用于并行激光直写的连续深浮雕谐衍射透镜阵列技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光直写是制作衍射微结构光学元件的重要技术手段之一。随着微结构衍射光学大口径以及阵列化的需求发展,对激光直写写入效率和精度提出了更高的要求。传统激光直写技术采用单点曝光模式,无法实现较高的写入效率,而近年兴起的多点曝光并行激光直写,被认为最有潜力解决上述问题,但目前该技术存在写入分辨力和衍射效率不能兼顾、微透镜阵列聚焦模型不精确、写入光路和检焦光路分离而不能实时同步调焦写入等亟需解决的科学问题和关键技术问题,制约和影响了多点曝光并行激光直写技术的发展。
     本课题“用于并行激光直写的连续深浮雕谐衍射透镜阵列技术”研究的主要目的是解决多点曝光并行激光直写写入分辨力和衍射效率不能兼顾、微透镜阵列聚焦模型不精确、写入光路和检焦光路分离而不能实时同步调焦写入等问题,着重以连续深浮雕谐衍射透镜阵列为对象,开展理论描述、建模和实验研究工作,为高效、高分辨力多点曝光并行激光直写方法的研究提供理论依据和先期准备工作。该研究内容在光学传感、光通信、光计算、数据存储、激光医学以及多波段成像和聚焦系统等领域亦具有较高的应用价值。本课题研究的主要内容如下:
     为确定微透镜阵列对并行激光直写写入质量的影响规律,基于瑞利-索莫菲衍射理论,首先分析单微透镜非傍轴近似衍射聚焦特性,进而考虑相邻微透镜衍射聚焦的相互影响,建立了微透镜阵列非傍轴近似衍射聚焦模型,在此基础上分析了写入激光垂直入射时微透镜F/#以及中心距对微透镜阵列衍射聚焦的影响规律,为并行激光直写微透镜阵列的设计提供了理论指导。
     基于对并行激光直写系统中传统波带片阵列和折射微透镜阵列分辨力与衍射效率固有矛盾的分析,提出了基于连续深浮雕衍射透镜阵列的并行激光直写方法,采用连续浮雕衍射透镜阵列作为并行激光直写的物镜阵列,以兼顾分辨力与衍射效率,同时采用深浮雕结构降低阵列的制作难度,为并行激光直写阵列和系统设计提供一种新的设计方法。
     基于对激光直写制作连续浮雕衍射透镜的深度制作误差和卷积效应的分析,建立了由激光直写制作的连续浮雕衍射透镜非傍轴近似衍射聚焦模型,分析了透镜结构参数、写入光斑尺寸和扫描间距以及深度制作误差对透镜衍射聚焦特性的影响,为制作的连续浮雕衍射透镜阵列在并行激光直写中的应用提供了理论依据。
     为了实现写入激光和检焦激光同步、同点聚焦,提出了基于谐衍射原理的并行激光直写检焦系统设计方法,对聚焦写入透镜阵列在检焦波长处进行谐衍射设计,使聚焦写入和检焦由同一个衍射透镜阵列实现,并构建了衍射透镜阵列非傍轴近似谐振聚焦模型,进而分析了检焦波长偏差对衍射透镜阵列谐振聚焦特性的影响,为并行直写检焦系统的构建并最终实现实时同步调焦写入提供了有效手段和奠定了理论基础。
     最后,利用激光直写分别制作了F/7.5和F/4的连续浮雕衍射透镜阵列,并搭建了衍射透镜阵列聚焦特性测试系统,分别测试了写入激光(波长441.6nm)和检焦激光(波长670nm)入射时制作的透镜阵列的聚焦性能。实验表明,透镜阵列的聚焦特性与理论分析吻合,焦斑直径接近衍射极限值,衍射效率均优于70%,远高于波带片阵列的41%,实现了衍射效率和分辨力兼顾;同时,透镜阵列实现了写入激光和检焦激光同步、同点聚焦。
Laser direct writing (LDW) is one of the important technologies used to fabricate diffractive optical elements (DOEs). With the development of DOEs for large aperture and/or array, the requirements for writing efficiency and accuracy of LDW get more and more strict. However, the throughput of traditional LDW technology with one exposured spot only is very low. With the development of multi-spots parallel laser direct writing (PLDW) technology in recent years, it is believed that multi-spots PLDW has more potential to improve the writing efficiency. However, there are still such scientific and key technique problems as it can’t take both writing resolution and diffraction efficiency into consideration, the theoretical model of diffraction focusing characteristics of microlens arrays is not precision, and the separation of writing system and defocus-detecting system makes it can’t detect focus during exposure in real time.
     The subject“Research on Diffractive Optical Elements Arrays with Continuous Relief for Parallel Laser Direct Writing”is to solve the scientific and key technique problems of multi-spots PLDW, and focus on the model, analysis and experiment of DOEs arrays with continuous relief. The subject provides a powerful theoretical foundation and preparation work for multi-spots PLDW with high efficiency and high accuracy.
     In order to study the effect of diffraction focusing characteristics of microlens arrays on the PLDW quality, we use nonparaxial approximation to analyze the focus characteristic of a single microlens, take into consideration the cross talk effect of a number of microlenses on the focusing characteristics of an array, and establish a theoretical focusing intensity model of a microlens array to describe the influence of a change in F-number (F/#) and/or center distance on the diffraction focusing characteristics of a PLDW system while incident writing laser is normal. The study would help the design of an array for PLDW use. In order to overcome the shortcomings between the writing resolution and diffraction efficiency of zone-plate arrays and/or refractive microlens arrays used for traditional PLDW technology, a PLDW method based on DOEs arrays with continuous relief is proposed. The method takes the DOEs arrays with continuous relief as PLDW objective array to take both the writing resolution and diffraction efficiency into consideration, and design the array with deep relief to make the fabrication of arrays easy, which provides a novel design method for PLDW array and system.
     A focusing theoretical model with nonparaxial approximation is established for DOEs with continuous relief fabricated by LDW by taken the deep fabrication error and convolution effect into consideration, and then analyzes the effect of the structure parameters, the diameter of the writing spot and the interscan distance on the diffraction focusing characteristics of low F/# DOEs with continuous relief, which establishes a firm theoretical foundation for the application of DOEs array with continuous relief for PLDW technique.
     In order to make writing laser and defocus-detecting laser focus synchronously into one spot, a method to design PLDW defocus-detecting system with harmonic theory is proposed. It designs the writing array for defocus detecting laser with harmonic theory to integrate the defocus-detecting array into the writing array. A harmonic focusing theoretical model with nonparaxial approximation is then established for harmonic DOEs, and further analyzes the effect of different defocus-detecting laser on the harmonic focusing characteristics.
     Finally, two arrays with F/# of F/7.5 and F/4 are fabricated by LDW, and then an experimental system is established to measure the focusing characteristics at normal incidence and laser wavelength of 441.6 nm and 670nm. The measurements made indicate that the experimental results agree well with theoretical results, the spot size of the array coincides well with the diffraction-limited value, and the diffraction efficiency obtained by the array excels 70%, which is much higher than the diffraction efficiency of 41% for a zone-plates array used for conventional PLDW and make it possible to further increase NA at a high diffraction focusing efficiency. Further, the DOEs arrays realize the writing laser and defocus-detecting laser focusing into synchronization.
引文
1 W.B. Veldkamp. Overview of Microoptics: Past, Present and Future. SPIE. 1991,1544:287~299
    2 R. Magnusson, D. Raguin. Diffractive Optics and Micro-Optics: Introduction. Appl. Opt. 2006,45(1):14~14
    3金国藩,严瑛白,邬敏贤等.二元光学.北京:国防工业出版社, 1998
    4 H.P.赫尔齐克.微光学元件、系统和应用.周海宪等译.国防工业出版社. 2002:107~147
    5 T. J. Suleski, R. D. Te Kolste. Fabrication Trends for Free-Space Microoptics. J. Lightwave Technol. 2005,23(2):633
    6 Z. S. Yun, Y. L. Lam, Y. Zhou, et al. Eyepiece Design with Refractive-diffractive Hybrid Elements. SPIE. 2000, 4093:474~480
    7王希军,周海宪.机载微光夜视仪折衍混合物镜的设计研究.电光与控制. 2002, 9(3):34~36
    8 O. Cakmakci, J. Rolland. Comparative Analysis of Doublets versus Single-layer Diffractive Optical Elements in Eyepiece or Magnifier Design. Appl. Opt. 2007, 46(33) :8140~8148
    9 X. Deng, J. Yang, J. Zou, et al. Design of Hybrid Free-space Wavelength-division Multiplexers for Integration. SPIE. 2002,4653:153~160
    10 T. Early, R. Hyde. Twenty-meter Space Telescope Based on Diffractive Fresnel Lens. SPIE. 2004,5166:148~156
    11 F. Furer, M. Schmitz, O. Bryngdahl. Diffraction Efficiency Improvement of Diffractive Cylinder Lenses by Gaussian-beam Illumination. Opt. Express. 1997, 1(8): 234~239.
    12 D. Feng, Y.B. Yan, S. Lu, et al. Design of Diffractive Optical Element Used for Beam Shaping in the Fresnel Domain. Semiconductor Photonics and Technology, 2003,9(2):107~111
    13 V. Yurlov, A. Lapchuk, S. Yun, et al. Speckle Suppression in Scanning Laser Display. Appl. Opt. 2008,47(2):179~187
    14 R. De Saint Denis, N. Passilly, et al. Beam-shaping Longitudinal Range of a Binary Diffractive Optical Element. Appl. Opt. 2006,45(31):8136~8141
    15 J. S. Liu, A. J. Caley, M. R. Taghizadeh. Diffractive Optical Elements for Beam Shaping of Monochromatic Spatially Incoherent Light. Appl. Opt. 2006,45(33):8440~8447
    16 R. Wu, F. -J. Shu, W. Zhang, X. -B. Zhang, Y. -P. Li. Extended Algorithm for the Design of Diffractive Optical Elements around the Focal Plane. Appl. Opt. 2007, 46(23):5779~5783
    17 B.G. Hoover, V.L. Gamiz. Diffractive Bidirectional Reflectance Distributions of Surfaces with Large Effective Roughness in one Dimension. SPIE. 2004, 5575:37~142
    18 T. A. Berkoff, D. N. Whiteman, R. D. Rallison, et al. Remote Detection of Raman Scattering by use of a Holographic Optical Element as a Dispersive Telescope. Opt. Lett. 2000,25(16):1201~1203
    19 J. C. Marron, K. S. Schroeder. Holographic Laser Radar. Opt. Lett.1993,18(5):385~387
    20 G. K. Schwemmer, R. D. Rallison, T. D. Wilkerson, D. V. Guerra. Holographic Optical Elements as Scanning Lidar Telescopes. Lasers and Optics in Engineering. 2006, 44(9):881~902.
    21 D. W. Ricks, H. W. Willhite. Hand-held Imaging Laser Radar. SPIE. 1997,3065:30~41
    22刘伯晗,吴丽莹,张健.一种用于衍射光元件优化设计的快速算法的研究.光学学报. 2007, 27(2): 219~224
    23 M. C. Hutley, R. F. Stevens. Use of Diffracting Optics in Metrology and Sensing. SPIE.1997,3099:6~12
    24 J. G. Smith, L. Ramos-Izquierdo, A. Stockham, et al. Diffractive Optics for Moon Topography Mapping. SPIE. 2006, 6223:622304
    25 X. G. Tang, F. H. Gao, F. Gao, et al. Analysis of Near-field of Diffractive Gratings Used in Inertial Confinement Fusion Driver. SPIE. 2005, 5635:325~332
    26 X. D. Xu, Y. L. Hong, S. J. Fu. VUV and Soft X-ray Diffraction Gratings Fabrication by Holographic Ion Beam Etching. SPIE. 2005, 5636(1):165~175
    27 Z. W. Fan. Design of Millimeter Wave Antenna Applying Principles of Diffractive Optics. SPIE. 1997, 3010:326~330
    28 J. C. Wiltse. Zone Plate Designs for Terahertz Frequencies. SPIE. 2005,5790:167~179
    29 L. Zhao, M. Wu, B. Yan, G. Jin. Hybrid Singlet Lens Applied to Visible Telescope Objective Design. SPIE.1998,3348:152~162
    30 I. M. Barton, J. A. Britten, S. N. Dixit, et al. Fabrication of Large-Aperture Lightweight Diffractive Lenses for Use in Space. Appl. Opt. 2001,40(4):447~451
    31 M. T. Gruneisen, R. C. Dymale, J. R. Rotge, et al. Compensated Telescope System with Programmable Diffractive Optic. Opt. Eng. 2005,44(2):023201
    32 M. Fay, D. Levner,J.M. Xu. Binary Supergratings in a Novel Lateral Satellite Grating Configuration. Conference on Optical Fiber Communication, Technical Digest Series. 2003,86:514~516
    33 Y. H. Cao, L. Li, J. G. Liu, et al. Optical Design of Resource Satellite System. SPIE. 2005,5638:647~655
    34 J. M. Bacchus. Using New Optical Materials and DOE in Low-cost Lenses for Uncooled IR Cameras. SPIE. 2004,5249:425~432
    35 M. J. Riedl. The Design of an IR Petzval Objective Using an Aspheric and Diffractive Element an Exercise with MOE for Beginners. SPIE. 2005, 5865: 1~7
    36 Z. Q. Wang, F. Yu, C.M. Cartwright, W.A. Gillespie. Hybrid Diffractive-refractive 40o Head-mounted Display. Optik. 2002,113(12):527~530
    37 Q. L. Zhao, Z. Q. Wang, T.G. Liu. Design of Optical System for Head-mounted Micro-display. Optik. 2007,118(1):29~33
    38薛晓春,王雪华.隐身与反隐身技术的发展研究.现代防御技术.2004,32, (2): 60~65
    39袁俊. F-22“猛禽”制空主力战斗机.航空科学技术.2005,(5):18~20
    40 J. A. Britten, S. M. Herman, L. J. Summers et al. Manufacture, Optical Performance and Laser Damage Characteristics of Diffractive Optics for the National Ignition Facility. SPIE. 1999, 3578:337~346
    41 J. A. Marozas. Fourier Transform-based Continuous Phase-plate Design Technique: a High-pass Phase-plate Design as an Application for OMEGA and the National Ignition Facility. J. Opt. Soc. Am. A. 2007, 24(1):74~83
    42 R. A. Hyde, S. N. Dixit, A. H. Weisberg, M. C. Rushford. Eyeglass: a Very Large Aperture Diffractive Space Telescope. SPIE. 2002,4849 :28~39
    43 S. N. Dixit, J. A Britten, R. A.Hyde, et al. Fabrication and Applications of Large-aperture Diffractive Optics. SPIE. 2001,4440:101~108
    44 J. C. Lam, L. Zhao. Design Trade-offs for Arrayed Waveguide Grating DWDM MUX/DEMUX. SPIE.2000,3949:91~98
    45 C. J. Alleyne, A. G. Kirk. Rigorous Coupled Wave Analysis Applied to Transmission Efficiency of Diffractive Beam Array Relays for Free-space Optical Interconnects. Appl. Opt. 2005, 44(7):1200~1206
    46 R. Yang, L. Pang, M. X. Wu, G. F. Jin. Optimization and Fabrication of Micro Diffractive Lens Arrays for Biochip Application. SPIE. 2000, 4093:461~463
    47 H. F. Cui, J. S.Ye, Y. Chen, et al. In Situ Temporal Detection of Dopamine Exocytosis from L-dopa-incubated MN9D Cells Using Microelectrode Array-integrated Biochip. Sensors and Actuators. B: Chemical. 2006, 115(2):634~641
    48 D. W. Prather. Design and Application of Subwavelength Diffractive Lenses for Integration with Infrared Photodetectors. Opt.Eng. 1999, 38(5):870~878.
    49 S. H. Chen, X. J. Yi, H. C. Wang, et al. Monolithic Integration of Diffractive Microlens Arrays and Infrared Focal Plane Arrays. International Journal of Infrared and Millimeter Waves. 2002, 23(5):705~710
    50 H.J.Tiziani, H-M.Uhde. Three-dimensional Analysis by a Microlens-array Confocal Arrangement. Appl.Opt. 1994, 33(4):567~572
    51黄向东,谭久彬.阵列式共焦显微系统超分辨特性的研究.光电子·激光. 2006,17(1):28~31
    52 T. R. M. Sales. Structured Microlens Arrays for Beam Shaping. Opt. Eng. 2003, 42:3084~3085
    53 F. Wippermann, U. -D. Zeitner, P. Dannberg, et al. Beam Homogenizers Based on Chirped Microlens Arrays. Opt. Express. 2007,15(10): 6218~6231
    54 J. D. Mansell, E. K. Gustafson. Focal Plane Position Detection with a Diffractive Optic for Shack-Hartmann Wave-Front Sensor Fabrication. Appl. Opt. 2001, 40(7):1074~1079
    55 L. Zhao, N. Bai, et al. Efficient Implementation of a Spatial Light Modulator as a Diffractive Optical Microlens Array in a Digital Shack-Hartmann Wavefront Sensor. Appl. Opt. 2006,45(1):90~94
    56 M. T. Gale, M. Rossi, J. Pedersen, et al. Fabrication of Continuous-relief Micro-optical Elements by Direct Laser Writing in Photoresists. Opt. Eng. 1994,33: 3556~3566
    57 A. Y. Amuk, N. M. Lawandy. Direct Laser Writing of Diffractive Optics in Glass. Opt. Lett. 1997, 22(13):1030~1032
    58 W. X. Yu, X. C. Yuan, N. Q. Ngo, et al. Single-Step Fabrication of Continuous Surface Relief Micro-optical Elements in Hybrid Sol-gel Glass by Laser Direct Writing. Opt. Express. 2002, 10(10):443~448.
    59 Y. Xie, Z. Lu, F. Li, J. Zhao, Z. Weng. Lithographic Fabrication of Large Diffractive Optical Elements on a Concave Lens Surface. Opt. Express. 2002,10(20):1043~1047
    60 Y. Xie, Z. Lu, F. Li. Fabrication of Large Diffractive Optical Elements in Thick Film on a Concave Lens Surface. Opt. Express. 2003,11(9):992~995
    61 R. Seltmann, W. Doleschal, A. Gehner, et al. New system for fast submicron optical direct writing. Microelectron. Eng. 1996,30:123~127
    62 V. M. Vedernikov, V. N. Vyukhin, V. P. Koronkevich, et al. A Precision Photoconstructor for Synthesizing Optical Components. Autometriya, 1981, 3: 3~17 (in Russian)
    63 M. T. Gale, K. Knop. The Fabrication of Fine Lens Arrays by Laser Beam Writing. SPIE.1983, 398:347~353
    64 A.G. Poleshchuk, E. G. Churin, V. P. Koronkevich, et al. Polar Coordinate Laser Pattern Generator for Fabrication of Diffractive Optical Elements With Arbitrary Structure. Appl. Opt. 1999,38(8):1295~1301
    65 G. P. Behrmann, M. T. Duignan. Excimer Laser Micromachining for Rapid Fabrication of Diffractive Optical Elements. Appl. Opt. 1997, 36(20):4666~4674
    66 P. Langloi, H. Jerominek, L. Leclerc, et al. Diffractive Optical Elements Fabricated by Laser Direct Writing and Other Techniques. SPIE. 1993,1751 :2~12
    67 S. J. Henley, S. R. P. Silva. Laser Direct Write of Silver Nanoparticles from Solution onto Glass Substrates for Surface-Enhanced Raman Spectroscopy. Appl. Phys. Lett. 2007, 91(023107): 1~3
    68 Y. C. Chan, Y. L. Lam, Y. Zhou, et al. Development and Applications of aLaser Writing Lithography System for Maskless Patterning. Opt. Eng. 1998, 37(9):2521~2530
    69 A. Poleshchuk, J. Burge. Polar Coordinate Writing Systems: Error Analysis of Fabricated DOEs. SPIE. 2001, 4440:161~172
    70杜春雷,林大键,冯伯儒等.激光直接光刻制作微透镜列阵的方法研究.光学学报. 1996, 16(8): 1194~1196
    71梁宜勇.离焦写入线宽的动态高斯模型.光学学报. 2006, 26(5):726~729
    72陈林森,解剑锋,沈雁等.双、单光束互换光学头方光斑激光直写系统设计.中国激光. 2005, 32(4):487~491
    73 J. B. Tan, Z. L. Jin. Depth of Focus Estimation Based on Exposure Dose Distribution. Opt. Commun. 2008, 281:2233~2237
    74李凤有,卢振武,张殿文.激光直接写入工艺研究.光电子·激光. 2001, 12(9): 949~952
    75王多书,罗崇泰,马勉军等.激光直写制作二元光学元件掩模研究.应用激光. 2004,24(4): 213~1216
    76 A. Bertsch, S. Zissi, J. Y. Jezequel, et al. Microstereolithography Using a Liquid Crystal Display as Dynamic Mask Generator. Micro. Tech.1997,3(2):42~47
    77 F. Devaux, A. Mosset, E. Lantz, et al. Image Upconversion from the Visible to the UV Domain: Application to Dynamic UV Microstereolithography. Appl. Opt. 2001, 40(28):4953~4957
    78 C. Provin, S. Monneret, H. Le Gall, S. Corbel. Three-dimensional Ceramic Microcomponents Made Using Microstereolithography. Advanced Materials. 2003, 15(12):994~997
    79 K. Itoga, J. Kobayashi, M. Yamato, et al. Maskless Liquid-crystal-display Projection Photolithography for Improved Design Flexibility of Cellular Micropatterns. Biomaterials. 2006,27(15): 3005~3009
    80 Q. Peng, Y. Guo, S. Liu, Z. Cui. Real-time Gray-Scale Photolithography for Fabrication of Continuous Microstructure. Opt. Lett. 2002,27(19):1720~1722
    81 Q. J. Peng, S. J. Liu, Y. K.Guo, et al. Rea-time Photolithographic Technique for Fabrication of Arbitrarily Shaped Microstructures. Opt.Eng. 2003, 42(2):477~81
    82彭钦军,郭永康,陈波等.液晶实时掩膜技术制作连续微光学元件.光学学报. 2003, 23(2):220~224
    83颜树华,戴一帆,吕海宝等.亚微米并行激光直写系统的建模及仿真研究.光电子·激光. 2002, 13(6):1299~1302
    84颜树华,戴一帆,吕海宝等.灰度掩模并行激光直写系统的总体设计.光电子·激光. 2002,13(6):559~562.
    85陈林森,解剑锋,沈雁.基于SLM的三维图像激光光刻系统的研制.激光与红外. 2003,33(5):367~370
    86 T. Sandstrom, P. Askebjer, J. Sallander, R. Zerne, A. Karawajczyk. Pattern Generation with SLM Imaging. 2002, SPIE.4562:38~44
    87 T. Sandstrom, N. Eriksson. Resolution Extensions in the Sigma 7000 Imaging Pattern Generator. SPIE. 2002 ,4889: 157~167
    88 P. Bjornangen, M. Ekberg, et al. DOE Manufacture with the DUV SLM-based Sigma7300 Laser Pattern Generator. SPIE. 2004, 5377:1866~1875
    89 D. Dudley, W. M. Duncan, J. Slaughter. Emerging Digital Micromirror Device (DMD) Applications. SPIE. 2003,4985: 14~25
    90 http://focus.ti.com/Dlpdmd/Docs/Resourcedetail.Tsp?Familyid=767&Gencontentid=3447&Contenttype=10#Relia
    91 K. J. Kearney, Z. Ninkov. Characterization of a Digital Micromirror Device for Use as an Optical Mask in Imaging and Spectroscopy. SPIE. 1998,3292:81~92
    92 S. Singh-Gasson, R. D. Green, Y. J. Yue, et al. Maskless Fabrication of Light-directed Oligonucleotide Microarrays Using a Digital Micromirror Array. Nat. Biotechnol. 1999,17(10): 974~978
    93 K. Takahashi, J. Setoyama. An UV-exposure System Using DMD. J. Inst. Electron., Inf. Commun. Eng. (Japanese Journal) C-II, 1999, J82-C-II(3): 92~94
    94 Y. Kaneko, K. Takahashi. UV Exposure System for Photolithography and Rapid Prototyping Using DMD Projector. SID Conference Record of the International Display Research Conference.2001:1339~1342
    95 L. Erdmann, A. Deparnay, F. Wirth, R. Brunner. MEMS Based Lithography for the Fabrication of Microoptical Components. SPIE. 2004,5347:79~84
    96 S. Tingzheng, L. Haibao, et al. Study on Method of Grayscale Expanding for System of Digitial Mask Fabrication. ISIST. 2004,3:507~511
    97 G. Yiqing, S. Tingzheng, C. Jinsong, et al. Research on High-quality Projecting Reduction Lithography System Based on Digital Mask Technique. Optik. 2005,116(7):303~310
    98 L. Chi, G. Xiaowei, G. Fuhua, et al. Imaging Simulation of Maskless Lithography Using a DMD. SPIE. 2005,5645:307~314
    99郭小伟,杜惊雷,罗铂靓等.基于数字微反射镜灰度光刻的成像模型.光子学报. 2006, 35 (9 ):1412~1416
    100 http://www.siliconlight.com/
    101 A. Payne, W. DeGroot, R. Monteverde, D. Amm. Enabling High Data-rate Imaging Applications with Grating Light Valve Technology. SPIE. 2004,5348: 76~88
    102 J. I. Trisnadi, C.B. Carlisle, R. Monteverde. Overview and Applications of Grating Light Valve Based Optical Write Engines for High-speed Digital Imaging. SPIE. 2004,5348:52~64
    103 R. Menon, A. Patel, D. Gil, H. I. Smith. Maskless Lithography. Materials Today. 2005,6(2):26~33
    104 J. M. Mir. High Resolution Optical Addressing Device and Electronic Scanner and/or Printer Apparatus Employing Such Device. United States Patent 4377753.
    105 W. B. Hugle, R. D?ndliker, H. P. Herzig. Lens Array Photolithography. GB Patent Appl. 9224080.3 (1992).
    106 R. V?lkel, H. P. Herzig, Ph. Nussbaum, R. D?ndliker. Microlens Array Imaging System for Photolithography. Opt. Eng. 1996, 35:3323~3330
    107 R. Volkel, H.P. Herzig, Ph. Nussbaum, P. Blattner, R. Dandliker, E. Cullmann, W.B. Hugle. Microlens Lithography and Smart Masks. Microeletron. Eng. 1997,35:513~516
    108 M. H. Wu, G. M Whitesides. Fabrication of Arrays of Two-dimensional Micropatterns using Microspheres as Lenses for Projection Photolithography. Appl. Phys. Lett. 2001,78(6):2273~2275
    109 M. H. Wu, K. E. Paul, J. Yang, M Whitesides. Fabrication of Frequency-Selective Surfaces Using Microlens Projection Photolithography. Appl. Phys. Lett. 2002, 80(19):3500~3502
    110 M. H. Wu, G. M Whitesides. Fabrication of Arrays of Microlenses withControlled Profiles Using Gray-scale Microlens Projection Photolithography. J. Micromech. Microeng. 2002,12:747~758
    111 S.D. Hector, H.I. Smith. Soft X-ray Projection Lithography Using Two Arrays of Phase Zone Plates. OSA Proceedings on Soft X-ray Projection Lithography. 1993, 18:202~206.
    112 M. Feldman. Use of Zone Plate Arrays in Projection X-ray Lithography. OSA Proceedings on Soft X-Ray Projection Lithography.1993, 18:207~209
    113 H. I. Smith. A Proposal for Maskless Zone-plate-array Nanolithography. J. Vac. Sci. Technol. B.1996,14(6):4318~4322
    114 D.Gil, R.Menon, D. J. D.Carter, H. I. Smith. Lithographic Patterning and Confocal Imaging with Zone Plates. J. Vac. Sci. Technol. B 2000, 18(6):2881~2885
    115 D.Gil, R.Menon, H.I.Smith. Fabrication of High-numerical-aperture Phase Zone Plates with a Single Lithography Exposure and No Etching. J. Vac. Sci. Technol. B 2003 21(6):2956~2960
    116 D.Gil, R.Menon, D.J. D.Carter, H.I.Smith. The Promise of Diffractive Optics in Maskless Lithography. Microelec. Eng. 2004, 35-41: 73~74
    117 www.lumarray.com
    118 M. Dacidson. A Microlens Direct-write Concept for Lithography. SPIE. 1997,3048:346~355
    119 R. Yang, K.F. Chan, F. Zhiqiang, M. Wenhui. Design and Fabrication of Microlens and Spatial Filter Array by Self-alignment for Maskless Lithography Systems. J. Microlith. Microlith. Microsyst. 2003,2(3):210~219
    120 K.F. Chan, F. Zhiqiang, R. Yang, et al. High-resolution Maskless Lithography. J. Microlith. Microlith. Microsyst.2003,2(4):331~339
    121 R. Menon, D. Gil, H. I. Smith. Experimental Characterization of Focusing by High-numerical-aperture Zone Plates. J. Opt. Soc. Am. A. 2006, 23(3):567~571
    122马科斯·伯恩,埃米尔·沃耳夫.光学原理:光的传播、干涉和衍射的电磁理论(第七版).杨葭荪等译.电子工业出版社. 2005:347~349
    123李俊昌.激光的衍射及热作用计算.科学出版社. 2003:39~48
    124 N. Delen, B. Hooker. Free-space Beam Propagation between Arbitrarily Oriented Planes Based on Full Diffraction Theory: a Fast Fourier TransformApproach. J. Opt. Soc. Am. A. 1998,15(4):857~867
    125 M. Mansuripur. Distribution of Light at and near the Focus of High-numerical-aperture Objectives. J. Opt. Soc. Am. A.1986, 3(12):2086~2093
    126郑志敏,丁天怀,张建福.小孔阵列衍射特性与应用.光学学报.2006, 26(2):294~299
    127 H.P.赫尔齐克.微光学元件、系统和应用.周海宪等译.国防工业出版社. 2002:4~6
    128 M. Haruna, M. Takahashi, K. Wakahayashi, H. Nishihara. Laser Beam Lithographed Micro-Fresnel Lenses. Appl. Opt. 1990, 29:5120~5126
    129 D. A. Buralli, G. M. Morris, J. R. Rogers. Optical Performance of Holographic Kinoforms. Appl. Opt. 1989,28(5):976~983
    130 M. Rossi, R. E. Kunz, H. P. Herzig. Refractive and Diffractive Properties of Planar Micro-optical Elements. Appl. Opt. 1995,34(26):5996~6007
    131 T. Hessler, M. Rossi, R. E. Kunz, M. T. Gale. Analysis and Optimization of Fabrication of Continuous-Relief Diffractive Optical Elements. Appl. Opt. 1998,37(19):4069~4079
    132 T. Ammer, M. T. Gale, M. Rossi. Chip-level Integrated Diffractive Optical Microlenses for Multimode Vertical-cavity Surface-emitting Laser to Fiber Coupling. Opt. Eng. 2002,41(12): 3141~3150
    133 P. Korolkov, R. K. Nasyrov, R. V. Shimansky. Zone-boundary Optimization for Direct Laser Writing of Continuous-relief Diffractive Optical Elements. Appl. Opt. 2006, 45(1):53~62
    134 M. Okano, H. Kikuta, Y. Hirai, K. Yamamoto, T. Yotsuya. Optimization of Diffraction Grating Profiles in Fabrication by Electron-beam Lithography. Appl. Opt. 2004,43(27):5137~5142
    135 F. Yong-Qi, N. Kok Ann Bryan, O. Shing. Diffractive Optical Elements with Continuous Relief Fabricated by Focused Ion Beam for Monomode Fiber Coupling. Opt. Express. 2000,7(3):141~147
    136 M. Kuittinen, H. P. Herzig, P. Ehbets. Improvements in Diffraction Efficiency of Gratings and Microlenses with Continuous Relief Structures. Opt. Commun. 1995, 120:230~234
    137 T. Hessler, R. E. Kunz. Relaxed Fabrication Tolerances for Low-Fresnel-number Lenses. J. Opt. Soc. Am. A. 1997,14(7):1599~1606
    138 I. Kallioniemi, T. Ammer, M. Rossi. Optimization of Continuous-profile Blazed Gratings Using Rigorous Diffraction Theory. Opt. Commun. 2000,177:15~24
    139 U. Vokinger, R. Dandliker, P. Blattner, et al. Unconventional Treatment of Focal Shift. Opt. Commun.1998,157: 218~224
    140 D. Feng, Y. B. Yan, G. F. Jin, S. S. Fan. Axial Focusing Characteristics of Diffractive Micro-lenses based on a Rigorous Electromagnetic Theory. J. Opt. A: Pure Appl. Opt. 2004,6:1067~1071
    141 Y. Unno. Point-Spread Function for Binary Diffractive Lenses Fabricated with Misaligned Masks. Appl. Opt. 1998,37(16):3401~3407
    142 H. J. Tiziani, R.Achi, R.N.Kr?mer, L.Weigers. Theoretical Analysis of Confocal Microscopy with Microlenses. Appl. Opt. 1996,35(1):120~125
    143 H. J. Tiziani, T. Haist, S. Reuter. Optical Inspection and Characterization of Microoptics Using Confocal Microscopy. Opt. and Laser Eng. 2001, 36(5) :403~415
    144 R. Menon, E. E. Moon, M. K. Mondol, et al. Scanning-spatial-phase Alignment for Zone-Plate-Array Lithography. J. Vac. Sci. Technol. B 2004, 22(6):3382~3385
    145王永红,余晓芬,俞建卫等.基于像散的并行全场三维检测新方法.上海交通大学学报. 2003,37(10):1548~1551
    146 D.W. Sweency, G.Sommargren. Harmonic Diffractive Lenses. Appl.Opt. 1995,34(14):2469~2475
    147 D. Faklis, G. M. Morris. Spectral Properties of Multiorder Diffractive Lenses. Appl. Opt.1995, 34(14):2462~2468
    148孙强,于斌,王肇圻等.谐衍射双波段红外超光谱探测系统研究.物理学报. 2004, 53(3):756~761
    149范长江,王肇圻,吴环宝,张梅.红外双波段双层谐衍射光学系统设计.光学学报. 2007, 27(7):1266~1270
    150 A.J. Caley, M. R. Taghizadeh. Analysis of the Effects of Bias Phase and Wavelength Choice on the Design of Dual-wavelength Diffractive Optical Elements. J. Opt. Soc. Am. A 2006, 23(1):193~198
    151 S. Niu, J. Bai, X. -Y. Hou, G. -G. Yang. Design of a Panoramic Annular Lens with a Long Focal Length. Appl. Opt. 2007,46(32):7850~7857
    152孔兵.多光束共焦三维轮廓测量技术理论及应用研究.西安交通大学博士论文. 2002:26~35
    153王永红.基于全场并行共焦的检测技术与系统研究.合肥工业大学博士论文. 2004:38~40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700