细菌纤维素表面修饰及功能化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌纤维素(BC)是国际公认的一种优异的天然纳米生物材料,具有独特的精细三维网状结构,因其“纳米效应”而具有高比表面积、高吸水性及保水性、高气液透过率、高湿态强度等优异特性。目前BC膜材料已经实现规模化生产,主要应用于食品及医用领域,解决了静电纺纳米纤维产量低,难以工业化生产的难题,具有十分广泛的应用前景。但目前BC材料的研究主要集中在生物发酵优化以及低成本化方向,对于具有差异化结构性能的BC改性材料及其相关功能纳米材料的研究较少,而已报道的国内外关于BC功能材料的研究主要集中于增强及医用领域,其应用领域也有待进一步拓展。在BC衍生化及功能化过程中,其表面特性决定了BC的表面修饰方法选取与功能化复合体系的建立。而目前BC的性能研究大多集中在基础理化特性的表征,而对其表面特性的研究报道较少。
     因此,本篇论文通过系统化研究BC表面特性,包括BC表面可及羟基数量,不同羟基的可及性及氢键有序程度,BC纤维表面电动力学行为等,从而更好地指导差异化BC改性材料及BC基功能化材料的设计及制备,理解BC纳米纤维在其中的模板作用以及纳米反应器效应。
     根据性能及应用需求,探索BC改性材料的结构设计和制备技术,通过对BC纳米材料进行表面修饰,实现BC表面活性基团的可控设计;并进一步基于BC及其衍生化BC纳米纤维活性位点控制的原位制备机理,采用不同方法原位可控构筑新型BC基功能化纳米复合材料体系,为提高BC附加值,拓展BC在光电信息等新材料领域应用提供更为有效的方法和新的合成思路。
     BC表面性能、表面修饰及功能化研究具体内容如下:
     1.研究了BC表面羟基可及度及其形态结构与性能的关系,为BC表面修饰及功能化体系的拓展提供了理论依据。结果表明BC表面羟基可及数目为1.28(最大值为3),BC中O(2)H是三种羟基中最可及的,O(3)H最不可及,其与高度有序的O(3)H..O(5')分子内氢键一致。BC的等电势点pH为3.7,Splateau为-7.5mV。在中性及碱性条件下的BC模板效应最显著,其表面羟基基团的大量解离可使其作为有效的反应活性位点来控制纳米颗粒及纳米线材料的生长与分布。BC膜具有高比表面积(55.37m2/g),且其比表面积及其微观形态可以通过不同的干燥方式及后处理进行调控。
     2.将BC优异表面特性与实际应用相结合,利用BC表面大量的可及性羟基基团以及比表面积的可调控性,将BC膜材料固定在石英晶体微天平(QCM)表面,制备了一种新颖的具有高稳定性和灵敏度的低成本湿度传感器。结果表明传感器展示了优异的传感特性,频移对数对相对湿度显示了线性关系,且基于BC膜的传感器在97%相对湿度时灵敏度比相应的纤维素膜增加了4倍多,所得传感器具有优异的可逆性及长期稳定性。
     3.通过采用乙酰化及偕胺肟化学改性方法,以乙酰基团及胺肟基团部分取代BC纳米纤维表面大量的羟基官能团,拓展BC在疏水增强基体材料及金属离子吸附领域的应用前景。使用碘作为催化剂,通过绿色高效无溶剂方法对BC纳米纤维表面官能团进行乙酰化改性,制备的乙酰化BC膜具有良好的表面疏水性能及优异的机械性能(杨氏模量13.4GPa,拉伸强度225.8MPa),有利于作为疏水的非极性聚合物基体的增强材料。在保留BC聚集态结构和一定物理机械性能的同时制备了偕胺肟改性BC,有效地提高了金属离子的吸附容量,扩展并丰富了BC纳米纤维的模板效应。
     4.利用BC纳米纤维表面大量的可及性羟基基团与所引入组分的相互作用,可以通过简单的表面修饰方法制备新颖的BC功能膜材料,有效拓展BC膜的应用领域。通过在BC表面引入NO2SP组分成功制备了一种新型的BC-NO2SP光致变色纳米纤维膜,该膜颜色可随着BC-NO2SP膜结构中吡喃组分的异构化发生可逆变化;通过在BC表面引入聚乙烯亚胺(PEI)组分进行表面修饰,成功制得了一种新颖、简单且可重复使用的PEI-BC纳米纤维膜基的QCM气体传感器,该传感器在室温下甲醛浓度1-100ppm范围内具有良好的线性,表现出高灵敏度,良好的可重复性和选择性,开创BC纳米纤维膜新的应用领域。
     5.利用BC及偕胺肟BC(Am-BC)的活性位点控制的原位合成机理以及纳米反应器效应,成功制备了具有光催化特性的ZnO/BC, ZnO/Am-BC及光致发光特性的CdSe/BC纳米复合膜材料。结果表明所得复合膜结构性能受反应液浓度及反应时间的影响,在优化条件下,直径为20-50nm的ZnO及CdSe纳米粒子均匀分布在BC纳米纤维的表面。Am-BC中胺肟基团的引入为ZnO成核及生长提供了更多的有效活性位点,有效提高了ZnO纳米颗粒负载量。相同条件下(120min),ZnO/BC/及ZnO/Am-BC复合膜对甲基橙溶液的光催化降解效率分别可达70%及91%,可应用于有机污水处理,且易于回收,可循环利用。所得CdSe/BC柔性复合膜在紫外光激发下显示出均匀的绿色荧光,可应用于证券纸,传感器及柔性荧光膜材料等领域。
     6.采用BC作为模板材料,利用BC表面大量羟基与苯胺中的胺基相互作用,过硫酸铵作为氧化剂,通过原位氧化聚合苯胺制备了新颖的PANI/BC柔性导电纳米复合膜。研究了反应时间,掺杂酸对纳米复合膜性能的影响。优化条件下,PANI颗粒均匀沉积在BC纳米纤维表面,沿着BC模板形成连续的直径为200nm的纳米鞘结构,该复合膜电导率可达5.0×10-2S/m,并具有优异的柔性及良好的机械性能(杨氏模量5.6GPa,拉伸强度95.7MPa),且对应力具有敏感性。该材料可应用在传感器,柔性电极,柔性显示材料及其它柔性导电膜等领域,同时本工作也为BC应用领域的拓展提供了新的方向。
Bacterial cellulose (BC) is internationally recognized as a type of natural bio-nanomaterial with a fine three-dimensional network. Due to its "nano effect", it has high water absorbing and holding capacity, large specific surface area, high gas-liquid permeability, and excellent mechanical properties. So far, BC has been successfully applied in the food and medical fields with a large-scale production. However, the current research on BC materials mainly focuses on the optimization of biosynthesis process and the low-cost preparation. The modified BC with differentiated structure and properties and the related functional nanomaterials are rarely studied. So far, the reported BC-based functional nanomaterials concentrate on the reinforcing and medical fields, the application field of BC needs to be further expanded. For the derivatization and functionalization of BC, the surface characteristic plays a crucial role which determines the selection of modification methods and the construction strategies of functional nanocomposite system. However, the surface properties and the relationship between the structure and properties of BC have not been intensively investigated.
     Therefore, in this thesis, we conducted a systematic study on the surface properties of BC, including the amount of accessible hydroxyl groups, the availability of different hydroxyl groups, hydrogen bonding system on the accessible surfaces andζ-potentials, in order to understand the soft template and nanoreactor effects of the BC nanofibers and realize the controllable preparation of modified BC materials and functionalized BC-based nanocomposites.
     Based on the application requirements, we have explored the structural design and preparation techniques to obtain novel modified BC nanomaterials, in order to achieve the controlled design of surface functional groups of BC nanofibers with adjustable characteristics. In addition, based on the BC and modified BC nanomaterials and the controllable reactive sites mechanism in the in-situ synthesis process, we used different in-situ preparation methods to establish the novel BC-based functionalized nanocomposite system. These studies have further provided a more efficient synthetic method and a new way for the controllable preparation of large-scale and low-cost BC-based nanocomposites applied in sensor, photocatalytic, and photoelectric fields.
     The detailed studies on surface characteristic, modification and functionalization of BC are as follows.
     1. The accessibility of surface hydroxyl groups and the relationship between structural features and properties of BC have been studied, in order to provide a theoretical basis for the surface modification of BC and the preparation of functional BC-based nanocomposites. The amount of accessible surface hydroxyl group has been found to be1.28(maximum of3) using dynamic vapor sorption method. The chemical microstructure analysis has shown the O(2)H has the maximum availability in the three kinds of hydroxyl groups, which has implied it has no or minimum contribution to the hydrogen bonding system on accessible surface. The O(3)H has lowest availability which is due to the highly ordered intra-molecular hydrogen bonding with O(5').BC has a low isoelectric point at pH3.7and a ζplateau of-7.5mV. The template effect of BC can be exerted sufficiently in neutral and alkaline conditions due to the dissociation of its surface hydroxyl groups, which can serve as effective reactive sites to control the distribution and growth of the nanoparticles and nanowires in the BC matrix. The BC film has a high specific surface area of55.37m2/g, and the specific surface area and morphology can be adjusted by different drying and post-processing methods.
     2. With a combination of unique surface characteristics and practical application of BC material, a novel highly stable and sensitive humidity sensor based on beating-treated BC coated quartz crystal microbalance (QCM) has been successfully fabricated. The results showed that the sensors possessed good sensing characteristics by increasing more than two orders of magnitude with increasing relative humidity (RH) from5to97%, and the Log (Δf) showed good linearity. The sensitivity of sensors coated with BC membranes was four times higher than that of the corresponding cellulose membranes at97%RH. In addition, the sensors exhibited a good reversible behavior and good long term stability.
     3. The acetylated BC and amidoximated BC (Am-BC) films with hydroxyl groups of BC partially substituted by acetyl groups and amidoxime groups have been prepared by using chemical modification methods. These modifications can expand the application prospects of BC in hydrophobic enhancing materials and metal ion adsorption fields. BC preserving the microfibrillar morphology was partially acetylated by the solvent-free acetylation method using iodine as a catalyst. The obtained acetylated BC membrane shows more hydrophobic surface and good mechanical properties (Young's modulus is13.4GPa and tensile strength is225.8MPa), which is in favor of enhancing the hydrophobic non-polar polymeric matrix. The Am-BC hydrogel can be obtained under moderate conditions by the successive polymer analogous reactions using acrylonitrile in an alkaline solution medium. The results revealed that the amidoximated modification could enhance the interactions between guest metal ions and host BC nanofiber while preserving the microfibrillar morphology, which can enrich the template effect of BC nanofibers.
     4. By introducing different functional components to interact with the large number of hydroxyl groups of BC, we have used simple surface modification methods to effectively expand the application fields of BC. The photochromic BC nanofibrous membranes were successfully prepared by surface modification of BC nanofibers with spiropyran photochromes. UV/vis spectrometry of the resulting BC-NO2SP revealed that the membranes show reversible photochromic property by changing their color from colorless to pink forming a merocyanine structure upon UV irradiation, and returning back again to colorless spiropyran structure by visible light. A novel formaldehyde sensor based on nanofibrous polyethyleneimine (PEI)-modified BC membranes coated QCM has been successfully fabricated. The sensor showed high sensitivity with good linearity and exhibited a good reversibility and selectivity towards formaldehyde in the concentration range of1-100ppm at room temperature, which make possibility for the application of BC in gas sensor fields.
     5. Using the soft template and nanoreactor effect of BC and Am-BC, we have successfully in-situ prepared photocatalytic ZnO/Am-BC and ZnO/Am-BC nanocomposites and flexible luminescent CdSe/BC nanocomposite membranes. The results have shown the structure and properties of the nanocomposites were affected by the preparation method and the concentration of reaction solution. Under optimized conditions, the spherical ZnO and CdSe nanoparticles with a size of20-50nm were homogeneously dispersed on the BC nanofibers.
     The introduced amidoxime group of Am-BC has provided more effective active sites for the nucleation and growth of ZnO nanoparticels, so the ZnO/Am-BC composite film with higher loading of ZnO nanoparticles exhibited improved photocatalytic efficiency (91%at120min) for the degradation of methyl orange solution compared to the ZnO/BC nanocomposite film. The resultant composite film can be applied to the treatment of organic wastewater, and can be easily reused. The CdSe/BC nanocomposite membranes emitted green fluorescence upon UV excitation, which are promising for applications in the fields of security papers, sensors and flexible luminescent membranes.
     The novel conductive flexible polyaniline (PANI)/BC nanocomposite membranes have been synthesized in situ by oxidative polymerization of aniline with ammonium persulfate as an oxidant and BC as a template. It was found that the PANI nanoparticles deposited on the surface of BC connected to form a continuous nanosheath by taking along the BC template, which greatly increases the thermal stability of BC. In addition, the acids remarkably improve the accessibility and reactivity of the hydroxyl groups of BC. The results indicate that the composites exhibit excellent electrical conductivity (the highest value was5.0×10-2S/cm) and good mechanical properties (Young's modulus was5.6GPa and tensile strength was95.7MPa). Moreover, the electrical conductivity of the membrane is sensitive to the strain. This work provides a straightforward method to prepare flexible films with high conductivity and good mechanical properties, which could be applied in sensors, flexible electrodes, and flexible displays. It also opens a new field of potential applications of BC materials.
引文
[1]M. Iguchi, S. Yamanaka, A. Budhiono, Bacterial cellulose-a masterpiece of nature's arts, Journal of Materials Science,2000,35(2):261-270.
    [2]S. Bielecki, A. Krystynowicz, M. Turkiewicz, H. Kalinowska, "Bacterial cellulose" in biopolymers, polysaccharides I:polysaccharides from prokaryotes, Wiley-VCH,2002,5:40-52.
    [3]A. J. Brown, XLⅢ.-On an acetic ferment which forms cellulose, Journal of the Chemical Society, Transactions,1886,49:432-439.
    [4]S. J. Eichhorn, A. Dufresne, M. Aranguren, N. E. Marcovich, J. R. Capadona, S. J. Rowan, C. Weder, W. Thielemans, M. Roman, S. Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. N. Nakagaito, A. Mangalam, J. Simonsen, A. S. Benight, A. Bismarck, L. A. Berglund, T. Peijs, Review:current international research into cellulose nanofibres and nanocomposites, Journal of Materials Science,2010,45(1):1-33.
    [5]W. L. Hu, S. Y. Chen, B. H. Zhou, L. T. Liu, B. Ding, H. P. Wang, Highly stable and sensitive humidity sensors based on quartz crystal microbalance coated with bacterial cellulose membrane, Sensors and Actuators B-Chemical,2011,159(1):301-306.
    [6]H. Yamamoto, F. Horii, A. Hirai, Structural studies of bacterial cellulose through the solid-phase nitration and acetylation by CP/MAS C-13 NMR spectroscopy, Cellulose,2006,13(3): 327-342.
    [7]A. Retegi, N. Gabilondo, C. Pena, R. Zuluaga, C. Castro, P. Ganan, K. de la Caba, I. Mondragon, Bacterial cellulose films with controlled microstructure-mechanical property relationships, Cellulose,2010,17(3):661-669.
    [8]V. I. Legeza, V. P. Galenko-Yaroshevskii, E. V. Zinov'ev, B. A. Paramonov, G. S. Kreichman, I. I. Turkovskii, E. S. Gumenyuk, A. G. Karnovich, A. K. Khripunov, Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease, Bulletin of Experimental Biology and Medicine,2004,138(3):311-315.
    [9]W. Czaja, A. Krystynowicz, S. Bielecki, R. M. Brown, Microbial cellulose-the natural power to heal wounds, Biomaterials,2006,27(2):145-151.
    [10]O. M. Alvarez, M. Patel, J. Booker, L. Markowitz, Effectiveness of a biocellulose wound dressing for the treatment of chronic venous leg ulcers:Results of a single center randomized study involving 24 patients, Wounds-a Compendium of Clinical Research and Practice, 2004,16(7):224-233.
    [11]D. Klemm, D. Schumann, U. Udhardt, S. Marsch, Bacterial synthesized cellulose-artificial blood vessels for microsurgery, Progress in Polymer Science,2001,26(9):1561-1603.
    [12]H. Ougiya, K. Watanabe, T. Matsumura, F. Yoshinaga, Relationship between suspension properties and fibril structure of disintegrated bacterial cellulose, Bioscience Biotechnology and Biochemistry,1998,62(9):1714-1719.
    [13]马霞,王瑞明,关凤梅,贾士儒,细菌纤维素及其在造纸工业中的应用,黑龙江造纸,2003,3:3-.4.
    [14]李飞,贾原媛,汤卫华,贾士儒,新型纳米生物材料细菌纤维素的研究现状与前景,中国造纸,2009,3:56-61.
    [15]C. Tokoh, K. Takabe, J. Sugiyama, M. Fujita, Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides, Cellulose,2002,9(1):65-74.
    [16]A. Linder, R. Bergman, A. Bodin, P. Gatenholm, Mechanism of assembly of xylan onto cellulose surfaces, Langmuir,2003,19(12):5072-5077.
    [17]S. Yamanaka, M. Ishihara, J. Sugiyama, Structural modification of bacterial cellulose, Cellulose,2000,7(3):213-225.
    [18]M. Phisalaphong, N. Jatupaiboon, Biosynthesis and characterization of bacteria cellulose-chitosan film, Carbohydrate Polymers,2008,74(3):482-488.
    [19]D. Y. Kim, Y. Nishiyama, S. Kuga, Surface acetylation of bacterial cellulose, Cellulose, 2002,9(3-4):361-367.
    [20]H. N. Cheng, S. Mital, Bacterial cellulose and its CMC derivatives, Abstracts of Papers of the American Chemical Society,1998,215:454.
    [21]Y. J. Choi, Y. H. Ahn, M. S. Kang, H. K. Jun, I. S. Kim, S. H. Moon, Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane, Journal of Chemical Technology and Biotechnology,2004,79(1):79-84.
    [22]T. Oshima, K. Kondo, K. Ohto, K. Inoue, Y. Baba, Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions, Reactive & Functional Polymers,2008,68(1):376-383.
    [23]E. E. Brown, M. P. G. Laborie, Bioengineering bacterial cellulose/poly(ethylene oxide) nanocomposites, Biomacromolecules,2008,9(12):3427-3428.
    [24]M. Seifert, S. Hesse, V. Kabrelian, D. Klemm, Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium, Journal of Polymer Science Part a-Polymer Chemistry,2004,42(3):463-470.
    [25]G. Serafica, R. Mormino, H. Bungay, Inclusion of solid particles in bacterial cellulose, Applied Microbiology and Biotechnology,2002,58(6):756-760.
    [26]Z. Y. Yan, S. Y. Chen, H. P. Wang, B. A. Wang, J. M. Jiang, Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture, Carbohydrate Polymers,2008,74(3): 659-665.
    [27]S. Yano, H. Maeda, M. Nakajima, T. Hagiwara, T. Sawaguchi, Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles, Cellulose, 2008,15(1):111-120.
    [28]A. N. Nakagaito, S. Iwamoto, H. Yano, Bacterial cellulose:the ultimate nano-scalar cellulose morphology for the production of high-strength composites, Applied Physics a-Materials Science & Processing,2005,80(1):93-97.
    [29]S. H. Yoon, H. J. Jin, M. C. Kook, Y. R. Pyun, Electrically conductive bacterial cellulose by incorporation of carbon nanotubes, Biomacromolecules,2006,7(4):1280-1284.
    [30]G. Yang, J. J. Xie, Y. X. Deng, Y. G. Bian, F. Hong, Hydrothermal synthesis of bacterial cellulose/AgNPs composite:A "green" route for antibacterial application, Carbohydrate Polymers, 2012,87(4):2482-2487.
    [31]G. Yang, J. J. Xie, F. Hong, Z. J. Cao, X. X. Yang, Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane:Effect of fermentation carbon sources of bacterial cellulose, Carbohydrate Polymers,2012,87(1):839-845.
    [32]L. C. D. Maria, A. L. C. Santos, P. C. Oliveira, H. S. Barud, Y. Messaddeq, S. J. L. Ribeiro, Synthesis and characterization of silver nanoparticles impregnated into bacterial cellulose, Materials Letters,2009,63(9-10):797-799.
    [33]S. Ifuku, M. Tsuji, M. Morimoto, H. Saimoto, H. Yano, Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers, Biomacromolecules, 2009,10(9):2714-2717.
    [34]H. S. Barud, C. Barrios, T. Regiani, R. F. C. Marques, M. Verelst, J. Dexpert-Ghys, Y. Messaddeq, S. J. L. Ribeiro, Self-supported silver nanoparticles containing bacterial cellulose membranes, Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2008,28(4):515-518.
    [35]T. J. Zhang, W. Wang, D. Y. Zhang, X. X. Zhang, Y. R. Ma, Y. L. Zhou, L. M. Qi, Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing, Advanced Functional Materials,2010,20(7):1152-1160.
    [36]J. Cai, S. Kimura, M. Wada, S. Kuga, Nanoporous cellulose as metal nanoparticles support, Biomacromolecules,2009,10(1):87-94.
    [37]J. Z. Yang, D. P. Sun, J. Li, X. J. Yang, J. W. Yu, Q. L. Hao, W. M. Liu, J. G. Liu, Z. G. Zou, J. Gu, In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance, Electrochimica Acta,2009,54(26):6300-6305.
    [38]R. J. B. Pinto, M. C. Neves, C. P. Neto, T. Trindade, Growth and chemical stability of copper nanostructures on cellulosic fibers, European Journal of Inorganic Chemistry,2012,31: 5043-5049.
    [39]P. P. Zhou, H. H. Wang, J. Z. Yang, J. Tang, D. P. Sun, W. H. Tang, Bio-supported palladium nanoparticles as a phosphine-free catalyst for the Suzuki reaction in water, Rsc Advances, 2012,2(5):1759-1761.
    [40]V. Favier, H. Chanzy, J. Y. Cavaille, Polymer nanocomposites reinforced by cellulose whiskers, Macromolecules,1995,28(18):6365-6367.
    [41]M. A. S. A. Samir, F. Alloin, A. Dufresne, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomacromolecules,2005,6(2): 612-626.
    [42]S. Montanari, M. Rountani, L. Heux, M. R. Vignon, Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation, Macromolecules,2005,38(5): 1665-1671.
    [43]W. Gindl, J. Keckes, Tensile.properties of cellulose acetate butyrate composites reinforced with bacterial cellulose, Composites Science and Technology,2004,64(15):2407-2413.
    [44]W.-I. Park, M. Kang, H.-S. Kim, H.-J. Jin, Electrospinning of poly(ethylene oxide) with bacterial cellulose whiskers, Macromolecular Symposia,2007,249-250(1):289-294.
    [45]Y. Kim, R. Jung, H. S. Kim, H. J. Jin, Transparent nanocomposites prepared by incorporating microbial nanofibrils into poly(L-lactic acid), Current Applied Physics,2009,9:69-71.
    [46]N. Petersen, P. Gatenholm, Bacterial cellulose-based materials and medical devices:current state and perspectives, Applied Microbiology and Biotechnology,2011,91(5):1277-1286.
    [47]L. E. Million, G. Guhados, W. K. Wan, Anisotropic polyvinyl alcohol-bacterial cellulose nanocomposite for biomedical applications, Journal of Biomedical Materials Research Part B-Applied Biomaterials,2008,86(2):444-452.
    [48]L. E. Millon, W. K. Wan, The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications, Journal of Biomedical Materials Research Part B-Applied Biomaterials,2006,79(2):245-253.
    [49]P. A. Charpentier, A. Maguire, W. K. Wan, Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device, Applied Surface Science,2006,252(18): 6360-6367.
    [50]K. Yasuda, J. P. Gong, Y. Katsuyama, A. Nakayama, Y. Tanabe, E. Kondo, M. Ueno, Y. Osada, Biomechanical properties of high-toughness double network hydrogels, Biomaterials,2005,26(21): 4468-4475.
    [51]M. Phisalaphong, T. Suwanmajo, P. Tammarate, Synthesis and characterization of bacterial cellulose/alginate blend membranes, Journal of Applied Polymer Science,2008,107(5): 3419-3424.
    [52]T. Maneerung, S. Tokura, R. Rujiravanit, Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing, Carbohydrate Polymers,2008,72(1):43-51.
    [53]W. L. Hu, S. Y. Chen, X. Li, S. A. K. Shi, W. Shen, X. Zhang, H. P. Wang, In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes, Materials Science & Engineering C-Biomimetic and Supramolecular Systems,2009,29(4):1216-1219.
    [54]Y. Z. Wan, L. Hong, S. R. Jia, Y. Huang, Y. Zhu, Y. L. Wang, H. J. Jiang, Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites, Composites Science and Technology,2006,66(11-12):1825-1832.
    [55]S. A. Hutchens, R. S. Benson, B. R. Evans, H. M. O'Neill, C. J. Rawn, Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel, Biomaterials,2006,27(26):4661-4670.
    [56]C. J. Grande, F. G. Torres, C. M. Gomez, M. C. Bano, Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications, Acta Biomaterialia,2009,5(5):1605-1615.
    [57]Y. Okahisa, A. Yoshida, S. Miyaguchi, H. Yano, Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays, Composites Science and Technology,2009,69(11-12):1958-1961.
    [58]S. Iwamoto, A. N. Nakagaito, H. Yano, M. Nogi, Optically transparent composites reinforced with plant fiber-based nanofibers, Applied Physics a-Materials Science & Processing,2005,81(6): 1109-1112.
    [59]H. Yano, J. Sugiyama, A. N. Nakagaito, M. Nogi, T. Matsuura, M. Hikita, K. Handa, Optically transparent composites reinforced with networks of bacterial nanofibers, Advanced Materials,2005,17(2):153.
    [60]M. Nogi, S. Ifuku, K. Abe, K. Handa, A. N. Nakagaito, H. Yano, Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites, Applied Physics Letters,2006,88,133124.
    [61]M. Nogi, H. Yano, Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry, Advanced Materials,2008,20(10):1849.
    [62]C. Legnani, C. Vilani, V. L. Calil, H. S. Barud, W. G. Quirino, C. A. Achete, S. J. L. Ribeiro, M. Cremona, Bacterial cellulose membrane as flexible substrate for organic light emitting devices, Thin Solid Films,2008,517(3):1016-1020.
    [63]Y. Kim, H. S. Kim, H. Bak, Y. S. Yun, S. Y. Cho, H. J. Jin, Transparent conducting films based on nanofibrous polymeric membranes and single-walled carbon nanotubes, Journal of Applied Polymer Science,2009,114(5):2864-2872.
    [64]R. Jung, H. S. Kim, Y. Kim, S. M. Kwon, H. S. Lee, H. J. In, Electrically conductive transparent papers using multiwalled carbon nanotubes, Journal of Polymer Science Part B-Polymer Physics,2008,46(12):1235-1242.
    [65]I. Filpponen, D. S. Argyropoulos, Determination of cellulose reactivity by using phosphitylation and quantitative P-31 NMR spectroscopy, Industrial & Engineering Chemistry Research,2008,47(22):8906-8910.
    [66]K. Stana-Kleinschek, V. Ribitsch, T. Kreze, L. Fras, Determination of the adsorption character of cellulose fibres using surface tension and surface charge, Materials Research Innovations,2002,6(1):13-18.
    [67]V. Ribitsch, K. Stana-Kleinschek, T. Kreze, S. Strnad, The significance of surface charge and structure on the accessibility of cellulose fibres, Macromolecular Materials and Engineering, 2001,286(10):648-654.
    [68]K. G. Ong, C. A. Grimes, C. L. Robbins, R. S. Singh, Design and application of a wireless, passive, resonant-circuit environmental monitoring sensor, Sensors and Actuators a-Physical, 2001,93(1):33-43.
    [69]N. Yamazoe, Y. Shimizu, Humidity sensors-principles and applications, Sensors and Actuators,1986,10(3-4):379-398.
    [70]Y. S. Zhang, K. Yu, R. L. Xu, D. S. Jiang, L. Q. Luo, Z. Q. Zhu, Quartz crystal microbalance coated with carbon nanotube films used as humidity sensor, Sensors and Actuators a-Physical, 2005,120(1):142-146.
    [71]J. M. Corres, F. J. Arregui, I. R. Matias, Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings, Sensors and Actuators B-Chemical,2007,122(2):442-449.
    [72]Z. Y. Li, H. N. Zhang, W. Zheng, W. Wang, H. M. Huang, C. Wang, A. G. MacDiarmid, Y. Wei, Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers, Journal of the American Chemical Society,2008,130(15):5036.
    [73]X. H. Wang, J. Zhang, Z. Q. Zhu, J. Z. Zhu, Humidity sensing properties of Pd2+-doped ZnO nanotetrapods, Applied Surface Science,2007,253(6):3168-3173.
    [74]M. J. Yang, Y. Li, N. Camaioni, G. Casalbore-Miceli, A. Martelli, G. Ridolfi, Polymer electrolytes as humidity sensors:progress in improving an impedance device, Sensors and Actuators B-Chemical,2002,86(2-3):229-234.
    [75]Y. H. Zhu, H. Yuan, J. Q. Xu, P. C. Xu, Q. Y. Pan, Highly stable and sensitive humidity sensors based on quartz crystal microbalance coated with hexagonal lamelliform monodisperse mesoporous silica SBA-15 thin film, Sensors and Actuators B-Chemical,2010,144(1):164-169.
    [76]C. Caliendo, E. Verona, V. I. Anisimkin, Surface acoustic wave humidity sensors:a comparison between different types of sensitive membrane, Smart Materials & Structures, 1997,6(6):707-715.
    [77]K. Korsah, C. L. Ma, B. Dress, Harmonic frequency analysis of SAW resonator chemical sensors:application to the detection of carbon dioxide and humidity, Sensors and Actuators B-Chemical,1998,50(2):110-116.
    [78]M. Penza, V. I. Anisimkin, Surface acoustic wave humidity sensor using polyvinyl-alcohol film, Sensors and Actuators a-Physical,1999,76(1-3):162-166.
    [79]X. H. Wang, Y. F. Ding, J. Zhang, Z. Q. Zhu, S. Z. You, S. Q. Chen, J. Z. Zhu, Humidity sensitive properties of ZnO nanotetrapods investigated by a quartz crystal microbalance, Sensors and Actuators B-Chemical,2006,115(1):421-427.
    [80]H. Aizawa, S. Kurosawa, M. Tozuka, J. W. Park, K. Kobayashi, Rapid detection of fibrinogen and fibrin degradation products using a smart QCM-sensor, Sensors and Actuators B-Chemical, 2004,101(1-2):150-154.
    [81]K. Henkel, A. Oprea, I. Paloumpa, G. Appel, D. Schmeisser, P. Kamieth, Selective polypyrrole electrodes for quartz microbalances:NO2 and gas flux sensitivities, Sensors and Actuators B-Chemical,2001,76(1-3):124-129.
    [82]H. Nanto, N. Dougami, T. Mukai, M. Habara, E. Kusano, A. Kinbara, T. Ogawa, T. Oyabu, A smart gas sensor using polymer-film-coated quartz resonator microbalance, Sensors and Actuators B-Chemical,2000,66(1-3):16-18.
    [83]P. Bosch, A. Fernandez, E. F. Salvador, T. Corrales, F. Catalina, C. Peinado, Polyurethane-acrylate based films as humidity sensors, Polymer,2005,46(26):12200-12209.
    [84]N. Kavasoglu, A. S. Kavasoglu, M. Bayhan, Comparative study of ZnCr2O4-K2CrO4 ceramic humidity sensor using computer controlled humidity measurement set-up, Sensors and Actuators a-Physical,2006,126(2):355-361.
    [85]S. Miglio, M. Bruzzi, M. Scaringella, D. Menichelli, E. Leandri, A. Baldi, G. Bongiorno, P. Piseri, P. Milani, Development of humidity sensors based on nanostructured carbon films, Sensors and Actuators B-Chemical,2005,111:140-144.
    [86]P. G. Su, S. C. Huang, Electrical and humidity sensing properties of carbon nanotubes-SiO2-poly (2-acrylamido-2-methylpropane sulfonate) composite material, Sensors and Actuators B-Chemical,2006,113(1):142-149.
    [87]P. G. Su, Y. L. Sun, C. C. Lin, A low humidity sensor made of quartz crystal microbalance coated with multi-walled carbon nanotubes/Nafion composite material films, Sensors and Actuators B-Chemical,2006,115(1):338-343.
    [88]Z. W. Yao, M. J. Yang, A fast response resistance-type humidity sensor based on organic silicon containing cross-linked copolymer, Sensors and Actuators B-Chemical,2006,117(1): 93-98.
    [89]Y. S. Zhang, K. Yu, O. Y. Shiki, L. Q. Luo, H. M. Hu, Q. X. Zhang, Z. Q. Zhu, Detection of humidity based on quartz crystal microbalance coated with ZnO nanostructure films, Physica B-Condensed Matter,2005,368(1-4):94-99.
    [90]H. W. Chen, R. J. Wu, K. H. Chan, Y. L. Sun, P. G. Su, The application of CNT/Nafion composite material to low humidity sensing measurement, Sensors and Actuators B-Chemical, 2005,104(1):80-84.
    [91]X. F. Wang, B. Ding, J. Y. Yu, M. R. Wang, F. K. Pan, A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance, Nanotechnology, 2010,21,055502.
    [92]X. Li, S. Y. Chen, W. L. Hu, S. K. Shi, W. Shen, X. Zhang, H. P. Wang, In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers, Carbohydrate Polymers,2009,76(4):509-512.
    [93]V. J. Frilette, J. Hanle, H. Mark, Rate of Exchange of Cellulose with Heavy Water, Journal of the American Chemical Society,1948,70(3):1107-1113.
    [94]S. P. Rowland, P. S. Howley, Microstructural order in the developing cotton fiber based on availabilities of hydroxyl groups, Journal of Polymer Science:Polymer Chemistry Edition, 1985,23(1):183-192.
    [95]K. Y. Lee, J. J. Blaker, A. Bismarck, Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties, Composites Science and Technology,2009,69(15-16):2724-2733.
    [96]C. Gousse, H. Chanzy, G. Excoffier, L. Soubeyrand, E. Fleury, Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents, Polymer,2002,43(9):2645-2651.
    [97]S. P. Rowland, C. P. Wade, Microstructural order in cotton fibers by relative availability of O(3)H:Never-dried fibers, Journal of Polymer Science:Polymer Chemistry Edition,1980,18(8): 2577-2583.
    [98]S. P. Rowland, E. J. Roberts, A. D. French, Availability and disposition of hydroxyl groups on surfaces of crystalline cellulose Ⅱ, Journal of Polymer Science:Polymer Chemistry Edition, 1974,12(2):445-454.
    [99]S. P. Rowland, E. J. Roberts, Availability of hydroxyl groups for reaction in fibrous cotton cellulose Ⅱ and hydrocelluloses Ⅱ, Journal of Polymer Science:Polymer Chemistry Edition, 1974,12(9):2099-2103.
    [100]S. P. Rowland, E. J. Roberts, The nature of accessible surfaces in the microstructure of cotton cellulose, Journal of Polymer Science Part A-1:Polymer Chemistry,1972,10(8):2447-2461.
    [101]S. P. Rowland, P. S. Howley, Hydrogen bonding on accessible surfaces of cellulose from various sources and relationship to order within crystalline regions, Journal of Polymer Science Part A:Polymer Chemistry,1988,26(7):1769-1778.
    [102]A. Sarko, R. Muggli, Packing Analysis of Carbohydrates and Polysaccharides.3. Valonia Cellulose and Cellulose-Ii, Macromolecules,1974,7(4):486-494.
    [103]K. H. Gardner, J. Blackwell, The structure of native cellulose, Biopolymers,1974,13(10): 1975-2001.
    [104]J. Haase, R. Hosemann, B. Renwanz, X-Ray Wide and Narrow Angle Studies of Cellulose, Colloid and Polymer Science,1974,252(9):712-717.
    [105]N. Morosoff, Crystallinity and Crystallite Size of Never-Dried Cotton Fibers, Bulletin of the American Physical Society,1974,19(3):311-311.
    [106]N. Morosoff, Never-Dried Cotton Fibers.3. Crystallinity and Crystallite Size, Journal of Applied Polymer Science,1974,18(6):1837-1854.
    [107]C. Verlhac, J. Dedier, H. Chanzy, Availability of Surface Hydroxyl-Groups in Valonia and Bacterial Cellulose, Journal of Polymer Science Part a-Polymer Chemistry,1990,28(5): 1171-1177.
    [108]K.-Y. Lee, F. Quero, J. Blaker, C. Hill, S. Eichhorn, A. Bismarck, Surface only modification of bacterial cellulose nanofibres with organic acids, Cellulose,2011,18(3):595-605.
    [109]J. J. Blaker, K. Y. Lee, X. X. Li, A. Menner, A. Bismarck, Renewable nanocomposite polymer foams synthesized from Pickering emulsion templates, Green Chemistry,2009,11(9): 1321-1326.
    [110]J. H. Anderson jr, K. A. Wickersheim, Near infrared characterization of water and hydroxyl groups on silica surfaces, Surface Science,1964,2(0):252-260.
    [111]J. Zhang, J. Q. Hu, F. R. Zhu, H. Gong, S. J. O'Shea, ITO thin films coated quartz crystal microbalance as gas sensor for NO detection, Sensors and Actuators B-Chemical,2002,87(1): 159-167.
    [112]B. Ding, J. H. Kim, Y. Miyazaki, S. M. Shiratori, Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection, Sensors and Actuators B-Chemical, 2004,101(3):373-380.
    [113]B. Ding, M. R. Wang, J. Y. Yu, G. Sun, Gas Sensors Based on Electrospun Nanofibers, Sensors,2009,9(3):1609-1624.
    [114]B. Ding, M. Yamazaki, S. Shiratori, Electrospun fibrous polyacrylic acid membrane-based gas sensors, Sensors and Actuators B-Chemical,2005,106(1):477-483.
    [115]X. F. Zhou, J. Zhang, T. Jiang, X. H. Wang, Z. Q. Zhu, Humidity detection by nanostructured ZnO:A wireless quartz crystal microbalance investigation, Sensors and Actuators a-Physical, 2007,135(1):209-214.
    [116]P. Furjes, A. Kovacs, C. Ducso, M. Adam, B. Muller, U. Mescheder, Porous silicon-based humidity sensor with interdigital electrodes and internal heaters, Sensors and Actuators B-Chemical,2003,95(1-3):140-144.
    [117]A. Erol, S. Okur, N. Yagmurcukardes, M. C. Arikan, Humidity-sensing properties of a ZnO nanowire film as measured with a QCM, Sensors and Actuators B-Chemical,2011,152(1): 115-120.
    [118]I. Siro, D. Plackett, Microfibrillated cellulose and new nanocomposite materials:a review, Cellulose,2010,17(3):459-494.
    [119]M. Nogi, K. Abe, K. Handa, F. Nakatsubo, S. Ifuku, H. Yano, Property enhancement of optically transparent bionanofiber composites by acetylation, Applied Physics Letters,2006,89,233123.
    [120]S. Ifuku, M. Nogi, K. Abe, K. Handa, F. Nakatsubo, H. Yano, Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: Dependence on acetyl-group DS, Biomacromolecules,2007,8(6):1973-1978.
    [121]D. L. Han, L. F. Yan, Preparation of all-cellulose composite by selective dissolving of cellulose surface in PEG/NaOH aqueous solution, Carbohydrate Polymers,2010,79(3):614-619.
    [122]D. S. Li, X. Sun, M. A. Khaleel, Materials design of all-cellulose composite using microstructure based finite element analysis, Journal of Engineering Materials and Technology-Transactions of the Asme,2012,134,010911.
    [123]W. L. E. Magalhaes, X. D. Cao, M. A. Ramires, L. A. Lucia, Novel all-cellulose composite displaying aligned cellulose nanofibers reinforced with cellulose nanocrystals, Tappi Journal, 2011,10(4):19-25.
    [124]T. Nishino, N. Arimoto, All-cellulose composite prepared by selective dissolving of fiber surface, Biomacromolecules,2007,8(9):2712-2716.
    [125]T. Nishino, I. Matsuda, K. Hirao, All-cellulose composite, Macromolecules,2004,37(20): 7683-7687.
    [126]H. Yousefi, M. Faezipour, T. Nishino, A. Shakeri, G. Ebrahimi, All-cellulose composite and nanocomposite made from partially dissolved micro-and nanofibers of canola straw, Polymer Journal,2011,43(6):559-564.
    [127]P. Fabbri, G. Champon, M. Castellano, M. N. Belgacem, A. Gandini, Reactions of cellulose and wood superficial hydroxy groups with organometallic compounds, Polymer International, 2004,53(1):7-11.
    [128]C. Gousse, H. Chanzy, M. L. Cerrada, E. Fleury, Surface silylation of cellulose microfibrils: preparation and rheological properties, Polymer,2004,45(5):1569-1575.
    [129]J. Hafren, W. B. Zou, A. Cordova, Heterogeneous 'organoclick' derivatization of polysaccharides, Macromolecular Rapid Communications,2006,27(16):1362-1366.
    [130]M. J. John, R. D. Anandjiwala, Recent developments in chemical modification and characterization of natural fiber-reinforced composites, Polymer Composites,2008,29(2): 187-207.
    [131]M. J. John, B. FranciS, K. T. Varughese, S. Thomas, Effect of chemical modification on properties of hybrid fiber biocomposites, Composites Part a-Applied Science and Manufacturing, 2008,39(2):352-363.
    [132]J. Wu, H. Zhang, J. Zhang, J. S. He, Homogeneous acetylation and regioselectivity of cellulose in a new ionic liquid, Chemical Journal of Chinese Universities-Chinese,2006,27(3): 592-594.
    [133]J. Wu, J. Zhang, H. Zhang, J. S. He, Q. Ren, M. Guo, Homogeneous acetylation of cellulose in a new ionic liquid, Biomacromolecules,2004,5(2):266-268.
    [134]N. Ahmed, J. E. van Lier, Molecular iodine in isopropenyl acetate (IPA):a highly efficient catalyst for the acetylation of alcohols, amines and phenols under solvent free conditions, Tetrahedron Letters,2006,47(30):5345-5349.
    [135]A. Biswas, G. Selling, M. Appell, K. K. Woods, J. L. Willett, C. M. Buchanan, Iodine catalyzed esterification of cellulose using reduced levels of solvent, Carbohydrate Polymers, 2007,68(3):555-560.
    [136]A. Biswas, R. L. Shogren, G. Selling, J. Salch, J. L. Willett, C. M. Buchanan, Rapid and environmentally friendly preparation of starch esters, Carbohydrate Polymers,2008,74(1): 137-141.
    [137]A. Biswas, R. L. Shogren, J. L. Willett, Solvent-free process to esterify polysaccharides, Biomacromolecules,2005,6(4):1843-1845.
    [138]P. Phukan, Iodine as an extremely powerful catalyst for the acetylation of alcohols under solvent-free conditions, Tetrahedron Letters,2004,45(24):4785-4787.
    [139]J. L. Ren, R. C. Sun, C. F. Liu, Z. N. Cao, W. Luo, Acetylation of wheat straw hemicelluloses in ionic liquid using iodine as a catalyst, Carbohydrate Polymers,2007,70(4):406-414.
    [140]M. Wu, S. Kuga, Y. Huang, Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils, Langmuir,2008,24(18):10494-10497.
    [141]I. Vlassiouk, C. D. Park, S. A. Vail, D. Gust, S. Smirnov, Control of nanopore wetting by a photochromic spiropyran:A light-controlled valve and electrical switch, Nano Letters,2006,6(5): 1013-1017.
    [142]Y. H. Sheng, J. Leszczynski, A. A. Garcia, R. Rosario, D. Gust, J. Springer, Comprehensive theoretical study of the conversion reactions of spiropyrans:Substituent and solvent effects, Journal of Physical Chemistry B,2004,108(41):16233-16243.
    [143]R. Rosario, D. Gust, M. Hayes, F. Jahnke, J. Springer, A. A. Garcia, Photon-modulated wettability changes on spiropyran-coated surfaces, Langmuir,2002,18(21):8062-8069.
    [144]R. Rosario, D. Gust, M. Hayes, J. Springer, A. A. Garcia, Solvatochromic study of the microenvironment of surface-bound spiropyrans, Langmuir,2003,19(21):8801-8806.
    [145]K. Arai, Y. Shitara, T. Ohyama, Preparation of photochromic spiropyrans linked to methyl cellulose and photoregulation of their properties, Journal of Materials Chemistry,1996,6(1): 11-14.
    [146]L. Feng, Y. J. Liu, X. D. Zhou, J. M. Hu, The fabrication and characterization of a formaldehyde odor sensor using molecularly imprinted polymers, Journal of Colloid and Interface Science,2005,284(2):378-382.
    [147]A. Mirmohseni, A. Oladegaragoze, Construction of a sensor for determination of ammonia and aliphatic amines using polyvinylpyrrolidone coated quartz crystal microbalance, Sensors and Actuators B-Chemical,2003,89(1-2):164-172.
    [148]I. Sasaki, H. Tsuchiya, M. Nishioka, M. Sadakata, T. Okubo, Gas sensing with zeolite-coated quartz crystal microbalances-principal component analysis approach, Sensors and Actuators B-Chemical,2002,86(1):26-33.
    [149]M. Vilaseca, C. Yague, J. Coronas, J. Santamaria, Development of QCM sensors modified by AIPO4-18 films, Sensors and Actuators B-Chemical,2006,117(1):143-150.
    [150]X. F. Wang, B. Ding, M. Sun, J. Y. Yu, G. Sun, Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors, Sensors and Actuators B-Chemical,2010,144(1):11-17.
    [151]J. B. Zheng, G. Li, X. F. Ma, Y. M. Wang, G. Wu, Y. N. Cheng, Polyaniline-TiO2 nano-composite-based trimethylamine QCM sensor and its thermal behavior studies, Sensors and Actuators B-Chemical,2008,133(2):374-380.
    [152]E. Samios, R. K. Dart, J. V. Dawkins, Preparation, characterization and biodegradation studies on cellulose acetates with varying degrees of substitution, Polymer,1997,38(12): 3045-3054.
    [153]S. Y. Chen, W. Shen, F. Yu, W. L. Hu, H. P. Wang, Preparation of Amidoximated Bacterial Cellulose and Its Adsorption Mechanism for Cu2+ and Pb2+, Journal of Applied Polymer Science, 2010,117(1):8-15.
    [154]R. Saliba, H. Gauthier, R. Gauthier, M. Petit-Ramel, Adsorption of copper(II) and chromium(III) ions onto amidoximated cellulose, Journal of Applied Polymer Science, 2000,75(13):1624-1631.
    [155]J. Li, L. P. Zhang, F. Peng, J. Bian, T. Q. Yuan, F. Xu, R. C. Sun, Microwave-Assisted Solvent-Free Acetylation of Cellulose with Acetic Anhydride in the Presence of Iodine as a Catalyst, Molecules,2009,14(9):3551-3566.
    [156]A. Chadlia, M. M. Farouk, Rapid Homogeneous Esterification of Cellulose Extracted from Posidonia Induced by Microwave Irradiation, Journal of Applied Polymer Science,2011,119(6): 3372-3381.
    [157]C. Satge, B. Verneuil, P. Branland, R. Granet, P. Krausz, J. Rozier, C. Petit, Rapid homogeneous esterification of cellulose induced by microwave irradiation, Carbohydrate Polymers,2002,49(3):373-376.
    [158]C. A. S. Hill, D. Jones, G. Strickland, N. S. Cetin, Kinetic and mechanistic aspects of the acetylation of wood with acetic anhydride, Holzforschung,1998,52(6):623-629.
    [159]M. O. Adebajo, R. L. Frost, Infrared and C-13 MAS nuclear magnetic resonance spectroscopic study of acetylation of cotton, Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2004,60(1-2):449-453.
    [160]G. Rodrigues, S. F. da Cruz, D. Pasquini, D. A. Cerqueira, V. D. Prado, R. M. N. de Assuncao, Water flux through cellulose triacetate films produced from heterogeneous acetylation of sugar cane bagasse, Journal of Membrane Science,2000,177(1-2):225-231.
    [161]H. S. Barud, A. M. de Araujo, D. B. Santos, R. M. N. de Assuncao, C. S. Meireles, D. A. Cerqueira, G. Rodrigues, C. A. Ribeiro, Y. Messaddeq, S. J. L. Ribeiro, Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose, Thermochimica Acta,2008,471(1-2):61-69.
    [162]J. F. Sassi, P. Tekely, H. Chanzy, Relative susceptibility of the I-alpha and I-beta phases of cellulose towards acetylation, Cellulose,2000,7(2):119-132.
    [163]M. J. Antal, G. Varhegyi, Cellulose Pyrolysis Kinetics-the Current State Knowledge, Industrial & Engineering Chemistry Research,1995,34(3):703-717.
    [164]Z. P. Yang, S. W. Xu, X. L. Ma, S. Y. Wang, Characterization and acetylation behavior of bamboo pulp, Wood Science and Technology,2008,42(8):621-632.
    [165]R. H. Atalla, J. C. Gast, D. W. Sindorf, V. J. Bartuska, G. E. Maciel, C-13 Nmr-Spectra of Cellulose Polymorphs, Journal of the American Chemical Society,1980,102(9):3249-3251.
    [166]D. L. VanderHart, J. A. Hyatt, R. H. Atalla, V. C. Tirumalai, Solid-state C-13 NMR and Raman studies of cellulose triacetate:Oligomers, polymorphism, and inferences about chain polarity, Macromoleeules,1996,29(2):730-739.
    [167]J. Y. Huang, X. Q. Li, Q. P. Guo, Interpolymer complexes and miscible blends of poly(p-vinyl phenol) and poly(ethylene imine), European Polymer Journal,1997,33(5):659-665.
    [168]Y. Dimitrova, Solvent effects on vibrational spectra of hydrogen-bonded complexes of formaldehyde and water:An ab initio study, Journal of Molecular Structure-Theochem, 1997,391(3):251-257.
    [169]Y. Dimitrova, L. I. Daskalova, Solvent effects on vibrational spectra of hydrogen-bonded complexes of propanedinitrile (malononitrile) and dimethyl sulfoxide (DMSO):Ab initio and DFT studies, Journal of Molecular Structure-Theochem,2007,823(1-3):65-73.
    [170]E. S. Tillman, M. E. Koscho, R. H. Grubbs, N. S. Lewis, Enhanced sensitivity to and classification of volatile carboxylic acids using arrays of linear poly(ethylenimine)-carbon black composite vapor detectors, Analytical Chemistry,2003,75(7):1748-1753.
    [171]W. Hu, S. Chen, X. Li, S. Shi, W. Shen, X. Zhang, H. Wang, In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes, Materials Science & Engineering C-Biomimetic and Supramolecular Systems,2009,29(4):1216-1219.
    [172]X. Li, S. Chen, W. Hu, S. Shi, W. Shen, X. Zhang, H. Wang, In situ synthesis of CdS nanoparticles on bacterial cellulose nanofibers, Carbohydrate Polymers,2009,76(4):509-512.
    [173]D. Y. Zhang, L. M. Qi, Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes, Chemical Communications,2005,21:2735-2737.
    [174]X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos, S. Weiss, Properties of fluorescent semiconductor nanocrystals and their application to biological labeling, Single Molecules,2001,2(4):261-276.
    [175]S. J. Rosenthal, J. McBride, S. J. Pennycook, L. C. Feldman, Synthesis, surface studies, composition and structural characterization of CdSe, core/shell and biologically active nanocrystals, Surface Science Reports,2007,62(4):111-157.
    [176]Z. Bin Shang, Y. Wang, W. J. Jin, Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (Ⅱ) and iodide in aqueous solution, Talanta, 2009,78(2):364-369.
    [177]J. Chen, D. W. Zhao, J. L. Song, X. W. Sun, W. Q. Deng, X. W. Liu, W. Lei, Directly assembled CdSe quantum dots on TiO2 in aqueous solution by adjusting pH value for quantum dot sensitized solar cells, Electrochemistry Communications,2009,11(12):2265-2267.
    [178]1. Gerdova, A. Hache, Third-order non-linear spectroscopy of CdSe and CdSe/ZnS core shell quantum dots, Optics Communications,2005,246(1-3):205-212.
    [179]C. Y. Chang, J. Peng, L. N. Zhang, D. W. Pang, Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices, Journal of Materials Chemistry,2009,19(41):7771-7776.
    [180]A. A. Qaiser, M. M. Hyland, D. A. Patterson, Control of polyaniline deposition on microporous cellulose ester membranes by in situ chemical polymerization, Journal of Physical Chemistry B,2009,113(45):14986-14993.
    [181]M. Amrithesh, S. Aravind, S. Jayalekshmi, R. S. Jayasree, Enhanced luminescence observed in polyaniline-polymethylmethacrylate composites, Journal of Alloys and Compounds, 2008,449(1-2):176-179.
    [182]H. Bai, Q. Chen, C. Li, C. Lu, G. Shi, Electrosynthesis of polypyrrole/sulfonated polyaniline composite films and their applications for ammonia gas sensing, Polymer,2007,48(14): 4015-4020.
    [183]N. K. Guimard, N. Gomez, C. E. Schmidt, Conducting polymers in biomedical engineering, Progress in Polymer Science (Oxford),2007,32(8-9):876-921.
    [184]S. F. Hong, S. C. Hwang, L. C. Chen, Deposition-order-dependent polyelectrochromic and redox behaviors of the polyaniline-prussian blue bilayer, Electrochimica Acta,2008,53(21): 6215-6227.
    [185]U. Lange, N. V. Roznyatovskaya, V. M. Mirsky, Conducting polymers in chemical sensors and arrays, Analytica Chimica Acta,2008,614(1):1-26.
    [186]N. Prabhakar, K. Arora, H. Singh, B. D. Malhotra, Polyaniline based nucleic acid sensor, Journal of Physical Chemistry B,2008,112(15):4808-4816.
    [187]W. L. Hu, S. Y. Chen, B. H. Zhou, H. P. Wang, Facile synthesis of ZnO nanoparticles based on bacterial cellulose, Materials Science and Engineering B-Advanced Functional Solid-State Materials,2010,170(1-3):88-92.
    [188]R. Martinez-Manez, F. Sancenon, Chemodosimeters and 3D inorganic functionalised hosts for the fiuoro-chromogenic sensing of anions, Coordination Chemistry Reviews,2006,250(23-24): 3081-3093.
    [189]H. Jiang, H. X. Ju, Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system, Analytical Chemistry, 2007,79(17):6690-6696.
    [190]C. Tokoh, K. Takabe, M. Fujita, H. Saiki, Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan, Cellulose,1998,5(4):249-261.
    [191]Y. L. Wang, J. P. Lu, Z. F. Tong, Rapid synthesis of CdSe nanocrystals in aqueous solution at room temperature, Bulletin of Materials Science,2010,33(5):543-546.
    [192]H. S. Mansur, A. A. P. Mansur, CdSe quantum dots stabilized by carboxylic-functionalized PVA:Synthesis and UV-vis spectroscopy characterization, Materials Chemistry and Physics, 2011,125(3):709-717.
    [193]X. D. Ma, X. F. Qian, J. Yin, H. A. Xi, Z. K. Zhu, Preparation and characterization of polyvinyl alcohol-capped CdSe nanoparticles at room temperature, Journal of Colloid and Interface Science,2002,252(1):77-81.
    [194]Z.1. Mo, Z.1. Zhao, H. Chen, G. p. Niu, H. f. Shi, Heterogeneous preparation of cellulose-polyaniline conductive composites with cellulose activated by acids and its electrical properties, Carbohydrate Polymers,2009,75(4):660-664.
    [195]A. Mihranyan, L. Nyholm, A. E. Garcia Bennett, M. Stramme, A novel high specific surface area conducting paper material composed of polypyrrole and Cladophora cellulose, Journal of Physical Chemistry B,2008,112(39):12249-12255.
    [196]G. Nystrom, A. Mihranyan, A. Razaq, T. Lindstrom, L. Nyholm, M. Str(?)mme, A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood, Journal of Physical Chemistry B,2010,114(12):4178-4182.
    [197]J. Stejskal, M. Trchova, I. Sapurina, Flame-retardant effect of polyaniline coating deposited on cellulose fibers, Journal of Applied Polymer Science,2005,98(6):2347-2354.
    [198]L. H. C. Mattoso, E. S. Medeiros, D. A. Baker, J. Avloni, D. F. Wood, W. J. Orts, Electrically conductive nanocomposites made from cellulose nanofibrils and polyaniline, Journal of Nanoscience and Nanotechnology,2009,9(5):2917-2922.
    [199]A. H. Gemeay, I. A. Mansour, R. G. El-Sharkawy, A. B. Zaki, Preparation and characterization of polyaniline/manganese dioxide composites via oxidative polymerization:Effect of acids. European Polymer Journal,2005,41:2575-2583.
    [200]H. Goto, Electrically conducting paper from a polyaniline/pulp composite and paper folding art work for a 3D object, Textile Research Journal,2011,81(2):122-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700