基于MEMS的全固态双增益阿达玛光谱仪关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现对微弱信号的光谱分析,通常需要增加光谱分析仪器的入射狭缝宽度来增加光谱仪的光通量,这必然会导致光谱仪的分辨率有所下降。为解决微小型光谱仪器中的光通量和分辨率的双增益问题,进行了阿达玛光谱仪的相关理论和关键技术研究。
     本文进行了入射狭缝编码设计。采用MEMS工艺技术制作出最小狭缝单元为6μm×6μm的一系列阿达玛微硅片狭缝阵列。通过对目前几种色散型光谱仪的光学结构对比,建立了基于艾伯特-法斯梯光学结构的微小型多通道阿达玛光谱仪的模型。在光学模型的基础上进行了机械结构设计。利用MEMS技术实现了微小型阿达玛光谱仪的集成化。
     由于光学软件的限制,对多狭缝的结构形式无法表示。为了描述在光谱仪器的输出端即CCD上接收的光谱辐射强度分布特征,构建了光谱仪器的全仪器函数,完善了色散型光谱仪的分析方法。利用全仪器函数法分析出经过光谱仪器后的光强分布与光谱分布,精确地描述出被测物体在焦平面上的光谱成分。本文研制出小型阿达玛光谱仪原理样机,并对系统的分辨率进行了理论分析。
     为实现对多狭缝结构参数设计的优化分析,以衍射理论为基础,构造入射孔的孔径函数及衍射光栅的反射函数,得到经过衍射后的光振动分布,并运用Matlab对光振动分布仿真,搭建了试验测试装置对仿真结果验证。进行了单狭缝与阿达玛循环S23型的衍射光通量对比研究,得出后者比前者衍射光通量提高了3.10倍。以四种S型狭缝阵列为比较对象,分析了狭缝结构参数对光强分布的影响,发现了狭缝的单元边距、单元尺寸和阶数等参数对衍射光强的影响规律。测得阿达玛S15型狭缝阵列比阿达玛循环S15型狭缝阵列的衍射光强提高1.45倍,与理论推导结果相符。
     阿达玛光谱仪具有高光通量,高分辨率,很好的机械稳定性,在微光探测上具有一定的优势。
Miniaturization and integration are now leading an important way for spectrum instruments development. However it brings a series of problems. For example how to get high sensitivity, at the same time get high thoughput when measuring. On the basis of theoretical analysis, the construction and principles of dispersive spectrometer and hadamard spectrometer is analyzed.According to the issues above the key technologies of mini spectrometer is proposed in this paper.
     And the type and coding of the input slit of the spectrometer have been analyzed. Multi-micro-silicon-slitsmatrices is produced by MEMS technique. Each elment is only 6μm×6μm. We choose the symmetrical optical path system and use optical design software to simulate the actual situation of the optical path, and optimize the system to eliminate coma aberration. The pre and post silicon slits which have such features as small volume and high precision by MEMS technology up to the requirements are designed which brings theoretical support for miniaturization.
     Because the limitation of the software,multi-micro-silicon-slits can’t use it. A new method to evaluate the throuput of the spectrometer was proposed,so we can know what the CCD received. The new parameter we call it“The whole spectrometer parameter”, that is based on the whole spectrometer. And it proved to have a good way to designing the spectrometer. The actual diffract situation of input slit of Hadamard spectrometer on throughput after all the optical element. The constant of the spectrom is described precisely on the detecting plane.
     The way of analysis can provide some theoretic and applying foundations for slit design. Based on diffract theory, the formula is presented. The phenomenon of diffraction is analysed by using the software of Matlab. The experiment verified that the programmer using the Matlab programming language is reasonable. The performance of traditional silt and Hadamard slitis compared. Feature of the presented device with Hadamard slit is the throughput advantage (up to the factor of 3.10).In order to realize high throughput of Hadamard spectrometer, the performance of four Hadamard S slits are compared. Based on diffract theory, the formula with Hadamard S matrix is presented. The compare between the Matlab simulating picture and the actual diffract picture of S slits on throughput. The influence of the factors such as the spot distance、slit dimension and the matrix array on the throughput is analyzed, then the diffracting way of S slit was offered. The set of experiments run with the system compare the performance of Hadamard S (N=15) and Hadamard cyclic-S (N=15). Feature of the presented device with Hadamard S (N=15) is the throughput advantage (up to the factor of 1.45).
     In order to realize spectral analysis of weak signal, a Hadamard spectrometer of high throughput ,high resolution and stable is established.
引文
[1]潘武,钟先信,等.微型光电机械系统技术在光通信中的应用及展望[J].光学精密工程.1999,7(2): 1-7.
    [2] http://www.sklao.ac.cn/show.asp?tid=67&xxid=342
    [3]温志渝,陈刚,温中泉,等。混合集成微型光纤光谱仪的设计模拟及实验[J].光学学报,2003,23(6):740-744.
    [4]金国藩,严瑛白,郎敏贤.二元光学.国防工业出版社.1998.
    [5]张继彦,杨国洪,张保汉,等。小型平焦场光栅光谱仪的研制[J]。光学学报,2001,21(9):1009-1012.
    [6]王世昌.Hadamard矩阵与图像及其实现的自动机技术[J].光学精密工程, 1997,5(1):16-21.
    [7] J E Golay. Multi-slit spectrometry [J]. Opt.Soc.Am., 1949,39: 437-444.
    [8] J E Golay. Static multislit spectrometry and its application to the panoramic display of infrared spectra [J]. Opt.Soc.Am., 1951,41: 468-472.
    [9] Sugimoto N. Atmospheric environment monitoring system based on an earth-to-satelite Hadmard transform laser long-path absorprion spectrometer: a proposal [J].Appl.Opt., 1987,26: 763-764.
    [10] Joseph L. Robichaud, Wallace K. Wong, and Roger A. Van Tassel. Measured performance of a Hadamard-coded photodiode-array spectrometer [J]. Proc.SPIE., 1992,1575:255-258.
    [11] N J A Sloane. Reducing the number of measurements in doubly multiplexed spectrometers [C]. In:Proceedings of the Aspen International Conference on Fourier Spectroscopy (ISEH). Houston:ISEH, 1970.435-440.
    [12] M.Harwit, N.J.A.Sloane. Hadamard Optics[J]. Proc.SPIE., 1980.39-45.
    [13] HARWIT M O, SLOANE N J A. Multiplex hadamard Transform Optics[J]. Opt.Soc.Am., 1981:224-226.
    [14] N.J.A.Sloane. Hadamard Transform Optics[M]. New York:1979.62-81.
    [15] J A Decker. Experimental realization of the multiplex advantage with a Hadamard-transform spectrometer[J]. Applied Optics, 1971,10(3):510-515.
    [16] Neudecker H, Liu S Z. Statistical properties of the Hadamard product of random vectors [J]. Statistical Iaapers, 200l,42(4):475~487.
    [17] Hammaker R M, Graham J A, Tilotta D C, et al. Vibrational Spectra and Structure[J]. Amsterdam, Elsevier. 1986,15:401-405.
    [18] Tilotta D C, Hammaker R M, Fateley W G. Multiplex advantage in Hadamard transform spectrometry utilizing solid-state encoding masks with uniform, bistable optical transmission defects [J]. Appl.Opt., 1987,26:4285-4292.
    [19] Tilotta D C, Hammaker R M, Fateley W G. A Visible Near-Infrared Hadamard Transform Spectrometer Based on a Liquid Crystal Spatial Light Modulator Array: A New Approach in Spectrometry [J]. Appl. Spectrosc., 1987,41:727-734.
    [20] Tilotta D C, Hammaker R M, Fateley W G. Hadamard Transform Visible Raman Spectrometry [J]. Appl. Spectrosc., 1987,41:1280- 1287.
    [21] Tilotta D C, Hammaker R M, Fateley W G. Hadamard Transform Spectrometer [J]. Spectrochim. Acta., 1987,43A:1493-1499.
    [22] Tolotta D C, Fry R C, Fateley W G. Selective multiplex advantage with an electro-optic Hadamard transform spectrometer for multielemental atomic emission[J]. Talanta, 1990,37(1): 53-60.
    [23] Bohlke A P, Tate J D, White J S,et al. Near-infrared hadamard transform raman spectrometry [J]. Mol.Struct., 1989,200:471-481.
    [24] Fateley W G, Hammaker R M, Paukstelis J V, et al. High-precision measurements of Brillouin scattering frequencies[J]. Appl.Spectrosc.,1993, 47:1464-1470.
    [25] R M Hammaker, A N Mortensen, E.A.Orr. Multidimensional hadamard- Transform Spectro- metry[J]. Mol. Struc., 1995,348:135-138.
    [26] HARWIT M O, SLOANE N J A. Hadamard Transform Optics[M]. New York: Academic, 1979: 39-45, 62-81, 109-118, 202and 229-243.
    [27] Treado P J, Govil A, Morris M D. Hadamard Transform Raman Microscopy of Laser- Modified Graphite Electrodes[J]. Appl. Spectrosc., 1990,44:1270-1275.
    [28] Treado P J, Briggs L M. Hadamard transform photothermal deflection desitometry of electrophretically blotted proteins [J]. Applied Spectroscopy, 1990,511:341-352.
    [29] Treado P J,Morris M D. Hadamard Transform Photothermal Deflection Imaging[J]., Appl. Spectrasc, 1986,40(5):704-706.
    [30] Treado P J. Morris M D. Hadamard Transform Raman Imaging[J]. Appl.Spectrosc., 1988,42: 897-901.
    [31] Treado P J,Morris M D. A Hadamard Transform Raman Microprobe[J]. Spectrose., 1989,43: 190-193.
    [32] Treado P J,Morris M D. Proc.1nt.Laser Symp., 1988,191:725-729.
    [33] Treado P J,Morris M D. Infrared and Raman spectroscopic imaging.[J]. Appl Spectosc Rev, 1994,35(10):842-850.
    [34] Treado P J,Morris M D. Multichannel hadamard transform raman microscopy [J]. Appl. Spretrose, 1990,44-48.
    [35] Treado P J,Morris M D. A thousand points of light: the Hadamard transform in chemical analysis and instrumentation [J]. Anal.Chem., 1989,61:723A-734A.
    [36] Vickers T J, Mann C K, Zhu J. Quantitative Resonance Raman Spectroscopy [J]. Appl. Spectrosc., 1991,45:42-48.
    [37]张炳泉.阿达玛变换光谱仪.南开大学物理系资料, 1987.
    [38]张炳泉.阿达玛变换光谱的解码方法[J].光学学报, 1984,4(3):229-234.
    [39]张炳泉.阿达码变换光谱的编码方法[J].苏州大学学报, 1990,6(3):344-347
    [40]张复礼.阿达玛变换调制光谱术[J].红外研究, 1982,4:301-304.
    [41]张复礼.快速阿达玛变换[J].光学仪器, 1982,4:38-42.
    [42]梅二文.阿达玛.变换显微关光图像分析[D]:[博士学位论文]武汉:武汉大学,1994.
    [43]梅二文,顾文芳,曾小斌,等. Hadamard变换显微荧光成象技术的研究[J].中国科学(B), 1995,25(1):7-13.
    [44] Mei Erwen, Gu Wenfang, Chen Guan quan,et al. Technique of Hadamard transform microscope fluorescence image analysis [J]. Science in China, 1995,38(5) 513-520.
    [45] Mei Erwen, Gu Wenfang, Chen Guan quan,et al. Instrument for Hadamard Transform Three-Dimensional Fluorescence Microscope [J]. Anal.Chim Acta, 1995,300:261-267.
    [46] Wei L, Xu J, Zhang T. Application of Two-Dimensional Hadamard Transform to Photoacoustic Microscopy [J]. UZtrason.Syntp.Proc., 1986,1:501-504.
    [47] Zhang Tao, Fang Qun, Fang Zhaolun. Enhancement of Signal-to-Noise Ratio in Chip-based Capillary Electrophoresis Systems by a Hadamard Transform Approach [J]. Chem. J. Chinese Universities., 2003,24(10):1775-1778.
    [48]吴继宗,韩一平,邓家诚,等.[J].光学学报.1987,7:223-225.
    [49]李全臣,蒋月娟,光谱仪器原理,北京:北京理工大学出版社,1999: 105-119.
    [50]吴国安,光谱仪器设计,北京:科学出版社,1978: 72-81.
    [51] M. C. Hutley, Diffraction Gratings, Academic Press Inc. (London) Ltd, 1982: 282-288.
    [52]宁波源禄光电有限公司.平场凹面光栅. [EB/OL] http://www.xphotonics.com/cn/cpzq.htm, 2000.
    [53] LI Q T, JIANG Y. The Theory of Spectromety[M]. Science and Industry Press. Biejing :1999. 56-68.
    [54]周连群,吴一辉,张平,等. A new mini-fiber-spectrometer by adopting micro-silicon-slit[J].光学精密工程, 2005,13(6): 637-642.
    [55]李昌厚.光谱带宽与分析测试误差的关系[J].分析测试技术与仪器2004,10(2):65-67. [56 ]LI Chang-hou. Study on Relationship Between the Spectrum Band Width and the Absorbance Error[J].Analysis and Testing Technology and Instruments,2004, 10(2): 65-67.(in Chinese).
    [57]关智武.基尔霍夫衍射积分公式中虚系数的解释[J].郑州工业大学学报.1998,19(4):112-113.
    [58]厉江帆,姜宗福.夫朗和费衍射公式的-般形式[J].大学物理,2003,22(11):9-13.
    [59]李俊昌,陈劲波.衍射的基尔霍夫传递函数[J].光电子·激光,2002,13(1):87-89.
    [60]布赖姆E O.快速傅立叶变换[M].上海:上海科学技术出版社,1979.77-84.
    [61]梁柱.光学原理教程[M].北京:北京航空航天大学, 2005:47-51.
    [62]赵凯华,陈熙谋.电磁学[M].北京:高等教育出版社,2003:24-30,106-108.
    [63]梁灿彬,秦光戎,梁竹健.电磁学[M].北京:高等教育出版社,2004:19-24,187,192,236-238.
    [64]熊家昌,欧家呜,等.求解衍射积分,导出多缝干涉强度分布公式[J].大学物理,2005,24(10):60-62.
    [65]姚启钧.光学教程[M].高等教育出版社,2002:93-148.
    [66]易明.光学[M].高等教育出版社,1999:378-387.
    [67]章志鸣,沈元华,陈惠芬.光学[M].高等教育出版社,2000:91-101.
    [68]钟锡华.现代光学基础[M].北京大学出版社,2003:61-89.
    [69] Riesenberg R, Dillner U. Hadamard imaging spectrometer with micro slit matrix [J]. Proc.SPIE., 1999,3753:203-213.
    [70] R Riesenberg, Th Seifert. Design of spatial Light Modulator Microdevices - Micro Slit Arrays[J]. Proc. SPIE, 1999,3680(1): 406-414.
    [71] Thomas S, R Riesenberg. Addressable microslit-array devices for miniaturized systems SPIE, 1999,3878:155-163.
    [72] R Riesenberg, J Lonschinski. HADAMARD-Minispectrometer made by a Micro Device [C]. In: Proc. 3rd Round Table on Micro/NanoTechnologies for Space(ISEH).The Netherlands ISEH, 2000.291 - 297.
    [73] Riesenberg R, Wuttig A. Novel MOEMS for Imaging. Spectrometry [J].Proc.SPIE, 2001, 4561:339-347.
    [74] Riesenberg R, Nitzsche G, Voigt W. HADAMARD Encoding and other optical Multiplexing [J].VDI-Berichte, 2002,1694:345-350.
    [75] R Riesenberg, G Nitzsche, A Wuttig, et al. Micro Spectrometer and MEMS for Space[M]. Smaller Satellites: Bigger Business. New York: Addison Wesley, 2002.403-406.
    [76] R Riesenberg, A.Wuttig. Intelligent Photonic Measurement for Spectrophotometers[C]. In:Proc. XVII IMEKO World Congress, Metrology in the 3rd Millennium(ISEH). Dubrovnik: ISEH,2003.22-27.
    [77] Fletcher D W, Haselgrove J C, Bolinger H. High-resolution imaging using Hadamard encoding [J]. Magnetic Resonance Imaging, 1999,17(10):1457-1468.
    [78] Wallis W D, Street A P, Walks S. Combinations Room squares, Sum-Free, hadamard Matrices [J]. Notes in Math, New York, 1972, 292-295.
    [79]喜安善.阿达玛行列应用[J].电子通信学会志, 1974(1):17-27.
    [80]刘璋温. Hadamaad矩阵[J].数学的实践与认识, 1978(4):55-57.
    [81] Seelig P F, Delevie R. Double layer capacitance measurements with digital synchronous detection at a dropping mercury electrode [J]. Anal.Chem., 1980,52;1506-1511.
    [82] R A Deverse, R M Hammaker. Realization of the hadamard Multiplex Advantage Using a Programmable Optical Mask in a Dispersive Flat-Field[J]. Near-Infrared Spectrometer. Appl. Spectrosc., 2000,54(12): 1751-1758.
    [83] Mark W Smith, Jody L Smith. Theoretical description and numerical simulations of a simplified hadamard transform imaging spectrometer[J]. SPIE., 2002,4816:372-380.
    [84] Marian Hanf, Ramon Hahn, Wolfram Dotzel, et al. A dynamically driven micro mirror array as the encoding mask in a Hadamard transform spectrometer (HTS) [J]. Sensors and Actuators , 2005,(123–124) : 476–482.
    [85] Da Silva H E B, rIi C. Dual-Beam Near-Infrared Hadamard Spectrophotometer [J]. App1. Spectrosc., 2001,55(6):715-721.
    [86] K.-L. Liu, L.-H. Cheng, R.-S. Sheng. Transitions for trapping, high-resolution spectroscopy and detection of the metastable state [J]. Appl. Spectrosc., 1990,45:1717-1720.
    [87]张凤生.编码成像光谱仪的模板设计.华中理工大学学报. 1995, 23(11):31-36
    [88]张凤生,徐志良,徐松柳.提高光谱编码测量分辨本领的精细采样与快速解码[J].青岛大学学报, 1999,14(3):1-3.
    [89] Mei Erwen, Zeng Xiaobin, Chen Guanquan,et al. Hadamard transform microscope image analysis [J].Chinese Chemical Letters, 1994,2:138-143.
    [90]唐宏武,梅二文,陈观铨,等.阿达玛变换显微图象分析系统在乳腺肿瘤细胞DNA倍性分析中的应用研究[J].高等学校化学学报, 1997,18(2):216-219.
    [91] Tang H W, Mei E W, Chen G Q, et al. Measurements of the DNA Content in a Breast-Tumor Cell-Based on the Hadamard-Transform Microscopic Fluorescence Image [J]. Anal.Sci., 1999, 15(2):113-119.
    [92] Tang H W, Chen G Q, Zhou J S, et al. Hadamard transform fluorescence image microscopy using onedimensional movable mask [J]. Ana1.Chim.Acta, 2002,248:27-34.
    [93]周锦松,唐宏武,吴琼水,等.高分辨阿达玛变换显微荧光图像分析[J].分析科学学报, 2003,19(1):17-20.
    [94] A. Wuttig, R Riesenberg,. Optimal transformations for optical multiplex measurements in the presence of photon noise[J]. Appl. Opt., 2005,44 (14): 2710-2719.
    [95]费业泰.误差理论与精度分析[M].机械工业出版社, 2000.79-85
    [96]周连群,吴一辉,张平,等.基于MEMS技术的微型分光光度计[J].光学精密工程, 2006, 12(6):990-997.
    [97] Crocker J H, Atkinson C. B, Ebbets D C. SPIE. 2000, 4013:27-34.
    [98] Scott R, Carrie A, Andre A, et al.. SPIE.2000, 4008:968-977.
    [99]玻恩M,沃耳夫E.光学原理[M].北京:科学出版社,1978:493—503.
    [100]蓝海江,潘晓明,吴建生.夫琅禾费矩孔衍射的特征及其MATLAB模拟[J].柳州师专学报.2006,21(1):130-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700