肺炎链球菌糖苷酶StrH和BglA-2的结构与功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.肺炎链球菌表面p-N-乙酰氨基己糖苷酶StrH的结构与功能研究
     当肺炎链球菌侵染宿主时,会遇到宿主细胞的一些糖复合物组分,包括粘蛋白、防御分子以及连接在人上皮细胞表面的糖组分。肺炎链球菌利用一些糖基水解酶来水解这些分子的糖基组分,三种外切糖基水解酶:唾液酸苷酶NanA、β-半乳糖苷酶BgaA以及β-N-乙酰氨基己糖苷酶StrH可以按顺序地分别水解掉宿主细胞防御分子外面的唾液酸Neu5Ac,半乳糖Gal以及N-乙酰氨基葡萄糖NAG暴露出多糖组分的末端糖单元甘露糖,从而改变宿主防御分子的清除功能。肺炎链球菌R6菌株表面StrH是糖基水解酶20家族的一个β(1,2)-N-乙酰氨基己糖苷酶(EC3.21.52),能够从糖复合物的非还原端水解产生N-乙酰氨基葡萄糖NAG单元。它具有两个GH20催化结构域,其序列同源性达53%(GH20-1和GH20-2结构域)。我们解析了StrH(Glu175-Lys642)与NAG复合物的结构,分辨率为2.1A。其整体结构是一个(β/α)8的桶状结构,与GH20家族糖苷酶相似。其活性位点位于β-barrel凸面中心。利用4-硝基-N-乙酰-p-D-氨基葡萄糖作为底物对StrH进行酶学分析,我们发现GH20-1结构域的(kcat/Km)只有GH20-2结构域的1/4。这主要是由于GH20-1中Cys-469取代了GH20-2结构域中相应的Tyr-903。通过底物NAGβ (1,2)Man与StrH复合物模型结合定点突变的酶学实验,发现了两个芳香族氨基酸残基对于StrH的p(1,2)底物特异性起关键性作用,它们分别是在GH20-1结构域中的Trp443和Tyr482和GH20-2结构域中的Trp876和Tyr914。这是第一个特异性水解p(1,2)连接的p-N-乙酰氨基葡萄糖水解酶的结构,结构和功能的研究帮助我们理解了这一糖苷酶的底物特异性机制。
     2.肺炎链球菌6-磷酸β-葡萄糖苷酶BglA-2的结构与功能研究
     糖基水解酶GH-1家族的6-磷酸-p-葡萄糖苷酶BglA-2(EC3.2.1.86)能够催化水解p(1,4)连接的纤维二糖(cellibiose)产生葡萄糖和葡萄糖-6-磷酸。这两种反应产物都能进一步进入产生能量的糖酵解途径中。我们解析了肺炎链球菌6-磷酸β-葡萄糖苷酶BglA-2的apo结构以及它和底物cellobiose-6'P类似物(硫代纤维二糖-6-磷酸thiocellobiose-6'P)复合物的的晶体结构,分辨率分别为2.0A和2.4A。与其他GH-1家族糖苷酶类似,Bg1A-2整体结构是一个(β/α)8的桶状结构,其活性位点位于β-barrel凸面中心。结构分析结合定点突变的酶学实验发现BglA-2中的三个芳香族的氨基酸Tyr126, Tyr303和Trp338决定(1,4)连接的6-磷酸-p-葡萄糖的糖苷酶底物特异性,而三个氨基酸Ser424, Lys430和Tyr432决定了BglA-2水解磷酸化底物的特异性。同时,结构比较发现一个色氨酸特异性识别GH-1家族中6-磷酸-半乳糖苷酶的-1位底物为6-磷酸-半乳糖而非6-磷酸-葡萄糖。这是第一次解析了6-磷酸p-葡萄糖苷酶BglA-2与磷酸化底物的复合物结构,研究结果阐明了这一糖苷酶的底物特异性机制。
1. Structure and function of a novel β-N-acetyl-hexosaminidase StrH from Streptococcus pneumoniae
     The β-N-acetyl-hexosaminidase (EC3.2.1.52) from glycoside hydrolase family20(GH20) catalyzes the hydrolysis of the β-N-acetylglucosamine (NAG) group from the non-reducing end of various glycoconjugates. The putative surface-exposed N-acetyl-hexosaminidase StrH/Spr0057from Streptococcus pneumoniae R6was proved to contribute to the virulence by removal of β (1,2)-linked NAG on host defense molecules following the cleavage of sialic acid and galactose by neuraminidase (NanA) and β-galactosidase (BgaA), respectively. StrH is the only reported GH20enzyme which contains a tandem repeat of two53%sequence-identical catalytic domains (designated as GH20-1and GH20-2, respectively). Here, we present the2.1A crystal structure of the N-terminal domain of StrH (residues Glul75-Lys642) complexed with NAG. It adopts an overall structure similar to other GH20enzymes:a (β/α)8TIM-barrel with the active site residing at the center of the β-barrel convex side. The kinetic investigation using4-nitrophenyl N-acetyl-β-D-glucosaminide (pNp-NAG) as the substrate demonstrated that GH20-1had an enzymatic activity (kcat/Km) of one-fourth compared to GH20-2. The lower activity of GH20-1could be attributed to thesubstitution of Cys469of GH20-1to the counterpart Tyr903of GH20-2at the active site. A putative substrate entrance tunnel and the modeling of NAG β (1,2)Man at the active site characterized two key residues Trp443and Tyr482at+1subsite of GH20-1that might determine the β (1,2) substrate specificity. Mutation of Trp443and/or the counterpart residue Trp876in GH20-2to alanine resulted in significant reduction of the activity towards NAGβ (1,2)Man, whereas mutation of Tyr482and/or the counterpart Tyr914in GH20-2to alanine almost abolished the activity. Taken together, these findings shed light on the mechanism of catalytic specificity towards the β (1,2)-linked β-N-acetylglucosides.
     2. Structure and function of a6-phospho-p-glucosidase BglA-2from Streptococcus pneumoniae
     The6-phospho-β-glucosidase BglA-2(EC3.2.1.86) from glycoside hydrolase family1(GH-1) catalyzes the hydrolysis of β (1,4)-linked cellobiose-6-phosphate (cellobiose-6'P) to yield glucose and glucose-6-phosphate (G6P). Both reaction products are further metabolized by the energy-generating glycolytic pathway. Here, we present the first crystal structures of the apo-and complex-forms of BglA-2with thiocellobiose-6'P (a non-metabolizable analog of cellobiose-6'P) at2.0A and2.4A resolution, respectively. Similar to other GH-1enzymes, the overall structure of BglA-2from Streptococcus pneumoniae adopts a typical (β/α)8TIM-barrel, with the active site located at the center of the convex surface of the β-barrel. Structural analyses, in combination with enzymatic data obtained from site-directed mutant proteins, suggest that three aromatic residues:Tyr126, Tyr303and Trp338at subsite+1of BglA-2, determine substrate specificity with respect to (1,4)-linked6-phospho-β-glucosides. Moreover, three additional residues:Ser424, Lys430and Tyr432of BglA-2, were found to play important roles in the hydrolytic selectivity towards phosphorylated, rather than non-phosphorylated compounds. Comparative structural analysis suggests that a tryptophan versus a methionine/alanine residue at subsite-1may contribute to the catalytic and substrate differences between the structurally similar6-phospho-β-galactosidases and6-phospho-β-glucosidases assigned to GH-1family.
引文
Abbott DW, Macauley MS, Vocadlo DJ, Boraston AB.2009. Streptococcus pneumoniae endohexosaminidase D, structural and mechanistic insight into substrate-assisted catalysis in family 85 glycoside hydrolases. J Biol Chem 284:11676-11689.
    Adlerova L, Bartoskova A, Faldyna M.2008. Lactoferrin:a review. Veterinarni Medicina 53: 457-468.
    Ajdic D, Pham VTT.2007. Global Transcriptional analysis of Streptococcus mutans sugar transporters using microarrays. J Bacteriol 189:5049-5059.
    Ames GF, Mimura CS, Shyamala V.1990. Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human:Traffic ATPases. FEMS Microbiol 75:429-446.
    Arditi M, Mason-EO Jr, Bradley JS, Tan TQ, Barson WJ, Schutze GE, Wald ER, Givner LB, Kim KS, Yogev R, Kaplan SL.1998. Three-year multicenter surveillance of pneumococcal meningitis in children:clinical characteristics, and outcome related to penicillin susceptibility and dexamethasone use. Pediatrics 102:1087-1097.
    Ausina V, Coll P, Sambeat M, Puig I, Condom MJ, Luquin M, Ballester F, Prats G 1988. Prospective study on the etiology of community-acquired pneumonia in children and adults in Spain. Eur J Clin Microbiol Infect Dis 7:342-347.
    Bateman A, Holden MT, Yeats C.2005. The G5 domain:a potential N-acetylglucosamine recognition domain involved in biofilm formation. Bioinformatics 21:1301-1303.
    Pluvinage B, Chitayat S, Ficko-Blean E, et al.2013. Conformational Analysis of StrH, the Surface-Attached exo-β-D-N-Acetylglucosaminidase from Streptococcus pneumoniae. J Mol Biol 425:334-349
    Bergmann S, Hammerschmidt S.2006. Versatility of pneumococcal surface proteins. Microbiology 152:295-303.
    Brown GD, Thomson JA.1998. Isolation and characterisation of an aryl-beta-D-glucoside uptake and utilization system (abg) from the gram-positive ruminal Clostridium species C. longisporum. Mol Gen Genet 257:213-218.
    Byrne JP, Morona JK, Paton JC, Morona R.2011. Identification of Streptococcus pneumonia Cps2C residues that affect capsular polysaccharide polymerization, cell wall ligation, and Cps2D phosphorylation. J Bacteriol 193:2341-2346.
    Bidossi A, Mulas L, Decorosi F, Colomba L, Ricci S, Pozzi G, Deutscher J, Viti C, Oggioni MR. 2012. A functional genomics approach to establish the complement of carbohydrate transporters in Streptococcus pneumoniae. PloS One 7:e33320.
    Bluestone CS, Martin L.1992. Ten-year review of otitis media pathogens. Pediatr Infect Dis J 11: 7-11.
    Burnaugh AM, Frantz LJ, King SJ.2008. Growth of Streptococcus pneumoniae on human glycoconjugates is depende nt upon the sequential activity of bacterial exoglycosidases. J Bacteriol 190:221-230.
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B.2009. The Carbohydrate-active enzymes database (CAZy):an expert resource for glycogenomics. Nucleic Acids Res 37:233-238.
    Cartwright K.2002. Pneumococcal disease in western Europe:burden of disease, antibiotic resistance and management. Eur J Pediatr 161:188-195.
    Chang AB, Lin R, Studley KW, Tran C, Saier MH.2004. Phylogeny as a guide to structure and function of membrane transport proteins. Mol Membr Biol 21:171-181.
    Chen H, Ma Y, Yang J, O'Brien CJ, Lee SL, Mazurkiewicz JE, Haataja S, Yan JH, Gao GF, Zhang JR.2008. Genetic requirement for pneumococcal ear infection. PLoS ONE 3:e295.
    Chen J, Lu G, Lin J, Davidson AL, Quiocho FA.2003. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol Cell 12:651-661.
    Chuang PD and Morrison SL.1997. Elimination of N-linked glycosylation sites from the human IgAl constant region:effects on structure and function. J Immunol 158:724-732.
    Clarke VA, Platt N, Butters TD.1995. Cloning and expression of the beta-N-acetylglucosaminidase gene from Streptococcus pneumoniae. Generation of truncated enzymes with modified aglycon specificity. J Biol Chem 270:8805-8814.
    Conrady DG, Brescia CC, Horii K, Weiss AA, Hassett DJ, Herr AB.2008. A zinc-dependent adhesion module is respo nsible for intercell ular adhesion in staphylococcal biofilms. Proc Natl Acad Sci USA 105:19456-19461.
    Corfield T.1992. Bacterial sialidases-roles in pathogenicity and nutrition. Glycobiology 2: 509-521.
    Corrigan RM, Rigby D, Handley P, Foster TJ.2007. The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology 153:2435-2446.
    Cote CK, Cvitkovitch D, Bleiweis AS, Honeyman AL.2000. A novel β-glucoside-specific PTS locus from Streptococcus mutans that is not inhibited by glucose. Microbiology 146: 1555-1563.
    Dalia AB, Standish AJ, Weiser JN.2010. Three surface exoglycosidases from Streptococcus pneumoniae, NanA, BgaA, and StrH, promote resistance to opsonophagocytic killing by human neutrophils. Infect Immun.78:2108-2116.
    Dallas SD, Rolfe RD.1998. Binding of Clostridium difficile toxin A to human milk secretory component. J Med Microbiol 47:879-888.
    Davies GJ, Wilson KS, Henrissat B.1997. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321:557-559.
    Davidson A L.2002. Mechanism of coupling of transport to hydrolysis in bacterial ATP-binding cassette transporters. J Bacteriol 184:1225-1233.
    Davidson AL, Chen J.2004. ATP-binding cassette transporters in bacteria. Annu Rev Biochem 73:241-268.
    De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W.2009. Bergey's Manual of Systematic Bacteriology. Heidelberg:Springer.
    De Wals P, Robin E, Fortin E, Thibeault R, Ouakki M, Douville-Fradet.2008. Pneumonia after implementation of the pneumococcal conjugate vaccine program in the province of Quebec, Canada. Pediatr Infect Dis J 27:963-968.
    Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ, Angiuoli SV, Oggioni M, Hotopp JCD, Hu FZ, Riley DR, Covacci A, Mitchell TJ, Bentley SD, Kilian M, Ehrlich GD, Rappuoli R, Moxon ER, Masignani V.2011. Structure and dynamics of the pangenome of Streptococcus pneumoniae and closely related species. Genome Biology 11:R107.
    Douglas RM, Paton JC, Duncan S J, Hansman D.1983. Antibody response to pneumococcal vaccination in children younger than five years of age. J Infect Dis 148:131-137.
    Drouillard S, Armand S, Davies GJ, Vorgias CE, Henrissat B.1997. Serratia marcescens chitobiase is a retaining glycosidase utilizing substrate acetamido group participation. Biochem J 328:945-949.
    el Hassouni M, Chippaux M, Barras F.1990. Analysis of the Erwinia chrysanthemi arb genes, which mediate metabolism of aromatic beta-glucosides. J Bacteriol 172:6261-6267.
    Erdem H, Pahsa A.2005. Antibiotic resistance in pathogenic Streptococcus pneumoniae isolates in Turkey. J Chemother 17:25-30.
    Feikin DR, Klugman KP.2002. Historical changes in pneumococcal serogroup distribution: implications for the era of pneumococcal conjugate vaccines. Clin Infect Dis 35:547-555.
    Fine MJ, Smith MA, Carson CA, Mutha SS, Sankey SS, Weissfeld LA, Kapoor WN.1996. Prognosis and outcomes of patients with community-acquired pneumonia. A meta-analysis JAMA 275:134-141.
    Fox CF, Wilson G.1968. The role of a phosphoenolpyruvate-dependent kinase system in beta-glucoside catabolism in Escherichia coli. Proc Natl Acad Sci USA 59:988-995.
    Freney J, Bland S, Etienne J, Desmonceaux M, Boeufgras JM, Fleurette J.1992. Description and evaluation of the semiautomated 4-hour Rapid ID 32 Strep Method for identification of Streptococci and members of related genera. J Clin Microbiol 30:2657-2661.
    Galen JE, Ketley JM, Fasano A, Richardson SH, Wasserman SS, Kaper JB.1992. Role of Vibrio cholerae neuraminidase in the function of cholera toxin. Infect Immun 60:406-415.
    Geourjon C, Orelle C, Steinfels E, Blanchet C, Dele'age G, Di Pietro A, Jault JM.2001. A common mechanism for ATP hydrolysis in ABC transporter and helicase superfamilies. Trends Biochem 26:539-544.
    Giugliano LG, Ribeiro ST, Vainstein MH, Ulhoa CJ.1995. Free secretory component and lactoferrin of human milk inhibit the adhesion of enterotoxigenic Escherichia coli. J Med Microbiol 42:3-9.
    Gray BM, Converse GM, Dillon HCJ.1980. Epidemiologic studies of Streptococcus pneumoniae in infants:acquisition, carriage, and infection during the first 24 months of life. J Infect Dis 142:923-933.
    Gray BM, Turner ME, Dillon HC.1982. Epidemiologic studies of Streptococcus pneumoniae in infants:The effects of season and age on pneumococcal acquisition and carriage in the first 24 months of life. Am J Epidemiol 116:692-703.
    Gregg KJ, Zandberg WF, Hehemann JH, Whitworth GE, Deng L,Vocadlo DJ, Boraston AB.2011. Analysis of a new family of widely distributed metal-independent alpha-mannosidases provides unique insight into the processing of N-linked glycans. J Biol Chem 286: 15586-15596.
    Gut H, Xu G, Taylor G L, Walsh MA.2011. Structural basis for Streptococcus pneumonia NanA inhibition by influenza antivirals zanamivir and oseltamivir carboxylate. J Mol Biol 409: 496-503.
    Hakenbeck R, Balmelle N, Weber B, Gardes C, Keck W, Saizieu de A.2001. Mosaic genes and mosaic chromosomes:intra- and interspecies genomic variation of Streptococcus pneumoniae. Infect Immun 69:2477-2486.
    Hamada S, Slade HD.1980. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44:331-384.
    Hava DL, Camilli A.2002. Large-scale identification of serotype 4 Streptococcus pneumonia virulence factors. Mol Microbiol 45:1389-1406.
    Hava DL, LeMieux J, Camilli A.2003. From nose to lung:the regulation behind Streptococcus pneumoniae virulence factors. Mol Microbiol 50:1103-1110.
    Henderson PJ, Baldwin SA, Cairns MT, Charalambous BM, Dent HC, Gunn F, Liang WJ, Lucas A, Martin E, McDonald TP, et al.1992. Sugar-cation symport systems in bacteria. Int Rev Cytol 137:149-208.
    Henrissat B.1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309-316.
    Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G 1995. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci USA 92:7090-7094.
    Hodges RG, Macleod CM.1946. Epidemic pneumococcal pneumonia. V. Final considerations of the factors underlying the epidemic. Am J Hyg 44:237-243.
    Hogberg L, Geli P, Ringberg H, Melander E, Lipsitch M, Ekdahl K.2007. Age-and serogroup-related differences in observed durations of nasopharyngeal carriage of penicillin-resistant pneumococci. J Clin Microbiol 45:948-952.
    Holm L, Sander C.1993. Protein structure comparison by alignment of distance matrices. J Mol Biol 233:123-138.
    Honda S, Akao E, Suzuki S, Okuda M, Kakehi K, Nakamura J.1989. High-performance liquid-chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl-5-pyrazolone derivatives. Anal Biochem 180: 351-357.
    Huang SS, Platt R, Rifas-Shiman SL, Pelton SI, Goldmann D, Finkelstein JA.2005. Post-PCV7 changes in colonizing pneumococcal serotypes in 16 Massachusetts communities,2001 and 2004. Pediatrics 116:408-413.
    Hughes GJ, Reason AJ, Savoy L, Jaton J, Frutiger-Hughes S.1999. Carbohydrate moieties in human secretory component. Biochim Biophys Acta 1434:86-93.
    Hyde SC, Emsley P, Hartshorn MJ, Mimmack MM, Gileadi U, Pearch SR, Gallagher MP, Gill D R, Hubbard RE, Higgins CF.1990. Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346:362-365.
    Ispahani P, Slack RCB, Donald FE, Weston WC, Rutter N.2004. Twenty year surveillance of invasive pneumococcal disease in Nottingham:serogroups responsible and implications for immunisation. Arch Dis Child 89:757-762.
    Iyer R, Camilli A.2007. Sucrose metabolism contributes to in vivo fitness of Streptococcus pneumoniae. Mol Microbiol 66:1-13.
    Kadioglu A, Weiser JN, Paton JC, Andrew PW.2008. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6: 288-301.
    King SJ, Whatmore, AM, Dowson CG 2005. NanA, a neuraminidase from Streptococcus pneumoniae, shows high levels of sequence diversity, at least in part through recombina tion with Streptococcus oralis. J Bacteriol 187:5376-5386.
    King SJ, Hippe KR, Weiser JN.2006. Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol Microbiol 59:953-961.
    Kojima K, Iwamori M, Takasaki S, Kubushir, K, Nozawa S, Lizuka R, Nagai Y.1987. Diplococcal beta-galactosidase with a specificity reacting to beta 1-4 linkage but not to beta 1-3 linkage as a useful exoglycosidase for the structural elucidation of glycolipids. Anal Biochem 165:465-469.
    Koshland DE.1953. Stereochemistry and the mechanism of enzymic reactions. Biol Rev Camb Phil Soc 28:416-436.
    Kruger S, Gertz S, Hecker M.1996. Transcriptional analysis of bg1PH expression in Bacillus subtilis:evidence for two distinct pathways mediating carbon catabolite repression. J Bacteriol 178:2637-2644.
    Kundig W, Ghosh S, Roseman S.1964. Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system. Proc Natl Acad Sci USA 52:1067-1074.
    Lanie J, Ng W, Kazmierczak K, Andrzejewski T, Davidsen T, Wayne K, Tettelin H, Glass J, Winkler M.2007. Genome sequence of Avery's virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J Bacteriol 189:38-51.
    Le Coq D, Lindner C, Kruger S, Steinmetz M, Stulke J.1995. New beta-glucoside (bgl) genes in Bacillus subtilis:the bg1P gene product has both transport and regulatory functions similar to those of Bg1F, its Escherichia coli homolog. J Bacteriol 177:1527-1535.
    Leiberman A, Leibovitz E, Piglanksky L, Riaz S, Press J, Yagupsky P, Dagan R.2001. Bacteriologic and clinical efficacy of trimethoprim-sulfamethoxazole for treatment of acute otitis media. Pediatr Infect Dis 20:260-264.
    Liu T, Zhang, Liu H, Wu F, Shen QX, Yang Q.2011. Structural determinants of an insect beta-N-Acetyl-D-hexosaminidase specialized as a chitinolytic enzyme. J Biol Chem 286: 4049-4058.
    Madhi SA, Levine OS, Cherian T.2008. Pneumococcal conjugate vaccine is efficacious and effective in reducing the burden of pneumonia. Bull World Health Organ 86:A-C.
    Mark BL, Vocadlo DJ. Knapp S, Triggs-Raine BL, Withers SG, James MN.2001. Crystallographic evidence for substrate-assisted catalysis in a bacterial beta-hexosaminidase J Biol Chem 276:10330-10337.
    Marion C, Burnaugh AM, Woodiga SA, King SJ.2011. Sialic acid transport contributes to pneumococcal colonization. Infect Immun 79:1262-1269.
    Mattu T, Pleass R, Willis A, Kilian M, Wormald M and Lellouch A, et al.1998. The glycosylation and structure of human serum IgAl, Fab, and Fc regions and the role of N-glycosylation on Fc alpha receptor interactions. J Biol Chem 273:2260-2272.
    McEllistrem MC.2009. Genetic diversity of the pneumococcal capsule:implications for molecular-based serotyping. Future Microbiol 4:857-865.
    McKessar SJ, Hakenbeck R.2007. The two-component regulatory system TCS08 is involved in cellobiose metabolism of Streptococcus pneumoniae R6. J Bacteriol 189:1342-1350.
    Meadow ND, Fox DK, Roseman S.1990. The bacterial phosphoenol-pyruvate:glycose phosphotransferase system. Annu Rev Biochem 59:497-542.
    Melegaro A, Edmunds WJ, Pebody R, Miller E, George R.2005. The current burden of pneumococcal disease in England and Wales. J Infec 52:37-48.
    Morton HC, van Egmond M, van de Winkel JG.1996. Structure and function of human IgA Fc receptors (Fc alpha R). Crit Rev Immunol 16:423-440.
    Musher DM.2000. Streptococcus pneumonia.2:2128-2146.
    Nobbs A H, Lamont RJ, Jenkinson HF.2009. Streptococcus adherence and colonization. Microbiol. Mol Biol Rev 73:407-450.
    O'Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N, Lee E, Mulholland K, Levine OS, Cherian T.2009. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years:global estimates. Lancet 374:893-902.
    Oggioni MR, Pozzi G.2001. Comparative genomics for identification of clone-specific sequence blocks in Streptococcus pneumoniae. FEMS Microbiol Rev 200:137-143.
    O'Toole RD, Goode L, Howe C.1971. Neuraminidase activity in bacterial meningitis. J Clin Investig 50:979-985.
    Parker D, Soong G, Planet P, Brower J, Ratner AJ, Prince A.2009. The NanA neuraminidase of Streptococcus pneumoniae is involved in biofilm formation. Infect Immun 77:3722-3730.
    Park IH, Pritchard DG, Cartee R, Brandao A, Brandileone MC, Nahm MH.2007. Discovery of a new capsular serotype (6C) within serogroup 6 of Streptococcus pneumoniae. J Clin Microbiol 45:1225-1233.
    Pasteur Louis.1881. Sur une maladie nouvelle provoquee par la salive d'un enfant mort de rage. Acad D Sc De Paris 92:159.
    Patzlaff JS, van der Heide T, Poolman B.2003. The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA. J Biol Chem 278:29546-29551.
    Petronilli V and Ames GFL.1991. Binding protein-independent histidine permease mutants. Uncoupling of ATP hydrolysis from transmembrane signaling. J Biol Chem 266: 16293-16296.
    Phalipon A, Cardona A, Kraehenbuhl JP, Edelman L, Sansonetti PJ, Corthesy B.2002. Secretory com-ponent:a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 17: 107-115.
    Philips BJ, Meguer JX, Redman J, Baker EH.2003. Factors determining the appearance of glucose in upper and lower respiratory tract secretions. Intensive Care Med 29:2204-2210.
    Pluvinage B, Higgins MA, Abbott DW, Robb C, Dalia AB, Deng L, Weiser JN, Parsons TB, Fairbanks AJ, Vocadlo DJ and Boraston AB.2011. Inhibition of the pneumococcal virulence factor StrH and molecular insights into N-glycan recognition and hydrolysis. Structure 19: 1603-1614
    Polissi A, Pontiggia A, Feger G, Altieri M, Mottl H, Ferrari L, Simon D.1998. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect Immun 66:5620-5629.
    Poolman B, Knol J, van der Does C, Henderson PJ, Liang WJ, Leblanc G, Pourcher T, Mus-Veteau I.1996. Cation and sugar selectivity determinants in a novel family of transport proteins. Mol Microbiol 19:911-922.
    Postma PW, Lengeler JW, Jacobson GR.1993. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543-594.
    Prag G, Papanikolau Y, Tavlas G, Vorgias CE, Petratos K, Oppenheim AB.2000. Structures of chitobiase mutants complexed with the substrate Di-N-acetyl-D-glucosamine:the catalytic role of the conserved acidic pair, aspartate 539 and glutamate 540. J Mol Biol 300:611-617.
    Puri V, Goyal A, Sankaranarayanan R, Enright AJ, Vaidya T.2011. Evolutionary and functional insights into Leishmania META1:evidence for lateral gene transfer and a role for META1 in secretion. BMC Evol Biol 11:1471-2148.
    Puyet A, Ibanez AM, Espinosa M.1993. Characterization of the Streptococcus pneumoniae maltosaccharide regulator Ma1R, a member of the LacI-Ga1R family of repressors displaying distinctive genetic features. J Biol Chem 268:25402-25408.
    Ramasubbu N, Thomas LM, Ragunath C, Kaplan JB.2005. Structural analysis of dispersin B, a biofilm-releasing glycoside hydrolase from the periodontopathogen Actinobacillus actinomycetemcomitans. J Mol Biol 349:475-486.
    Reichler M R, Allphin AA, Breiman RF, Schreiber JR, Arnold JE, McDougal LK, Facklam RR, Boxerbaum B, May D, Walton RO.1992. The spread of multiply-resistant Streptococcus pneumoniae at a day care center in Ohio. J Infect Dis 166:1346-1353.
    Reingold A.2005. Direct and indirect effects of routine vaccination of children with 7-valent pneumococcal conjugate vaccine on incidence of invasive pneumococcal disease—United States,1998-2003. MMWR54:893-897.
    Reizer J, Bachem S, Reizer A, Arnaud M, Saier MH, et al.1999. Novel phosphotransferase system genes revealed by genome analysis-the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. Microbiol 145:3419-3429
    Reizer J, Saier MH, Deutscher Jr, Grenier J, Thompson FJ, Hengstenberg W.1988. The phosphoenolpyruvate:sugar phosphotransferase system in gram-positive bacteria:properties, mechanism, and regulation. Crit Rev Microbiol 15:297-338.
    Ren Q, Chen K, Paulsen IT.2007. Transport DB:a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels. Nucleic Acids Res 35:274-279.
    Richter SS, Heilmann KP, Coffman SL, Huynh HK, Brueggemann AB, Pfaller MA, Doern GV. 2002. The molecular epidemiology of penicillin-resistant Streptococcus pneumoniae in the United States,1994-2000. Clin Infect Dis 34:330-339.
    Rigden DJ, Galperin MY, Jedrzejas MJ.2003. Analysis of structure and function of putative surface-exposed proteins encoded in the Streptococcus pneumoniae genome:a bioinformatics-based approach to vaccine and drug design. Crit Rev Biochem Mol Biol 38: 143-168.
    Roggentin P, Schauer R, Hoyer LL, Vimr ER.1993. The sialidase superfamily and its spread by horizontal gene transfer. Mol Microbiol 9:915-921.
    Rosenow C, Maniar M, Trias J.1999. Regulation of the alpha-galactosidase activity in Streptococcus pneumoniae:characterization of the raffinose utilization system. Genome Res 9:1189-1197.
    Roseman S.1989. Sialic acid, serendipity, and sugar transport:discovery of the bacterial phosphotransferase system. FEMS Microbiol Rev 5:3-11.
    Roush SW, Murphy TV.2007. Historical comparisons of morbidity and mortality for vaccine-preventable diseases in the United States. JAMA 298:2155-2163.
    Royle L, Roos A, Harvey DJ, Wormald MR, van Gijlswijk-Janssen D, Redwan el RM, et al. 2003. Secretory IgA N- and O-glycans provide a link between the innate and adaptive immune systems. J Biol Chem 278:20140-20153
    Rudan I, Boschi-Pinto C, Mulholland K, Campbell H.2008. Epidemiology and ethiology of childhood pneumoniae. Bull World Health Organ 86:408-416.
    Ruggiero A, Tizzano B, Pedone E, Pedone C, Wilmanns M, Berisio R.2009. Crystal structure of the resuscitation-promoting factor △DUFRpfB from M. tuberculosis. J Mol Biol 385: 153-162.
    Ryan KJ, Ray CG (editors).2004. Sherris Medical Microbiology 4th ed. McGraw Hill. ISBN 0-8385-8529-9.
    Saier MH Jr, Yamada M, Erni B, Suda K, Lengeler J, Ebner R, Argos P, Rak B, Schnetz K, Lee CA.1988. Sugar permeases of the bacterial phosphoenolpyruvate-dependent phosphotransferase system:sequence comparisons. FASEB J 2:199-208.
    Saier MH Jr.2000. Families of transmembrane sugar transport proteins. Mol Microbiol 35: 699-710.
    Saier MH, Yen MR, Noto K, Tamang DG, Elkan C.2009. The Transporter Classification Database:recent advances. Nucleic Acids Res 37 (Database issue)
    Sanders ME, Norcross EW, Robertson ZM, Moore QC, Fratkin J, Marquart ME.2011. The Streptococcus pneumoniae capsule is required for full virulence in pneumococcal endophthalmitis. Invest Ophthalmol Visual Sci 52:865-872.
    Sanz-Aparicio J, Hermoso JA, Martinez-Ripoli M, Lequerica JL, Polaina J.1998. Crystal structure of β-glucosidase A from Bacillus polymyxa:Insights into the catalytic activity in family 1 glycosyl hydrolases. J Mol Biol 275:491-502.
    Schaefler S.1967. Inducible system for the utilization of beta-glucosides in Escherichia coli. I. Active transport and utilization of beta-glucosides. J Bacteriol 93:254-263.
    Schauer R.2000. Achievements and challenges of sialic acid research. Glycoconj J 17:485-499.
    Schneewind O, Model P, Fischetti VA.1992. Sorting of protein A to the staphylococcal cell wall. Cell 70:267-281.
    Schneider E.2001. ABC transporters catalyzing carbohydrate uptake. Res Microbiol 152: 303-310
    Schroten H, Stapper C, Plogmann R, Kohler H, Hacker J, Hanisch FG.1998. Fab-independent antiadhesion effects of secretory immunoglobulin A on S-fimbriated Escherichia coli aremediated by sialyloligosaccharides. Infect Immun 66:3971-3973.
    Sebert ME, Patel KP, Plotnick M, Weiser JN.2005. Pneumococcal HtrA Protease Mediates Inhibition of Competence by the CiaRH Two-Component Signaling System. J Bacteriol 187: 3969-3979.
    Senior BW, Woof JM.2005. Effect of Mutations in the Human Immunoglobulin A1 (IgA1) Hinge on Its Susceptibility to Cleavage by Diverse Bacterial IgAl Proteases. J Immunol 73: 1515-1522.
    Shakhnovich EA, King S J, Weiser JN.2002. Neuraminidase expressed by Streptococcus pneumoniae desialylates the lipopolysaccharide of Neisseria meningitidisand Haemophilus influenzae:a paradigm for interbacterial competition among pathogens of the human respiratory tract. Infect Immun 70:7161-7164.
    Smillie W, Warnock G, White H.1938. Study of a type I pneumococcus epidemic at the State Hospital at Worcester, Massachusetts. Am J Public Health 28:293-298.
    Spik G, Strecker G, Fournet B, Bouquelet S, Montreuil J, Dorland L, van Halbeek H, Vliegenthart Johdnnes FG.1982. Primary structure of the glycans from human lactotransferrin. Eur J Biochem 121:413-419.
    Steinfort C, Wilson R, Mitchell T.1989. Effects of Streptococcus pneumoniae on human respiratory epithelium in vitro. Infect Immun 57:2006-2013.
    Sternberg George Miller.1881. "A fatal form of septicaemia in the rabbit produced by the subcutaneous injection of human saliva. An experimental research". Bulletin of the National Board of Health (Baltimore, Maryland).
    Sumida T, Ishii R, Yanagisawa T, Yokoyama S, et al.2009. Molecular cloning and crystal structural analysis of a novel beta-N-acetylhexosaminidase from Paenibacillus sp. TS12 capable of degrading glycosphingolipids. J Mol Biol 392:87-99.
    Sutrina SL, Reddy P, Saier MH, Reizer J.1990. The glucose permease of Bacillus subtilis is a single polypeptide chain that functions to energize the sucrose permease. J Biol Chem 265: 18581-18589.
    Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, Heidelberg J, DeBoy RT, Haft DH, Dodson RJ, Durkin AS, Gwinn M, Kolonay JF, Nelson WC, Peterson JD, Umayam LA, White O, Salzberg SL, Lewis MR, Radune D, Holtzapple E, Khouri H, Wolf AM, Utterback TR, Hansen CL, McDonald LA, Feldblyum TV, Angiuoli S, Dickinson T, Hickey EK, Holt IE, Loftus BJ, Yang F, Smith HO, Venter JC, Dougherty BA, Morrison DA, Hollingshead SK, Fraser CM.2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293:498-506.
    Tettelin H, Hollingshead SK.2004. Comparative genomics of Streptococcus pneumoniae: intrastrain diversity and genome plasticity. In The Pneumococcus, pp.15-29. Edited by Tuomanen EI, Mitchell TJ, Morrison DA and Spratt BG. Washington, DC:American Society for Microbiology.
    Tews I, Perrakis A, Oppenheim A, Dauter Z, Wilson KS, Vor-gias CE.1996. Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease Nat Struct Biol 3:638-648.
    Thompson J, Pikis A, Ruvinov SB, Henrissat B, Yamamoto H, Sekiguchi J.1998. The gene glvA of Bacillus subtilis 168 encodes a metal-requiring, NAD (H)-dependent 6-phospho-a-glucosidase. Assignment to family 4 of the glycosylhydrolase superfamily. J Biol Chem 273:27347-27356.
    Thompson J, Robrish SA, Bouma CL, Freedberg DI, Folk JE.1997. Phospho-β-glucosidase from Fusobacterium mortiferum:purification, cloning, and inactivation by 6-phosphoglucono-8-lactone. J Bacteriol 179:1636-1645.
    Thompson J, Lichtenthaler FW, Peters S, Pikis A.2002. P-Glucoside kinase (Bg1K) from Klebsiella pneumoniae. Purification, properties, and preparative synthesis of 6-phospho-p-D-glucosides. J Biol Chem 277:34310-34321.
    Tobisch S, Glaser P, Kruger S, Hecker M.1997. Identification and characterization of a new beta-glucoside utilization system in Bacillus subtilis. J Bacteriol 179:496-506.
    Todar K.2003. "Streptococcus pneumoniae:Pneumococcal pneumonia". Todar's Online Textbook of Bacteriology.
    Tomasz A.1999. New faces of an old pathogen emergence and spread of multidrug-resistant Streptococcus pneumoniae. Am J Med 107:55-62.
    Tong HH, Liu X, Chen Y, James M, DeMaria TF.2002. Effect of neuraminidase on receptor-mediated adherence of Streptococcus pneumonia to chinchilla tracheal epithelium. Acta Otolaryngol 122:413-419.
    Tribolo S, Berrin JG, Kroon PA, Czjzek M, Juge N.2007. The crystal structure of human cytosolic P-glucosidase unravels the substrate aglycone specificity of a family 1 glycoside hydrolase. J Mol Biol 370:964-975.
    Tuomanen El, Masure HR.1997. Molecular and cellular biology of pneumococcal infection. Microb Drug Resist 3:297-308.
    van Berkel PH, Geerts ME, van Veen HA, Kooiman PM, Pieper FR, de Boer HA, Nuijens JH. 1995. Glycosylated and unglycosylated human lactoferrins both bind iron and show identical affinities towards human lysozyme and bacterial lipopolysaccharide, but differ in their susceptibilities towards tryptic proteolysis. Biochem J 312:107-114.
    van Berkel PH, van Veen HA, Geerts ME, de Boer HA, Nuijens JH.1996. Heterogeneity in utilization of N-glycosylation sites Asn624 and Asn138 in human lactoferrin:a study with glycosylation-site mutants. Biochem J 319:117-122.
    van Egmond M, Damen CA, van Sprie AB, Vidarsson G, van Garderen E, van de Winkel JG. 2001. IgA and the IgA Fc receptor. Trends Immunol 22:205-211.
    Varki A.1993. Biological roles of oligosaccharides:all of the theories are correct. Glycobiology 3:97-130.
    Webster J, Theodoratou E, Nair H, Seong AC, Zgaga L, Huda T, Johnson HL, Madhi S, Rubens C, Zhang JSF, Arifeen SE, Krause R, Jacobs TA, Brooks AW, Cambell H, Rudan I.2011. An evaluation of emerging vaccines for childhood pneumococcal pneumonia. BMC Public Health 11:S26.
    Weinberger DM, Trzcinski K, Lu YJ, Bogaert D, Brandes A, Galagan J, Anderson PW, Melley R, Lipsitch M.2009. Pneumococcal capsular polysaccharide structure predicts serotype prevalence. PLoS Pathog 5:e1000476.
    Wiesmann C, Beste G, Hengstenberg W, Schulz GE.1995. The three-dimensional structure of 6-phospho-β-galactosidase from Lactococcus lactis. Structure 3:961-968.
    Wiesmann C, Hengstenberg W, Schulz GE.1997. Crystal structures and mechanism of 6-phospho-β-galactosidase from Lactococcus lactis. J Mol Biol 269:851-860.
    Williams SJ, Mark BL, Vocadlo DJ, James MN. Withers SG 2002. Aspartate 313 in the Streptomyces plicatus hexosaminidase plays a critical role in substrate-assisted catalysis by orienting the 2-acetamido group and stabilizing the transition state. J Biol Chem 277: 40055-40065.
    Yamashita K, Ohkura T, Yoshima H, Kobata A.1981. Substrate specificity of diplococcal P-N-acetylhexosaminidase, a useful enzyme for the structural studies of complex-type asparagine-linked sugar chains. Biochem Biophys Res Commun 100:226-232.
    Yang X, Zhao Y, Wang Q, Wang H, Mei Q.2005. Analysis of the monosaccharide components in Angelica polysaccharides by high performance liquid chromatography. Anal Sci 21: 1177-1180
    Yip VLY, Varrot A, Davies GJ, Rajan SS, Yang X, Thompson J, Anderson WF, Withers SG.2004. An unusual mechanism of glycoside hydrolysis involving redox and elimination steps by a Family 4 β-glycosidase from Thermotoga maritima. J Am Chem Soc 126:8354-8355.
    Yip VLY, Withers SG. 2006. Family 4 glycosidases carry out efficient hydrolysis of thioglycosides by an α,β-elimination mechanism. Angew Chem Int Ed 45:1-5.
    Yother J.2011. Capsules of Streptococcus pneumoniae and other bacteria:paradigms for polysaccharide biosynthesis and regulation. Annu Rev Microbiol 65:563-581.
    Zahner D, Hakenbeck R.2000. The Streptococcus pneumoniae beta-galactosidase is a surface protein. J Bacteriol 182:5919-5921.
    Zeleny R, Altmann F, Praznik W.1997. A capillary electrophoretic study on the specificity of beta-galactosidases from Aspergillus oryzar, Escherichia coli, Streptococcus pneumoniae, and Canavalia enisformis (jack bean). Anal Biochem 246:96-101.
    Zhang W, Lachmann PJ.1994. Glycosylation of IgA is required for optimal activation of the alternative comple-ment pathway by immune complexes. Immunology 81:137-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700