光镊的理论模型及纳米颗粒的操纵
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在微/纳尺度上操纵颗粒和测量微小力学量,能帮助我们从单分子层次了解DNA弹性和蛋白折叠等生物大分子的力学信息,从单颗粒层次上研究流体动力学作用,以及研究微/纳尺度上组装和传动微型机器。在众多的微/纳操纵技术中,光镊技术具有纳米级位移和飞牛量级测量精度的独特优势,广泛应用于单分子、胶体和纳米科学等领域。
     在各种应用中,最常用光镊的方式为基于高数值孔径物镜的单光束梯度力阱,实现远场操纵微粒。为了更好的理解和运用光镊技术,理论研究光阱对微粒的俘获机理和光阱参数对光阱力的影响,对于完善光镊理论模型,提升现有光镊性能并付诸于实际应用具有重要的意义。当微粒尺度小到纳米尺度,光阱难以束缚它。光镊操纵纳米颗粒不仅是对光镊设备性能的挑战,而且在纳米流变学、纳米组装、胶体体系和表面增强拉曼散射信号上有着重要应用。
     本论文主要研究了矢量光线追迹的RO模型和矢量衍射-矩量法的EM模型,利用矢量衍射理论,分析了在光阱中纳米颗粒的辐射力与光镊参数的关系,并从实验上探索三维操纵纳米颗粒。在低信噪比情形下,我们研究了自相关函数标定颗粒的光阱刚度,它适用于标定纳米颗粒的光阱刚度。
     关于RO模型的理论研究中,本论文应用矢量光线追迹方法,统一分析三维方向上光阱力,简化了RO模型的计算。结合空间矢量和矩阵的计算方法,它能有效地分析偏振光束对颗粒的光阱力,弥补传统RO模型的不足。在此基础上,我们分析了玻璃-水界面球差引起的矢量光线追迹,利用坐标旋转的方法,实现对任意形状颗粒的光阱力及应力张量和力矩的计算。对于长杆状颗粒,球差并不随俘获深度增大时降低光阱对它的轴向俘获力,不规则颗粒在光阱作用的力矩下,自动调整到颗粒长轴与光轴平行的方位,这一方法拓展了传统RO模型的适应范围。
     有关光镊的EM模型的理论研究中,本论文提出了矢量衍射-矩量法的EM模型。这一模型分成聚焦光束的场分布、电磁散射后总场的分布和计算辐射力三个独立的部分。这一模型在改变参数时,能减少计算工作量,例如改变入射激光光束截面和物镜数值孔径等参数,无需计算反映微粒特性的矩阵元。通过模拟计算,得出在光阱中无法稳定俘获较大尺度的高折射率颗粒的结论。基于这一理论计算平台中,通过Rayleigh近似我们直接计算了纳米颗粒的辐射力,并研究纳米颗粒的辐射力与各参数的关系,得出在短波长、高数值孔径物镜和最佳光束分布时光阱俘获纳米颗粒的力最大。通过这些理论模拟,为我们三维操纵纳米颗粒的实验提供理论依据。
     根据前述辐射力的理论分析,本论文提出暗场照明光镊,实现实时观察三维主动操纵纳米颗粒。根据观察的需要,我们采用横向激光暗场照明,实现宽视场、实时和长时间观察纳米颗粒,并动态观察三维操纵纳米颗粒过程。由于观察和操纵纳米颗粒在俘获深度的相互限制,我们引入机械筒长失配的球差补偿,在较大俘获深度上的增强光阱力,实现在光学显微镜下清晰观察三维操纵直径70nm的颗粒。
     由于纳米颗粒的光阱力很弱,容易受到外界噪声的影响,它的刚度测量上需要尽可能降低这方面的影响。我们研究了自相关函数测量纳米颗粒的光阱刚度,作为方法的验证,在滤波和引入外界噪声等方面比较了功率谱法和自相关函数标定刚度的差异,具体分析了导致差异的原因。刚度标定的方法在光镊应用中非常重要,如何实现原位和实时标定刚度,不仅能简化实验过程,还能准确反映测量中瞬时的力学信息。
     本论文从理论上较系统地研究RO模型和EM模型,建立一套在微/纳米尺度上计算光阱力的方法。理论方法的建立有助于我们更好地理解微粒在光阱中的行为,指导实验设计和分析实验中遇到的问题。实验研究中我们提出暗场照明光镊并实现纳米粒子的俘获,分析了自相关函数标定刚度与实验各因素的关系。这些研究将拓展光镊应用于纳米领域。
Manipulation of particle on the micro/nano scale conveys the information of mechanical characteristics of signal molecules, such as researches on DNA elasticity, protein folding etc. The manipulation also facilitates the investigations of hydrodynamic interaction at the single particle level and assembling micro/nano machine. Among many technologies of manipulation, optical tweezers as a non-contact trap way have unique advantages:nanometer resolution on displacement and femtonewton resolution on force. This technology is widely applied in single molecules, colloid and nanotechnology fields.
     In various applications, optical tweezers, a single-beam gradient force trap, are based on a high numerical aperture objective and used to manipulate particle in far field. To apply optical tweezers better, theoretical investigation between parameters and forces is significant in comprehending mechanism of trap and improving optical tweezers model. From theoretical analyses, we can improve the performance of optical tweezers, which is very important in application. When the particle is reduced to nano-size, optical trap can hardly hold it. Manipulating nanoparticle is not only a challenge for optical tweezers but also has important applications in nanorheoloy, nano-assembling, colloid and surface-enhanced Raman scattering.
     In this thesis, we applied a vectorial ray-tracing method in ray-optics (RO) model and combined the vectorial diffraction (VD) and moment of method (MOM) in electromagnetic (EM) model for calculating forces. Using VD theory, we analyzed the relations between the radiation forces on nanoparticles and parameters of optical trap. Under the theoretical guidance, we explored experimentally manipulating nanoparticles in three dimensions. Meanwhile, we demonstrated that the stiffness of nanoparticles can be calibrated by a method using autocorrelation function (ACF) for system with low signal-noise ratio.
     With our presented vectorial ray-tracing method, the analysis of optical forces in three dimensions are unified, it simplifies the calculation in RO model. The ray-tracing is implemented by spatial vectors and rotation matrixes. It is appropriate to calculate optical forces from focused polarized beam, and avoids the defects in traditional RO model. Based on vectorial ray-tracing and rotating coordinate system, the forces of arbitrary shape particle can be calculated in the case of sphere aberration in a glass-water interface. The optical forces, tensor and torque of spheroid particles have been simulated. For a rod particle, the axial optical force decreases little with trap depth increasing. The irregular particle in an optical trap will adjust itself to align its long axis parallel to optical axis. The vectorial ray-tracing extends traditional RO model in applications.
     Our EM model of VDMOM is divided into three parts of calculation:field distribution of focused beam, total field after electromagnetic scattering and radiation forces. When some parameters, such as beam profile and objective numerical aperture (NA), are changed, this model avoids repetitive calculation of matrix elements, which originates from characteristics of particle. Our simulation results demonstrated that an optical trap can't hold a micro-sized particle with high refractive index in the axial direction. When particle size is reduced to nano-size, the trap can hold nanoparticle stably. With Rayleigh approximation, we have investigated the relation between radiation forces on nanoparticles and parameters of the optical trap. To obtain maximum force, the parameters should be selected at short wavelength, high NA, optimal beam profile. This simulation results will help us to manipulating nanoparticles in three dimensions in the following experiments.
     To observe nanoparticles in a conventional microscope and manipulate them, we presented a dark-field-illumination optical tweezers, in which the direction of a lateral illumination laser was perpendicular to the optical axis of the microscope. The manipulation of nanoparticles can be monitored in wide field, real time and long time. Due to the mutual constraint of trap depth between observation and optical trap, the mismatch tube length was introduced to compensate the spherical aberration in the glass-water interface. This method enhanced the trapping forces at a large depth, and facilitated us to clearly observe the manipulation process of 70-nm particle in three dimensions.
     Since the trapping forces are weak, the trapped nanoparticle will be affected by circumstance noises. To decrease this influence, we presented ACF for the calibration of stiffness. For testing its validity, we compared the differences between power spectrum method and ACF in the cases of filter and introduced noises, and detailed the reasons on their differences. Calibrating stiffness is very important in applications. How to calibrate stiffness in situ and in real time not only simplifies the process of experiments but also help us to accurately measure the temporary information on force.
     In this thesis, the RO and EM models have been investigated systematically. Calculating optical forces in the miro-/nano-scale has been detailed. The researches on theoretical methods are the foundations of understanding the particle's behaviors in an optical trap and designing our experiments. In our experiments, the nanoparticles have been manipulated in three dimensions, and this process can be observed in wide field. The calibrating stiffness of ACF was analyzed in detail. Those researches will extend the applications of optical tweezers in nanotechnology field.
引文
1. D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson, C. Bustamante, "The bacteriophage phi 29 portal motor can package DNA against a large internal force," Nature,413,748-752 (2001).
    2. H. B. Li, A. F. Oberhauser, S. D. Redick, M. Carrion-Vazquez, H. P. Erickson, J. M. Fernandez, "Multiple conformations of PEVK proteins detected by single-molecule techniques," Proceedings of the National Academy of Sciences of the United States of America,98,10682-10686(2001).
    3. H. M. Hertz, "Standing-Wave Acoustic Trap for Nonintrusive Positioning of Microparticles," Journal of Applied Physics,78,4845-4849 (1995).
    4. N. Ribeck,O. A. Saleh, "Multiplexed single-molecule measurements with magnetic tweezers," Review of Scientific Instruments,79,094301 (2008).
    5. L. Kremser, D. Blaas, E. Kenndler, "Capillary electrophoresis of biological particles: Viruses, bacteria, and eukaryotic cells," Electrophoresis,25,2282-2291 (2004).
    6.周金华,龚錾,李银妹,”光镊与介电泳微操纵技术,”激光生物学报,16,119-127(2007).
    7. P. R. C. Gascoyne,J. Vykoukal, "Particle separation by dielectrophoresis," Electrophoresis,23,1973-1983 (2002).
    8. X. H. Zhang, K. Halvorsen, C. Z. Zhang, W. P. Wong, T. A. Springer, "Mechanoenzymatic Cleavage of the Ultralarge Vascular Protein von Willebrand Factor," Science,324, 1330-1334(2009).
    9. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles " Optics Letters,11,288-290 (1986).
    10. W. J. Greenleaf, M. T. Woodside, S. M. Block, "High-resolution, single-molecule measurements of biomolecular motion," Annual Review of Biophysics and Biomolecular Structure,36,171-190(2007).
    11. P. Y. Chiou, A. T. Ohta, M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature,436,370-372 (2005).
    12. J. C. Crocker,D. G. Grier, "Microscopic Measurement of the Pair Interaction Potential of Charge-Stabilized Colloid," Physical Review Letters,73,352-355 (1994).
    13. J. Leach, H. Mushfique, S. Keen, R. Di Leonardo, G. Ruocco, J. M. Cooper, M. J. Padgett, "Comparison of Faxen's correction for a microsphere translating or rotating near a surface," Physical Review E,79,026301 (2009).
    14. G. Knoner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, "Measurement of the index of refraction of single microparticles," Physical Review Letters,97,4 (2006).
    15. H. W. Wang, X. H. Liu, Y. M. Li, B. Han, L. R. Lou, K. J. Wang, "Isolation of a single rice chromosome by optical micromanipulation," Journal of Optics a-Pure and Applied Optics,6,89-93 (2004).
    16. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, J. Kas, "Optical deformability of soft biological dielectrics," Physical Review Letters,84,5451-5454 (2000).
    17. G. V. Shivashankar, G. Stolovitzky, A. Libchaber, "Backscattering from a tethered bead as
    a probe of DNA flexibility," Applied Physics Letters,73,291-293 (1998).
    18. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, "Optical microrheology using rotating laser-trapped particles," Physical Review Letters,92, 198104(2004).
    19. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. D. Yang, J. Liphardt, "Optical trapping and integration of semiconductor nanowire assemblies in water," Nature Materials,5,97-101 (2006).
    20. F. Svedberg, Z. P. Li, H. X. Xu, M. Kall, "Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation," Nano Letters,6, 2639-2641 (2006).
    21. A. Mukhopadhyay,S. Granick, "Micro-and nanorheology," Current Opinion in Colloid& Interface Science,6,423-429 (2001).
    22. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature,394,348-350 (1998).
    23. C. Deufel, S. Forth, C. R. Simmons, S. Dejgosha, M. D. Wang, "Nanofabricated quartz cylinders for angular trapping:DNA supercoiling torque detection," Nature Methods,4, 223-225 (2007).
    24. S. Parkin, G. Knoner, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, "Measurement of the total optical angular momentum transfer in optical tweezers," Optics Express,14,6963-6970 (2006).
    25. D. G. Grier, "A revolution in optical manipulation," Nature,424,810-816 (2003).
    26. D. L. J. Vossen, M. A. Plaisier, A. van Blaaderen, "Colloidal crystallization induced by optical gradient forces exerted by optical tweezers," Proc. of SPIE,5514,755-762 (2004).
    27. D. Maystre,P. Vincent, "Making photonic crystals using trapping and binding optical forces on particles," Journal of Optics a-Pure and Applied Optics,8,1059-1066 (2006).
    28. M. D. Mannie, T. J. McConnell, C. G. Xie, Y. Q. Li, "Activation-dependent phases of T cells distinguished by use of optical tweezers and near infrared Raman spectroscopy," Journal of Immunological Methods,297,53-60 (2005).
    29. Y. Harada, "Studies on biomolecules using single molecule imaging and manipulation techniques," Science and Technology of Advanced Materials,5,709-713 (2004).
    30. Y. X. Liu,M. Yu, "Investigation of inclined dual-fiber optical tweezers for 3D manipulation and force sensing," Optics Express,17,13624-13638 (2009).
    31. M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, X. S. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Applied Physics Letters,84, 4236-4238 (2004).
    32. K. C. Neuman,S. M. Block, "Optical trapping," Review of Scientific Instruments,75, 2787-2809 (2004).
    33. G. M. Gibson, J. Leach, S. Keen, A. J. Wright, M. J. Padgett, "Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy," Optics Express,16,14561-14570(2008).
    34. B. Lukic, S. Jeney, Z. Sviben, A. J. Kulik, E. L. Florin, L. Forro, "Motion of a colloidal particle in an optical trap," Physical Review E,76,011112 (2007).
    35. S. B. Smith, Y. J. Cui, C. Bustamante, "Optical-trap force transducer that operates by
    direct measurement of light momentum," Method Enzymol,361,134-162 (2003).
    36. 龚錾,”光镊技术中微小力学量的测量,”(中国科学技术大学,合肥,2007).
    37. 龚錾,陈洪涛,李银妹,楼立人,邱俊,”四种光阱刚度测量法的实验研究与比较,”中国科学技术大学学报,35,601-607(2005).
    38. 陈洪涛,”纳米光镊技术研究,”(中国科学技术大学,合肥,2004).
    39. S. F. Tolic-N(?)rrelykke, E. Schaffer, J. Howard, F. S. Pavone, F. Julicher, H. Flyvbjerg, "Calibration of optical tweezers with positional detection in the back focal plane," Review of Scientific Instruments,77,103101 (2006).
    40. J. R. Moffitt, Y. R. Chemla, D. Izhaky, C. Bustamante, "Differential detection of dual traps improves the spatial resolution of optical tweezers," Proceedings of the National Academy of Sciences of the United States of America,103,9006-9011 (2006).
    41. J. Q. Qin, X. L. Wang, D. Jia, J. Chen, Y. X. Fan, J. P. Ding, H. T. Wang, "FDTD approach to optical forces of tightly focused vector beams on metal particles," Optics Express,17,8407-8416 (2009).
    42. Y. Q. Zhao, G. Milne, J. S. Edgar, G. D. M. Jeffries, D. McGloin, D. T. Chiu, "Quantitative force mapping of an optical vortex trap," Applied Physics Letters,92, 161111(2008).
    43. T. A. Nieminen, A. B. Stilgoe, V. L. Y. Loke, N. R. Heckenberg, H. Rubinsztein-Dunlop, "The effect of Mie resonances on trapping in optical tweezers:reply," Optics Express,17, 2661-2662(2009).
    44. M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, J. D. Joannopoulos, "High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators," Optics Express,13,8286-8295 (2005).
    45. A. Mazzei, S. Gotzinger, L. D. Menezes, V. Sandoghdar, O. Benson, "Optimization of prism coupling to high-Q modes in a microsphere resonator using a near-field probe," Optics Communications,250,428-433 (2005).
    46. 鲁述,徐鹏根,电磁场边值问题解析方法(武汉大学出版社,武汉,2005).
    47. Y. K. Nahmias,D. J. Odde, "Analysis of radiation forces in laser trapping and laser-guided direct writing applications," Ieee Journal of Quantum Electronics,38,131-141 (2002).
    48. D. Bonessi, K. Bonin, T. Walker, "Optical forces on particles of arbitrary shape and size," Journal of Optics a-Pure and Applied Optics,9, S228-S234 (2007).
    49. A. Ashkin, "Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime," Biophysical Journal,61,569-582 (1992).
    50. K. B. Im, D. Y. Lee, H. I. Kim, C. H. Oh, S. H. Song, P. S. Kim, B. C. Park, "Calculation of optical trapping forces on microspheres in the ray optics regime," Journal of the Korean Physical Society,40,930-933 (2002).
    51. E. Aspnes, T. D. Milster, K. Visscher, "Optical force model based on sequential ray tracing," Applied Optics,48,1642-1650 (2009).
    52. B. J. Park,E. M. Furst, "Optical Trapping Forces for Colloids at the Oil-Water Interface," Langmuir,24,13383-13392(2008).
    53. S. H. Xu, Y. M. Li, L. R. Lou, "Systematical study of the trapping forces of optical tweezers formed by different types of optical ring beams," Chinese Physics,15, 1391-1397(2006).
    54. K. Shima, R. Omori, A. Suzuki, "Forces of a single-beam gradient-force optical trap on dielectric spheroidal particles in the geometric-optics regime," Japanese Journal of Applied Physics 37,6012-6015 (1998).
    55. P. B. Bareil, Y. Sheng, Y. Q. Chen, A. Chiou, "Calculation of spherical red blood cell deformation in a dual-beam optical stretcher," Optics Express,15,16029-16034 (2007).
    56. K. F. Ren, G Grehan, G. Gouesbet, "Prediction of reverse radiation pressure by generalized Lorenz-Mie theory," Applied Optics,35,2702-2710 (1996).
    57. M. I. Mishchenko, "Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation," Applied Optics,39,1026-1031 (2000).
    58. R. C. Gauthier, "Computation of the optical trapping force using an FDTD based technique," Optics Express,13,3707-3718 (2005).
    59. D. A. White, "Numerical modeling of optical gradient traps using the vector finite element method," Journal of Computational Physics,159,13-37 (2000).
    60. A. Rohrbach.E. H. K. Stelzer, "Optical trapping of dielectric particles in arbitrary fields," Journal of the Optical Society of America A,18,839-853 (2001).
    61. G. Gouesbet, B. Maheu, G. Grehan, "Light scattering from a sphere arbitrarily located in a Gaussian beam,using a Bromwich formulaton," Journal of the Optical Society of America A,5,1427-1443 (1988).
    62. H. Polaert, G. Grehan, G. Gouesbet, "Improved standard beams with application to reverse radiation pressure," Applied Optics,37,2435-2440 (1998).
    63. A. Rohrbach,E. H. K. Stelzer, "Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations," Applied Optics,41,2494-2507 (2002).
    64. F. Xu, K. F. Ren, G. Gouesbet, X. S. Cai, G Grehan, "Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam," Physical Review E,75,026613 (2007).
    65. C. Hosokawa, H. Yoshikawa, H. Masuhara, "Cluster formation of nanoparticles in an optical trap studied by fluorescence correlation spectroscopy," Physical Review E,72, 021408 (2005).
    66. H. Yoshikawa, T. Matsui, H. Masuhara, "Reversible assembly of gold nanoparticles confined in an optical microcage," Physical Review E,70,061406 (2004).
    67. Y. Harada,T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Optics Communications,124,529-541 (1996).
    68. P. Zemanek, A. Jonas, L. Sramek, M. Liska, "Optical trapping of Rayleigh particles using a Gaussian standing wave," Optics Communications,151,273-285 (1998).
    69. L. Novotny, R. X. Bian, X. S. Xie, "Theory of nanometric optical tweezers," Physical Review Letters,79,645-648 (1997).
    70. P. C. Chaumet, A. Rahmani, M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Physical Review Letters,88,123601 (2002).
    71. T. J. Davis, "Brownian diffusion of nano-particles in optical traps," Optics Express,15, 2702-2712(2007).
    72. M. Dienerowitz, M. Mazilu, K. Dholakia, "Optical manipulation of nanoparticles:a review," Journal of Nanophotonics,2,021875 (2008).
    73. 章莉娟,郑忠,胶体与界面化学(华南理工大学出版社,广州,2006).
    74. 杨玉良,胡汉杰,,高分子物理(化学工业出版社,北京,2001).
    75. P. Cicuta,A. M. Donald, "Microrheology:a review of the method and applications," Soft Matter,3,1449-1455 (2007).
    76. E. M. Furst, "Applications of laser tweezers in complex fluid rheology," Current Opinion in Colloid& Interface Science,10,79-86 (2005).
    77. D. T. Chen, E. R. Weeks, J. C. Crocker, M. F. Islam, R. Verma, J. Gruber, A. J. Levine, T. C. Lubensky, A. G. Yodh, "Rheological microscopy:Local mechanical properties from microrheology," Physical Review Letters,90,108301 (2003).
    78. J. S. H. Lee, P. Panorchan, C. M. Hale, S. B. Khatau, T. P. Kole, Y. Tseng, D. Wirtz, "Ballistic intracellular nanorheology reveals ROCK-hard cytoplasmic stiffening response to fluid flow," Journal of Cell Science,119,1760-1768 (2006).
    79. S. H. Xu, L. R. Lou, Y. M. Li, Z. W. Sun, "On the aggregation kinetics of two particles trapped in an optical tweezers," Colloids and Surfaces A,255,159-163 (2005).
    80. Z. W. Sun, S. H. Xu, J. Liu, Y. M. Li, L. R. Lou, J. C. Xie, "Improved procedure on the microscopic approach to determine colloidal stability," Journal of Chemical Physics,122, 184904(2005).
    81. M. Khan, A. K. Sood, F. L. Deepak, C. N. R. Rao, "Nanorotors using asymmetric inorganic nanorods in an optical trap," Nanotechnology,17, S287-S290 (2006).
    82. S. D. Tan, H. A. Lopez, C. W. Cai, Y. G. Zhang, "Optical trapping of single-walled carbon nanotubes," Nano Letters,4,1415-1419 (2004).
    83. T. Yu, F. C. Cheong, C. H. Sow, "The manipulation and assembly of CuO nanorods with line optical tweezers," Nanotechnology,15,1732-1736 (2004).
    84. C. Hosokawa, H. Yoshikawa, H. Masuhara, "Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection," Physical Review E,70,061410(2004).
    85. A. Pertsinidis,X. S. Ling, "Equilibrium configurations and energetics of point defects in two-dimensional colloidal crystals," Physical Review Letters,8709,098303 (2001).
    86. S. Schultz, D. R. Smith, J. J. Mock, D. A. Schultz, "Single-target molecule detection with nonbleaching multicolor optical immunolabels," Proceedings of the National Academy of Sciences of the United States of America,97,996-1001 (2000).
    87. A. Dror-Ehre, H. Mamane, T. Belenkova, G. Markovich, A. Adin, "Silver nanoparticle-E. coli colloidal interaction in water and effect on E-coli survival," Journal of Colloid and Interface Science,339,521-526 (2009).
    88. F. Svedberg, Z. P. Li, H. X. Xu, M. Kall, "Creating Hot Nanoparticle Pairs For Surface-Enhanced Raman Spectroscopy through Optical Manipulation," Nano Letters,6, 2639-2641 (2006).
    89. M. Gu, D. Morrish, P. C. Ke, "Enhancement of transverse trapping efficiency for a metallic particle using an obstructed laser beam," Applied Physics Letters,77,34-36 (2000).
    90. 陈冠雄,周金华,任煜轩,李银妹,”操控金属粒子的光镊技术,”激光与光电子学进展,46,37-43(2009).
    91. K. Svoboda,S. M. Block, "Optical Trapping of Metallic Rayleigh Particles," Optics Letters,19,930-932 (1994).
    92. J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, D. Hanstorp, "Optical spectroscopy of single trapped metal nanoparticles in solution," Nano Letters,4,115-118
    (2004).
    93. Q. Zhan, "Trapping metallic Rayleigh particles with radial polarization," Optics Express,12,3377-3382 (2004).
    94. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, K. Dholakia, "Optical vortex trap for resonant confinement of metal nanoparticles," Optics Express,16,4991-4999 (2008).
    95. P. M. Hansen, V. K. Bhatia, N. Harrit, L. Oddershede, "Expanding the optical trapping range of gold nanoparticles," Nano Letters,5,1937-1942 (2005).
    96. K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, N. F. Scherer, "Plasmon resonance-based optical trapping of single and multiple Au nanoparticles," Optics Express,15,12017-12029 (2007).
    97. M. Pelton, M. Z. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, N. E. Scherer, "Optical trapping and alignment of single gold nanorods by using plasmon resonances," Optics Letters,31,2075-2077 (2006).
    98. Y. Seol, A. E. Carpenter, T. T. Perkins, "Gold nanoparticles:enhanced optical trapping and sensitivity coupled with significant heating," Optics Letters,31,2429-2431 (2006).
    99. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sonnichsen, L. B. Oddershede, "Quantitative optical trapping of single gold nanorods," Nano Letters,8,2998-3003 (2008).
    100. L. Y. Pan, A. Ishikawa, N. Tamai, "Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence," Physical Review B,75,161305(R) (2007).
    101. L. Jauffred, A. C. Richardson, L. B. Oddershede, "Three-Dimensional Optical Control of Individual Quantum Dots," Nano Letters,8,3376-3380 (2008).
    102. D. E. Segall, P. C. Nelson, R. Phillips, "Volume-exclusion effects in tethered-particle experiments:Bead size matters," Physical Review Letters,96,088306 (2006).
    103. G. Roosen,S. Slanksy, "Influmence of the beam divergence on the exerted force on a sphere by a laser beam and required conditions for stable optical levitation," Optics Communications,341-346 (1979).
    104. R. Gussgard, T. Lindmo, I. Brevik, "Calculation of the Trapping Force in a Strongly Focused Laser-Beam," Journal of the Optical Society of America B,9,1922-1930 (1992).
    105. A. Rohrbach, H. Kress, E. H. K. Stelzer, "Reply to comment on "Trapping force, force constant, and potential depths for dielectric spheres in the presence of spherical aberrations"," Applied Optics,43,1827-1829 (2004).
    106. A. Rohrbach, "Stiffness of optical traps:Quantitative agreement between experiment and electromagnetic theory," Physical Review Letters,95,168102 (2005).
    107. M. Gu, P. C. Ke, X. S. Gan, "Trapping force by a high numerical-aperture microscope objective obeying the sine condition," Review of Scientific Instruments,68,3666-3668 (1997).
    108. X. C. Yao, Z. L. Li, H. L. Guo, B. Y. Cheng, X. H. Han, D. Z. Zhang, "Effect of spherical aberration introduced by water solution on trapping force," Chinese Physics,9,824-826 (2000).
    109. E. Fallman,O. Axner, "Influence of a glass-water interface on the on-axis trapping of micrometer-sized spherical objects by optical tweezers," Applied Optics,42,3915-3926 (2003).
    110. S. H. Xu, Y. M. Li, L. R. Lou, "Axial optical trapping forces on two particles trapped simultaneously by optical tweezers," Applied Optics,44,2667-2672 (2005).
    111. Z. Gong, Z. Wang, Y. M. Li, L. R. Lou, S. H. Xu, "Axial deviation of an optically trapped particle in trapping force calibration using the drag force method," Optics Communications,273,37-42 (2007).
    112. S. Kuriakose, X. S. Gan, J. W. M. Chon, M. Gu, "Optical lifting force under focused evanescent wave illumination:A ray optics model," Journal of Applied Physics,97, 083103(2005).
    113. Y. R. Chang, L. Hsu, S. Chi, "Optical trapping of a spherically symmetric sphere in the ray-optics regime:a model for optical tweezers upon cells," Applied Optics,45, 3885-3892 (2006).
    114. 徐升华,”光镊技术研究微粒碰撞聚集过程和分散体系的稳定性,”(中国科学技术大学,合肥,2005).
    115. J. H. Zhou, H. L. Ren, J. Cai, Y. M. Li, "Ray-tracing methodology:application of spatial analytic geometry in the ray-optic model of optical tweezers," Applied Optics,47, 6307-6314(2008).
    116. P. B. Bareil, Y. L. Sheng, A. Chiou, "Local stress distribution on the surface of a spherical cell in an optical stretcher," Optics Express,14,12503-12509 (2006).
    117. G. B. Liao, P. B. Bareil, Y. L. Sheng, A. Chiou, "One-dimensional jumping optical tweezers for optical stretching of bi-concave human red blood cells," Optics Express,16, 1996-2004(2008).
    118. M. Born,E. Wolf, Principles of optics:7th (expanded) edition, electromagnetic theory of propagation, interference and diffraction of light (Cambridge University Press, Cambridge,1999).
    119. S. H. Simpson,S. Hanna, "Optical trapping of spheroidal particles in Gaussian beams," Journal of the Optical Society of America a-Optics Image Science and Vision,24,430-443 (2007).
    120. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," Journal of Optics a-Pure and Applied Optics,9, S196-S203 (2007).
    121. R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop, "Colloquium: Momentum of an electromagnetic wave in dielectric media," Reviews of Modern Physics,79,1197-1216(2007).
    122. P. Torok, P. Varga, Z. Laczik, G. R. Booker, "Electromagnetic Diffraction of Light Focused through a Planar Interface between Materials of Mismatched Refractive-Indexes-an Integral-Representation," Journal of the Optical Society of America A,12,325-332 (1995).
    123. P. C. Ke,M. Gu, "Characterization of trapping force in the presence of spherical aberration," Journal of Modern Optics,45,2159-2168 (1998).
    124. S. N. S. Reihani, M. A. Charsooghi, H. R. Khalesifard, R. Golestanian, "Efficient in-depth trapping with an oil-immersion objective lens," Optics Letters,31,766-768 (2006).
    125. Y. Roichman, A. Waldron, E. Gardel, D. G. Grier, "Optical traps with geometric aberrations," Applied Optics,45,3425-3429 (2006).
    126. K. C. Vermeulen, G. J. L. Wuite, G. J. M. Stienen, C. F. Schmidt, "Optical trap stiffness in the presence and absence of spherical aberrations," Applied Optics,45,1812-1819 (2006).
    127. S. N. S. Reihani,L. B. Oddershede, "Optimizing immersion media refractive index
    improves optical trapping by compensating spherical aberrations," Optics Letters,32, 1998-2000(2007).
    128. k. Taguchi, M. Tanaka, M. Ikeda, "Optical Force on a Micro-Sphere by the Laser Beam from a Lensed Optical Fiber Inserted at an Angle," Optical Review,8,203-205 (2001).
    129. K. F. Ren, G. Grehan, G. Gouesbet, "Prediction of reverse radiation pressure by generalized Lorenz-Mie theory," Applied Optics,35,2702-2710 (1996).
    130. F. Xu, K. F. Ren, G. Gouesbet, X. S. Cai, G. Grehan, "Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam," Physical Review E,75,14(2007).
    131. T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, "Multipole expansion of strongly focussed laser beams," Journal of Quantitative Spectroscopy& Radiative Transfer,79,1005-1017(2003).
    132. D. Ganic, X. S. Gan, M. Gu, "Exact radiation trapping force calculation based on vectorial diffraction theory," Optics Express,12,2670-2675 (2004).
    133. T. A. Nieminen, H. Rubinsztein-Dunlop, N. R. Heckenberg, A. I. Bishop, "Numerical modelling of optical trapping," Computer Physics Communications,142,468-471 (2001).
    134. S. H. Simpson,S. Hanna, "Numerical calculation of interparticle forces arising in association with holographic assembly," Journal of the Optical Society of America A,23, 1419-1431 (2006).
    135. M. Mansuripur, A. R. Zakharian, J. V. Moloney, "Radiation pressure on a dielectric wedge," Optics Express,13,2064-2074 (2005).
    136. T. Wriedt,U. Comberg, "Comparison of computational scattering methods," Journal of Quantitative Spectroscopy& Radiative Transfer,60,411-423 (1998).
    137. A. R. Zakharian, P. Polynkin, M. Mansuripur, J. V. Moloney, "Single-beam trapping of micro-beads in polarized light:Numerical simulations," Optics Express,14,3660-3676 (2006).
    138. S. M. Barnett,R. Loudon, "On the electromagnetic force on a dielectric medium," Journal of Physics B,39, S671-S684 (2006).
    139. F. Zhou, X. S. Gan, W. D. Xu, F. X. Gan, "Comment on:Computation of the optical trapping force using an FDTD based technique," Optics Express,14,12494-12496 (2006).
    140. S. H. Simpson,S. Hanna, "Optical trapping of spheroidal particles in Gaussian beams," Journal of the Optical Society of America A,24,430-443 (2007).
    141. H. Polaert, G. Grehan, G. Gouesbet, "Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam," Optics Communications,155,169-179 (1998).
    142. R. Pobre,C. Saloma, "Radiation force on a nonlinear microsphere by a tightly focused Gaussian beam," Applied Optics,41,7694-7701 (2002).
    143. P. Zemanek, A. Jonas, P. Jakl, J. Jezek, M. Sery, M. Liska, "Theoretical comparison of optical traps created by standing wave and single beam," Optics Communications,220, 401-412(2003).
    144. J. A. Lock, "Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. Ⅱ. On-axis trapping force," Applied Optics,43,2545-2554 (2004).
    145. J. A. Lock, "Calculation of the radiation trapping force for laser tweezers by use of
    generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration," Applied Optics,43,2532-2544 (2004).
    146. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoner, A. M. Branczyk, N. R. Heckenberg, H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," Journal of Optics a-Pure and Applied Optics,9, S196-S203 (2007).
    147. A. B. Stilgoe, T. A. Nieminen, G. Knoner, N. R. Heckenberg, H. Rubinsztein-Dunlop, "The effect of Mie resonances on trapping in optical tweezers," Optics Express,16, 15039-15051(2008).
    148. A. Jannasch, V. Bormuth, C. M. van Kats, A. van Blaaderen, J. Howard, E. Schaffer, "Coated microspheres as enhanced probes for optical trapping," Proc. of SPIE,7038, 70382B (2008).
    149. M. I. Mishchenko, L. D. Travis, A. A. Lacis, Scattering, Absorption,and Emission of Light by Small Particles (Cambridge University Press, Cambridge,2002).
    150. 葛德彪,闫玉波,电磁波时域有限差分方法(第二版)(西安电子科技大学出版社,西安,2005).
    151. A. R. Zakharian, M. Mansuripur, J. V. Moloney, "Radiation pressure and the distribution of electromagnetic force in dielectric media," Optics Express,13,2321-2336 (2005).
    152. Z. H. Liu, C. K. Guo, J. Yang, L. B. Yuan, "Tapered fiber optical tweezers for microscopic particle trapping:fabrication and application," Optics Express,14,12510-12516 (2006).
    153. 郭硕鸿,电动力学(高等教育出版社,北京,1997).
    154. P. C. Chaumet, "Comment on "Trapping force, force constant, and potential depths for dielectric spheres in the presence of spherical aberrations"," Applied Optics.43, 1825-1826(2004).
    155. 沈元壤,非线性光学原理(下)(科学出版社,北京,1987).
    156. M. A. Yurkin, A. G. Hoekstra, R. S. Brock, J. Q. Lu, "Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers," Optics Express,15,17902-17911 (2007).
    157. 盛新庆,计算电磁学要论(科学出版社,北京,2004).
    158. 朱秀芹,耿友林,吴信宝,”三维各向异性介质目标电磁散射的MOM-CGM-FFT方法,”电波科学学报,17,209-215(2002).
    159. K. S. Youngworth,T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Optics Express,7,77-87 (2000).
    160. P. Liu,B. Lu, "Phase singularities of the transverse field component of high numerical aperture dark-hollow Gaussian beams in the focal region," Optics Communications,272, 1-8 (2007).
    161. E. Wolf, "Electromagnetic diffraction in optical systems I. An integral representation of the image field," Proceedings of the Royal Society of London,253,349-357 (1959).
    162. B. Richards,E. Wolf, "Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System " Proceedings of the Royal Society of London,253, 358-379(1959).
    163. 张艳丽,赵逸琼,詹其文,李永平,“高数值孔径聚焦三维光链的研究,”物理学报,55,1253-1258(2006).
    164. P. Torok, P. Varga, Z. Laczik, G. R. Booker, "Electromagnetic Diffraction of Light Focused through a Planar Interface between Materials of Mismatched Refractive-Indexes
    -an Integral-Representation (errata)," Journal of the Optical Society of America A,12, 1605-1605(1995).
    165. P. Torok, P. Varga, G R. Booker, "Electromagnetic Diffraction of Light Focused through a Planar Interface between Materials of Mismatched Refractive-Indexes-Structure of the Electromagnetic-Field.(?)," Journal of the Optical Society of America A,12,2136-2144 (1995).
    166. P. Torok, P. Varga, A. Konkol, G. R. Booker, "Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices:Structure of the electromagnetic field.2," Journal of the Optical Society of America A,13, 2232-2238 (1996).
    167. P. Liu,B. Lu, "Phase singularities of the transverse field component of high numerical aperture dark-hollow Gaussian beams in the focal region," Optics Communications,272, 1-8(2007).
    168. C. L. Zhao, L. G. Wang, X. H. Lu, "Radiation forces on a dielectric sphere produced by highly focused hollow Gaussian beams," Physics Letters A,363,502-506 (2007).
    169. M. A. Yurkin,A. G. Hoekstra, "The discrete dipole approximation:An overview and recent developments," Journal of Quantitative Spectroscopy& Radiative Transfer,106, 558-589 (2007).
    170. B. T. Draine, "The discrete-dipole approximation and its application to interstellar graphite grains," Astrophysical Journal,333,848-872 (1988).
    171. F. M. Kahnert, "Numerical methods in electromagnetic scattering theory," Journal of Quantitative Spectroscopy& Radiative Transfer,79,775-824 (2003).
    172. 樊德森,电磁场数值解法的数理基础(科大胶印版,合肥,2005).
    173. G. Recktenwald,伍卫国译,数值方法和MATLAB实现与应用(机械工业出版社,北京,2004).
    174. 王长清,现代计算电磁学基础(北京大学出版社,北京,2005).
    175. P. C. Chaumet,M. Nieto-Vesperinas, "Time-averaged total force on a dipolar sphere in an electromagnetic field," Optics Letters,25,1065-1067 (2000).
    176. F. Merenda, G Boer, J. Rohner, G. Delacretaz, R. P. Salathe, "Escape trajectories of single-beam optically trapped micro-particles in a transverse fluid flow," Optics Express,14,1685-1699(2006).
    177. C. K. Sun, Y. C. Huang, P. C. Cheng, H. C. Liu, B. L. Lin, "Cell manipulation by use of diamond microparticles as handles of optical tweezers," Journal of the Optical Society of America B,18,1483-1489(2001).
    178. A. van der Horst, P. D. J. Oostrum, A. Moroz, A. van Blaaderen, M. Dogterom, "High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers," Applied Optics,47,3196-3202 (2008).
    179. Y. Arai, R. Yasuda, K. Akashi, Y. Harada, H. Miyata, K. Kinosita, H. Itoh, "Tying a molecular knot with optical tweezers," Nature,399,446-448 (1999).
    180. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, R. M. Simmons, "Single-molecule biomechanics with optical methods," Science,283,1689-1695 (1999).
    181. X. H. Liu, H. W. Wang, Y. M. Li, Y. S. Tang, Y. L. Liu, X. Hu, P. X. Jia, K. Ying, Q. Feng, J. P. Guan, C. Q. Jin, L. Zhang, L. R. Lou, Z. A. Zhou, B. Han, "Preparation of single rice chromosome for construction of a DNA library using a laser microbeam trap," Journal of
    Biotechnology,109,217-226 (2004).
    182. Y. Nishimura, T. Yoshinari, K. Naruse, T. Yamada, K. Sumi, H. Mitani, T. Higashiyama, T. Kuroiwa, "Active digestion of sperm mitochondrial DNA in single living sperm revealed by optical tweezers," Proceedings of the National Academy of Sciences of the United States of America,103,1382-1387 (2006).
    183. J. C. Crocker, "Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres," Journal of Chemical Physics,106,2837-2840 (1997).
    184. K. Ajito,K. Torimitsu, "Single nanoparticle trapping using a Raman tweezers microscope," Applied Spectroscopy,56,541-544 (2002).
    185. F. V. Ignatovich, D. Topham, L. Novotny, "Optical detection of single nanoparticles and viruses," IEEE Journal on Selected Topics in Quantum Electronics,12,1292-1299 (2006).
    186. E. L. Florin, A. Pralle, J. K. H. Horber, E. H. K. Stelzer, "Photonic force microscope based on optical tweezers and two-photon excitation for biological applications," Journal of Structural Biology,119,202-211 (1997).
    187. O. M. Marago, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, A. C. Ferrari, "Femtonewton Force Sensing with Optically Trapped Nanotubes," Nano Letters,8,3211-3216(2008).
    188. J. H. Zhou, L. J. Qu, K. Yao, M. C. Zhong, Y. M. Li, "Observing nanometre scale particles with light scattering for manipulation using optical tweezers," Chinese Physics Letters,25,329-331(2008).
    189. P. Zemanek, A. Jonas, L. Sramek, M. Liska, "Optical trapping of Rayleigh particles using a Gaussian standing wave," Optics Communications,151,273-285 (1998).
    190. X. C. Yao, Z. L. Li, H. L. Guo, B. Y. Cheng, D. Z. Zhang, "Effects of spherical aberration on optical trapping forces for Rayleigh particles," Chinese Physics Letters,18,432-434 (2001).
    191. L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, S. Y. Zhu, "Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere," Optics Letters,32,1393-1395 (2007).
    192. R. Saija, P. Denti, F. Borghese, O. M. Marago, M. A. Iati, "Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres.," Optics Express,17,10231-10241 (2009).
    193. N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. M. Neto, "Characterization of objective transmittance for optical tweezers," Applied Optics,45,4263-4269 (2006).
    194. B. H. Meng, J. H. Zhou, M. C. Zhong, Y. M. Li, W. J.G., H. L. Ren, "Improvement of transverse trapping efficiency of optical tweezers," Chinese Physics Letters,25, 2296-2298 (2008).
    195. A. Vial, A. S. Grimault, D. Macias, D. Barchiesi, M. L. de la Chapelle, "Improved analytical fit of gold dispersion:Application to the modeling of extinction spectra with a finite-difference time-domain method," Physical Review B,71,085416 (2005).
    196. G. Volpe, G. P. Singh, D. Petrov, "Dynamics of a growing cell in an optical trap," Applied Physics Letters,88,231106 (2006).
    197. M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, T. Nystrom, "Sorting out bacterial viability with optical tweezers," Journal of Bacteriology,182,5551-5555 (2000).
    198. S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, J.
    Lippincott-Schwartz, "High-density mapping of single-molecule trajectories with photoactivated localization microscopy," Nature Methods,5,155-157 (2008).
    199. V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, V. Sandoghdar, "Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface," Optics Express,14,405-414 (2006).
    200. R. M. P. Doornbos, M. Schaeffer, A. G. Hoekstra, P. M. A. Sloot, B. G. deGrooth, J. Greve, "Elastic light-scattering measurements of single biological cells in an optical trap," Applied Optics,35,729-734 (1996).
    201. Z. Ulanowski, R. S. Greenaway, P. H. Kaye, I. K. Ludlow, "Laser diffractometer for single-particle scattering measurements," Measurement Science& Technology,13, 292-296 (2002).
    202. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, E. H. K. Stelzer, "Optical sectioning deep inside live embryos by selective plane illumination microscopy," Science,305, 1007-1009(2004).
    203. C. J. Engelbrecht,E. H. K. Stelzer, "Resolution enhancement in a light-sheet-based microscope (SPIM)," Optics Letters,31,1477-1479 (2006).
    204. J. H. Zhou, R. Z. Tao, Z. B. Hu, M. C. Zhong, Z. Q. Wang, J. Cai, Y. M. Li, "Manipulation of nanoparticles using dark-field-illumination optical tweezers with compensating spherical aberration," Chinese Physics Letters,26,068701 (2009).
    205. 舍英,伊力奇,呼和巴特尔,现代光学显微镜(科学出版社,北京,1997).
    206. G. A. Jamjoom, "Dark-field microscopy for detection of malaria in unstained blood films," Journal of Clinical Microbiology,17,717-721 (1983).
    207. 陈宗淇,王光信,徐桂英,胶体与界面化学(高等教育出版社,北京,2001).
    208. D. Watson, N. Hagen, J. Diver, P. Marchand, M. Chachisvilis, "Elastic light scattering studies from single cells in optical trap," Proc.of SPIE,6326,63260Q (2006).
    209. T. Ota, T. Sugiura, S. Kawata, M. J. Booth, M. A. A. Neil, R. Juskaitis, T. Wilson, "Enhancement of laser trapping force by spherical aberration correction using a deformable mirror," Japanese Journal of Applied Physics 42, L701-L703 (2003).
    210. 郁道银,谈恒英,工程光学(第二版)(机械工业出版社,北京,2006).
    211. J. Hofkens, J. Hotta, K. Sasaki, H. Masuhara, K. Iwai, "Molecular assembling by the radiation pressure of a focused laser beam:Poly(N-isopropylacrylamide) in aqueous solution," Langmuir,13,414-419 (1997).
    212. J. Hofkens, J. Hotta, K. Sasaki, H. Masuhara, T. Taniguchi, T. Miyashita, "Molecular association by the radiation pressure of a focused laser beam:Fluorescence characterization of pyrene-labeled PNIPAM," Journal of the American Chemical Society,119,2741-2742 (1997).
    213. 钟敏成,张文静,周金华,李银妹,田来科,白晋涛,”利用背散光分辨单光镊捕获的纳米粒子个数,”中国激光,37,398-403(2010).
    214. K. O. Greulich, Micromanipulation by light in biology and medicine, The laser microbeam and optical tweezers (Birkhauser Verlag, Basel,1999).
    215. M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F. S. Pavone, D. Dunlap, L. Finzi, "Calibration of optical tweezers with differential interference contrast signals," Review of Scientific Instruments,73,1687-1696 (2002).
    216. Z. Gong, H. T. Chen, S. H. Xu, Y. M. Li, L. R. Lou, "Monte-Carlo simulation of optical trap stiffness measurement," Optics Communications,263,229-234 (2006).
    217. K. Berg-S(?)rensen,H. Flyvbjerg, "Power spectrum analysis for optical tweezers," Review of Scientific Instruments,75,594-612 (2004).
    218. P. M. Hansen, I. M. Tolic-N(?)rrelykke, H. Flyvbjerg, K. Berg-Sorensen, "tweezercalib 2.1: Faster version of MatLab package for precise calibration of optical tweezers," Computer Physics Communications,175,572-573 (2006).
    219. K. Berg-S(?)rensen, E. J. G. Peterman, T. Weber, C. F. Schmidt, H. Flyvbjerg, "Power spectrum analysis for optical tweezers. II:Laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth," Review of Scientific Instruments,77, 063106(2006).
    220. R. M. Mazo, Brownian motion:fluctuations, dynamics and applications, International series of monographs on physics (Clarendon Press, Oxford,2002), p.62.
    221. J. Bechhoefer,S. Wilson, "Faster, cheaper, safer optical tweezers for the undergraduate laboratory," American Journal of Physics,70,393-400 (2002).
    222. G. Volpe, G. Kozyreff, D. Petrov, "Backscattering position detection for photonic force microscopy," Journal of Applied Physics,102,084701 (2007).
    223. 四象限探测器,retrieved http://www.pacific-sensor.com/pages/quadrant.html.
    224. G. S. Roberts, T. A. Wood, W. J. Frith, P. Bartlett, "Direct measurement of the effective charge in nonpolar suspensions by optical tracking of single particles," Journal of Chemical Physics,126,12 (2007).
    225. S. Jeney, B. Lukic, J. A. Kraus, T. Franosch, L. Forro, "Anisotropic memory effects in confined colloidal diffusion," Physical Review Letters,100,240604 (2008).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700