑫.发光二极管的时间与空间相干性研究.中国激光, 2005, 32(1), 31-34
    [68]方志烈.半导体发光材料和器件.复旦大学出版社,1992
    [69]翟中生,赵斌.相干光照明下无衍射系统的点扩散函数的测量.光电子技术. 2006, 26(4), 255-258
    [70] Mikula G, Kolodziejczyk A and Makowski Ml. Diffractive elements for imaging with extended depth of focus. Opt. Eng., 2005, 44, 058001-1-7
    [71] G.. Hausler. A method to increase the depth of focus by two step image processing. Opt. Commun., 1972, 6(1), 38-42
    [72]王之江.光学技术手册.机械工业出版社,1987
    [73]李士贤,郑乐年.光学设计手册.北京理工大学出版社, 1990
    [74]《光学仪器设计手册》编辑组.光学仪器设计手册.国防工业出版社, 1971
    [75]戴树煌.光学仪器设计.国防工业出版社, 1991
    [76] Rudolf Kingslake. Optical System Design. Academic Press, 1983
    [77] Daniel Malacara, Zacarias Malacara. Hand Book of Optical Design. 2nd Edition, Marcel Dekker, 2004
    [78] J. M. Geary. Introduction to Lens Design with Zemax. Willmann-Bell, 2002
    [79]郁道银,淡恒英.工程光学.机械工业出版社,2005
    [80]赵凯华,钟锡华.光学.北京大学出版社, 1984
    [81] T. Wilson, MAA Neil, and F. Massoumian. Point spread functions with extended depth of focus. SPIE, 2002, 4621, 28-31
    [82]庄松林,钱振邦.光学传递函数.机械工业出版社, 1981
    [83] Andrews H. C, Hunt B. R. Digital image restoration. Prentice-Hall, 1977
    [84] Katsaggelos A. K. Digital image restoration. Springer Verlag, 1991
    [85] Banham M R, Katsaggelos A K. Digital image restoration. IEEE Signal Processing Magazine, 1997, 14(2), 24-41
    [86]邹谋炎.反卷积和信号复原.国防工业出版社, 2001
    [87]冈萨雷斯.数字图像处理(第二版).电子工业出版社, 2003
    [88]冈萨雷斯.数字图像处理(MATLAB版).电子工业出版社, 2004
    [89]孙即祥.数字图像处理.河北教育出版社, 1993
    [90] A. Rosenfeld, A. C. Kak. Digital picture Processing. Academic Press, 1982
    [91] R.H.T. Bates, M. J. McDonnell. Image restoration and reconstruction. Oxford University Press, 1986
    [92] H. Stark. Image Recovery: Theory and Application. Academic Press, 1987
    [93] Y.-L.You, M.Kaveh. Blind image restoration by anisotropic regularization. IEEE Trans. on Image Processing, 1999, 8(3), 396-407
    [94] S. C. Park, M. G. Kang. Noise-adaptive edge-preserving image restoration algorithm. Opt. Eng., 2000, 39(12), 3124-3136
    [95]张航,罗大庸.图象盲复原算法研究现状及其展望.中国图象图形学报,2004, 9 (10), 1145-1152
    [96] Ayers G R, Dainty J C. Iterative blind deconvolution method and its applications. Optics Letter, 1988, (13), 547-549
    [97] McCallum C. Blind Deconvolution by Simulated Annealing. Optics Communications, 1990, 75(2), 101-105
    [98] Laane R G. Blind Deconvolution of Speckle Images. Journal of the Optical Society of America A. 1992, 9(9), 1508-1514
    [99] You Y L, Kave M. A regularization approach to joint blur identification and image restoration. IEEE Transactions on Image Procession, 1996, 5(3), 416-427
    [100] Kundur D, Hatzinaakos D. A Novel Blind Deconvolution Scheme for Image Restoration Using Recursive Filtering. IEEE Transactions on Signal Processing.1998, 46(2), 375-390
    [101] Chan T F, Wong C K. Total variation blind deconvolution. IEEE Transactions on Image Processing, 1998, 7(3), 370-375
    [102]刘杰平,余英林.一种新的盲图象恢复方法.计算机科学, 2000, 27(4), 70-72
    [103] N. Niura, N. Baba. Extended-object reconstruction with sequential use of the iterative blind deconvolution method. Opt. Comm., 1992, 89, 375-379
    [104]于大勇,袁祥岩,高万荣等.陶纯堪.频域迭代盲解卷积图像恢复方法及其算法实现.中国激光, 2002, 29(12), 1101-1104
    [105] Liao Y H, Lin X Y. Blind image restoration with eigen-face subspace. IEEE .Transactions on Image Processing, 2005, 14(11), 1766-1772

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700