细胞活性小分子实时分析遗传编码传感器的设计及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胞内小分子代谢物在调控以及识别细胞各种生命活动中起到至关重要的作用。在过去的二十年里,研究者们通过不懈的努力提升遗传编码传感器的性能以达到有效监测细胞内小分子的目的。目前已经成功开发出大部分细胞内代谢相关信号的传感器,包括ATP, cAMP, cGMP, NADH, ROS,糖类,CO, NO等。当前,内源性遗传编码传感器已经成为单细胞内分子检测强有力的工具,它们具有实时监测,活细胞监测,高通量分析,高时空分辨率,对细胞本身的活动影响小等优势。本文的主要研究内容如下:
     (1)α-酮戊二酸(2OG)是表征细胞内碳氮营养状态的重要信号分子。α-酮戊二酸作为三羧酸循环中一个高度保守的代谢物,不仅在代谢过程中起到关键作用,同时也是多种生物体内的信号分子。追踪α-酮戊二酸对相关的细胞代谢和信号传导研究有重要意义。我们针对具有重要生理活性的α-酮戊二酸的原位分析,构建遗传编码荧光传感器,开展细胞内活性小分子原位分析及生物成像新方法研究。我们采用α-酮戊二酸特异性结合多肽(棕色固氮菌NifA蛋白的GAF结构域)作为敏感元件设计可用于实时动态监测细胞内α-酮戊二酸的荧光蛋白分子传感器。基于荧光共振能量转移的传感器能够响应α-酮戊二酸,动力学范围为100μM到10mM,符合活细胞体内的α-酮戊二酸浓度范围,可用于体内检测。通过结构域优化,得到了最大荧光比值为0.95的传感器,同未经优化的传感器比较信号提高了6倍。我们尝试将优化后的传感器表达到大肠杆菌中进行体内α-酮戊二酸代谢的研究,验证了该传感器在体外以及体内对α-酮戊二酸进行实时监测的可行性。
     (2)最新的研究表明,α-酮戊二酸不仅是三羧酸循环的重要代谢物,在癌细胞异常代谢,脑神经信号传导中也起到重要的作用。我们尝试基于黄色荧光蛋白YFP的传感器设计研究,进行了大量经验式的优化工作,并且借助生物信息学的方法对实验设计进行有指导性的摸索,得到的单荧光传感器也能很好的响应2OG,该传感器被应用于大肠杆菌细胞对不同营养环境响应的研究。
     (3)群体感应(简称QS)是存在于不同种细菌之间的普遍现象,它是指细菌通过生产和调节信号分子的方式来调节基因的表达以及种群密度的现象。QS调节系统在很多生物学功能中起到了重要的作用,例如生物发光,抗生素生产以及生物被膜的生成。信号分子3OC6HSL是自诱导分子酰基高斯氨酸内酯(AHL)的一种,它是海洋费氏弧菌的QS系统的调控分子。追踪监测3OC6HSL在QS系统的相关研究中有重要意义。我们采用海洋费氏弧菌QS系统的调控蛋白LuxR来设计针对3OC6HSL检测的传感器。并且验证该传感器在体外以及体内运行的可行性。
Intracellular metabolites play a crucial role in characterizing and regulating corresponding cellular activities. Tracking intracellular metabolites in real time by traditional means was difficult until the powerful toolkit genetically encoded biosensor was developed. In the last decades, iterative improvements of these biosensors have been made for effectively monitoring metabolites such as ATP, cAMP, cGMP, NADH, ROS, sugar, carbon monoxide, nitric oxide and so on. Endogenous genetically encoded biosensors have become powerful tools in intracellular metabolites detection in single living cells, based no the adventages such as real-time monitor, live cells analysis, high-throughput analysis, high temporal-spatial resolution, minimum interfere to cell activity.
     2-Oxoglutarate (2OG) is a metabolite from the highly conserved Krebs cycle and not only plays a critical role in metabolism but also acts as a signaling molecule in a variety of organisms. Environmental inorganic nitrogen is reduced to ammonium by microorganisms, whose metabolic pathways involve the conversion of2OG to glutamate and glutamine. Tracking of2OG in real-time would be useful for studies on cell metabolism and signal transduction. Here, we developed a genetically encoded2OG biosensor based on fluorescent resonance energy transfer. The dynamic range of the sensors is100uM to10mM, appeared identical to the physiological range observed in E. coli. We optimized the peptide lengths of the binding domain to obtain a sensor with a maximal ratio change of0.95upon2OG binding and demonstrated the feasibility of this sensor for the visualization of metabolites both in vitro and in vivo. We also developed a novel sensor by inserting the functional2OG-binding domain GAF of the NifA protein into YFP. This sensor was found to be highly specific to2OG Following binding of2OG, fluorescence intensity of the sensor increased with increasing2OG concentration and reached a1.5-fold maximum fluorescence signal change, kinetics of fluorescence signal upon2OG association with sensor was fast, the dynamic response range of the mOGsor sensors was100uM-100mM. This sensor reported cellular2OG dynamics in E. coli cells in real time upon different nutrition challenges and manifested the differences in2OG pool accumulation and depletion velocity.
     Quorum sensing (QS) is a universal phenomenon that exists in various bacterial species and produces and monitors signaling molecules to regulate specific sets of genes in a population density-dependent manner. The QS system is involved in many important biological functions such as luminescence, antibiotic production, and biofilm formation. The autoinducer N-(3-oxo-hexanoyl)-L-homoserine lactone (3OC6HSL), an N-acylhomoserine lactone (AHL), plays a significant role in the QS system of the marine bacterium Vibrio fischeri. Tracing3OC6HSL would be significant in studies related to QS signal transduction. Traditional detection of QS signaling molecules has relied primarily on bacterial reporter strains and high-performance liquid chromatography, which are time consuming and have low sensitivity. Because3OC6HSL binding to LuxR from V. fischeri causes a conformational change, we developed a genetically encoded biosensor based on Forster resonance energy transfer (FRET) by inserting LuxR between the FRET pair YFP/CFP and demonstrated the feasibility of this sensor for visualizing3OC6HSL both in vitro and in vivo.
引文
[1]Z. Wang, M. Gerstein and M. Snyder. RNA-Seq:A Revolutionary Tool for Transcriptomics. Nat Rev Genet.2009,10 (1):57-63
    [2]S. Lalonde, A. Sero, R. Pratelli, et al. A Membrane Protein/Signaling Protein Interaction Network for Arabidopsis Version AMPv2. Front Physiol.2010,1:24
    [3]M Dreze, D Byrdsong, M Duarte, et al. Evidence for Network Evolution in an Arabidopsis Interactome Map. Science.2011,333 (6042):601-607
    [4]X. Shu, V. Lev-Ram, T. J. Deerinck, et al. A Genetically Encoded Tag for Correlated Light and Electron Microscopy of Intact Cells, Tissues, and Organisms. PLoS Biol.2011,9 (4): e1001041
    [5]R. Gutierrez, G. Grossmann, W. B. Frommer, et al. Opportunities to Explore Plant Membrane Organization with Super-Resolution Microscopy. Plant Physiol.2010,154 (2): 463-466
    [6]P. Giavalisco, J. Hummel, J. Lisec, et al. High-Resolution Direct Infusion-Based Mass Spectrometry in Combination with Whole 13C Metabolome Isotope Labeling Allows Unambiguous Assignment of Chemical Sum Formulas. Anal Chem.2008,80 (24):9417-9425
    [7]P. Giavalisco, K. Kohl, J. Hummel, et al.13C Isotope-Labeled Metabolomes Allowing for Improved Compound Annotation and Relative Quantification in Liquid Chromatography-Mass Spectrometry-Based Metabolomic Research. Anal Chem.2009,81 (15):6546-6551
    [8]M. McCulloch, T. Jezierski, M. Broffman, et al. Diagnostic Accuracy of Canine Scent Detection in Early-and Late-Stage Lung and Breast Cancers. Integr Cancer Ther.2006, 5 (1):30-39
    [9]M. A. Moreno-Risueno and P. N. Benfey. Time-Based Patterning in Development:The Role of Oscillating Gene Expression. Transcription.2011,2 (3):124-129
    [10]A. Mustroph, M. E. Zanetti, C. J. Jang, et al. Profiling Translatomes of Discrete Cell Populations Resolves Altered Cellular Priorities During Hypoxia in Arabidopsis. Proc Natl Acad Sci U S A.2009,106 (44):18843-18848
    [11]T. Jin and D. Hereld. Moving toward Understanding Eukaryotic Chemotaxis. Eur J Cell Biol.2006,85 (9-10):905-913
    [12]S. A. Hires, Y. Zhu and R. Y. Tsien. Optical Measurement of Synaptic Glutamate Spillover and Reuptake by Linker Optimized Glutamate-Sensitive Fluorescent Reporters. Proc Natl Acad Sci U S A.2008,105 (11):4411-4416
    [13]S. Okumoto, L. L. Looger, K. D. Micheva, et al. Detection of Glutamate Release from Neurons by Genetically Encoded Surface-Displayed FRET Nanosensors. Proc Natl Acad Sci USA.2005,102 (24):8740-8745
    [14]R. Y. Tsien. Constructing and Exploiting the Fluorescent Protein Paintbox (Nobel Lecture). Angew Chem Int Ed Engl.2009,48 (31):5612-5626
    [15]S. Okumoto, A. Jones and W. B. Frommer. Quantitative Imaging with Fluorescent Biosensors. Annu Rev Plant Biol.2012,63663-706
    [16]C. Depry, S. Mehta and J. Zhang. Multiplexed Visualization of Dynamic Signaling Networks Using Genetically Encoded Fluorescent Protein-Based Biosensors. Pflugers Arch.2013,465 (3):373-381
    [17]Y Y. J. Shyu, C. D. Suarez and C. D. Hu. Visualization of AP-1 NF-KappaB Ternary Complexes in Living Cells by Using a BiFC-Based FRET. Proc Natl Acad Sci U S A. 2008,105 (1):151-156
    [18]S. Verbrugge, Z. Lansky and E. J. Peterman. Kinesin's Step Dissected with Single-Motor FRET. Proc Natl Acad Sci U S A.2009,106 (42):17741-17746
    [19]E. A. Souslova, V. V. Belousov, J. G Lock, et al. Single Fluorescent Protein-Based Ca2+ Sensors with Increased Dynamic Range. BMC Biotechnol.2007,7:37
    [20]H. Hoi, T. Matsuda, T. Nagai, et al. Highlightable Ca2+Indicators for Live Cell Imaging. J Am Chem Soc.2013,135 (1):46-49
    [21]M. Krebs, K. Held, A. Binder, et al. FRET-Based Genetically Encoded Sensors Allow High-Resolution Live Cell Imaging of Ca2+ Dynamics. Plant J.2012,69 (1):181-192
    [22]T. Nagai, S. Yamada, T. Tominaga, et al. Expanded Dynamic Range of Fluorescent Indicators for Ca2+by Circularly Permuted Yellow Fluorescent Proteins. Proc Natl Acad Sci U S A.2004,101 (29):10554-10559
    [23]R. Y. Tsien. The Green Fluorescent Protein. Annu Rev Biochem.1998, (67):509-544
    [24]H. Morise, O. Shimomura, F. H. Johnson, et al. Intermolecular Energy Transfer in the Bioluminescent System ofAequorea. Biochem.1974,13 (12):2656-2662
    [25]J. G Morin and J. W. Hastings. Energy Transfer in a Bioluminescent System. J Cell Physiol.1971,77 (3):313-318
    [26]M. Ormo, A. B. Cubitt, K. Kallio, et al. Crystal Structure of the Aequorea Victoria Green Fluorescent Protein. Science.1996,273 (5280):1392-1395
    [27]F. Yang, L. G Moss and G. N. Phillips, Jr. The Molecular Structure of Green Fluorescent Protein. Nat Biotechnol.1996,14(10):1246-1251
    [28]Y. Wang, J. Y. Shyy and S. Chien. Fluorescence Proteins, Live-Cell Imaging, and Mechanobiology:Seeing Is Believing. Annu Rev Biomed Eng.2008,10:1-38
    [29]G N. Phillips Jr. Structure and Dynamics of Green Fluorescent Protein. Curr Opin Struc Biol.1997,7 (6):821-827
    [30]M. Zimmer. Green Fluorescent Protein (GFP):Applications, Structure, and Related Photophysical Behavior. Chem Rev.2002,102 (3):759-781
    [31]D. C. Youvan and M. E. Michel-Beyerle. Structure and Fluorescence Mechanism of GFP. Nat Biotechnol.1996,14 (10):1219-1220
    [32]R. Heim, A. B. Cubitt and R. Y. Tsien. Improved Green Fluorescence. Nature.1995,373 (6516):663-664
    [33]B. P. Cormack, R. H. Valdivia and S. Falkow. FACS-Optimized Mutants of the Green Fluorescent Protein (GFP). Gene.1996,173 (1):33-38
    [34]G J. Palm, A. Zdanov, G A. Gaitanaris, et al. The Structural Basis for Spectral Variations in Green Fluorescent Protein. Nat Struct Mol Biol.1997,4 (5):361-365
    [35]T. Ehrig, D. J. O'Kane and F. G Prendergast. Green-Fluorescent Protein Mutants with Altered Fluorescence Excitation Spectra. FEBS letters.1995,367 (2):163-166
    [36]R. Heim, D. C. Prasher and R. Y. Tsien. Wavelength Mutations and Posttranslational Autoxidation of Green Fluorescent Protein. Proc Natl Acad Sci U S A.1994,91 (26): 12501-12504
    [37]N. C. Shaner, P. A. Steinbach and R. Y. Tsien. A Guide to Choosing Fluorescent Proteins. Nat Meth.2005,2 (12):905-909
    [38]T. Nagai, K. Ibata, E. S. Park, et al. A Variant of Yellow Fluorescent Protein with Fast and Efficient Maturation for Cell-Biological Applications. Nat Biotech.2002,20 (1):87-90
    [39]K. Brejc, T. K. Sixma, P. A. Kitts, et al. Structural Basis for Dual Excitation and Photoisomerization of the Aequorea Victoria Green Fluorescent Protein. Proc Natl Acad Sci U S A.1997,94 (6):2306-2311
    [40]R. Heim and R. Y. Tsien. Engineering Green Fluorescent Protein for Improved Brightness, Longer Wavelengths and Fluorescence Resonance Energy Transfer. Curr Biol.1996,6 (2):178-182
    [41]D. A. Zacharias, J. D. Violin, A. C. Newton, et al. Partitioning of Lipid-Modified Monomeric GFPs into Membrane Microdomains of Live Cells. Science.2002,296 (5569):913-916
    [42]M. A. Rizzo, G H. Springer, B. Granada, et al. An Improved Cyan Fluorescent Protein Variant Useful for FRET. Nat Biotech.2004,22 (4):445-449
    [43]A. W. Nguyen and P. S. Daugherty. Evolutionary Optimization of Fluorescent Proteins for Intracellular FRET. Nat Biotech.2005,23 (3):355-360
    [44]S. Karasawa, T. Araki, M. Yamamoto-Hino, et al. A Green-Emitting Fluorescent Protein from Galaxeidae Coral and Its Monomeric Version for Use in Fluorescent Labeling. J Biol Chem.2003,278 (36):34167-34171
    [45]M. V. Matz, A. F. Fradkov, Y. A. Labas, et al. Fluorescent Proteins from Nonbioluminescent Anthozoa Species. Nat Biotech.1999,17(10):969-973
    [46]D. A. Shagin, E. V. Barsova, Y. G. Yanushevich, et al. GFP-Like Proteins as Ubiquitous Metazoan Superfamily:Evolution of Functional Features and Structural Complexity. Mol Biol and Evol.2004,21 (5):841-850
    [47]H. W. Ai, J. N. Henderson, S. J. Remington, et al. Directed Evolution of a Monomeric, Bright and Photostable Version of Clavularia Cyan Fluorescent Protein:Structural Characterization and Applications in Fluorescence Imaging. Biochem J.2006,400 (3): 531-540
    [48]T.-T. Yang, P. Sinai, G. Green, et al. Improved Fluorescence and Dual Color Detection with Enhanced Blue and Green Variants of the Green Fluorescent Protein. J Biol Chem. 1998,273 (14):8212-8216
    [49]M. A. Mena, T. P. Treynor, S. L. Mayo, et al. Blue Fluorescent Proteins with Enhanced Brightness and Photostability from a Structurally Targeted Library. Nat Biotech.2006, 24(12):1569-1571
    [50]J.-D. Pedelacq, S. Cabantous, T. Tran, et al. Engineering and Characterization of a Superfolder Green Fluorescent Protein. Nat Biotech.2006,24 (1):79-88
    [51]H.-w. Ai, N. C. Shaner, Z. Cheng, et al. Exploration of New Chromophore Structures Leads to the Identification of Improved Blue Fluorescent Proteins. Biochem.2007,46 (20):5904-5910
    [52]D. P. Goldenberg and T. E. Creighton. Circular and Circularly Permuted Forms of Bovine Pancreatic Trypsin Inhibitor. J Mol Biol.1983,165 (2):407-413
    [53]D. J. Bowles and D. J. Pappin. Traffic and Assembly of Concanavalin A. Trends Biochem Sci.1988,13 (2):60-64
    [54]P. T. Beernink, Y. R. Yang, R. Graf, et al. Random Circular Permutation Leading to Chain Disruption within and near A Helices in the Catalytic Chains of Aspartate Transcarbamoylase:Effects on Assembly, Stability, and Function. Protein Sci.2001,10 (3):528-537
    [55]D. M. Carrington, A. Auffret and D. E. Hanke. Polypeptide Ligation Occurs During Post- Translational Modification of Concanavalin A. Nature.1985,313 (5997):64-67
    [56]G. S. Baird, D. A. Zacharias and R. Y. Tsien. Circular Permutation and Receptor Insertion within Green Fluorescent Proteins. Proc Natl Acad Sci U S A.1999,96 (20): 11241-11246
    [57]Q. Kaas and D. J. Craik. Analysis and Classification of Circular Proteins in Cybase. Pept Sci.2010,94 (5):584-591
    [58]A. Prlic, S. Bliven, P. W. Rose, et al. Pre-Calculated Protein Structure Alignments at the RCSBPDB Website. Bioinformatics.2010,26 (23):2983-2985
    [59]L. Wang, L.-Y. Wu, Y. Wang, et al. SANA; An Algorithm for Sequential and Non-Sequential Protein Structure Alignment. Amino Acids.2010,39 (2):417-425
    [60]J. G. Miranda, A. L. Weaver, Y. Qin, et al. New Alternately Colored FRET Sensors for Simultaneous Monitoring of Zn2+ in Multiple Cellular Locations. PLoS One.2012,7 (11): e49371
    [61]P. S. Salonikidis, M. Niebert, T. Ullrich, et al. An Ion-Insensitive cAMP Biosensor for Long Term Quantitative Ratiometric Fluorescence Resonance Energy Transfer (FRET) Measurements under Variable Physiological Conditions. J Biol Chem.2011,286 (26): 23419-23431
    [62]E. M. van Dongen, L. M. Dekkers, K. Spijker, et al. Ratiometric Fluorescent Sensor Proteins with Subnanomolar Affinity for Zn(II) Based on Copper Chaperone Domains. J Am Chem Soc.2006,128 (33):10754-10762
    [63]M. X. Mori, Y. Imai, K. Itsuki, et al. Quantitative Measurement of Ca2+-Dependent Calmodulin-Target Binding by Fura-2 and CFP and YFP FRET Imaging in Living Cells. Biochem.2011,50 (21):4685-4696
    [64]V. L. Kolossov, B. Q. Spring, A. Sokolowski, et al. Engineering Redox-Sensitive Linkers for Genetically Encoded FRET-Based Biosensors. Exp Biol Med.2008,233 (2):238-248
    [65]S. A. John, M. Ottolia, J. N. Weiss, et al. Dynamic Modulation of Intracellular Glucose Imaged in Single Cells Using a FRET-Based Glucose Nanosensor. Pflugers Arch.2008, 456 (2):307-322
    [66]R. M. de Lorimier, J. J. Smith, M. A. Dwyer, et al. Construction of a Fluorescent Biosensor Family. Protein Sci.2002,11 (11):2655-2675
    [67]A, Piljic, I. de Diego, M. Wilmanns, et al. Rapid Development of Genetically Encoded FRET Reporters. ACS Chem Biol.2011,6 (7):685-691
    [68]K. Deuschle, S. Okumoto, M. Fehr, et al. Construction and Optimization of a Family of Genetically Encoded Metabolite Sensors by Semirational Protein Engineering. Protein Sci.2005,14 (9):2304-2314
    [69]C. Zhang, Z. H. Wei and B. C. Ye. Imaging and Tracing of Intracellular Metabolites Utilizing Genetically Encoded Fluorescent Biosensors. Biotechnol J.2013,8 (11):1280-1291
    [70]L. Achour, M. Kamal, R. Jockers, et al. Using Quantitative BRET to Assess G Protein-Coupled Receptor Homo-and Heterodimerization. Methods Mol Biol.2011,756:183-200
    [71]M. Kocan and K. D. Pfleger. Study of GPCR-Protein Interactions by BRET. Methods Mol Biol.2011,746:357-371
    [72]R. H. Newman, M. D. Fosbrink and J. Zhang. Genetically Encodable Fluorescent Biosensors for Tracking Signaling Dynamics in Living Cells. Chem Rev.2011,111 (5): 3614-3666
    [73]A. Dragulescu-Andrasi, C. T. Chan, A. De, et al. Bioluminescence Resonance Energy Transfer (BRET) Imaging of Protein-Protein Interactions within Deep Tissues of Living Subjects. Proc Natl Acad Sci U S A.2011,108 (29):12060-12065
    [74]B. F. Binkowski, B. L. Butler, P. F. Stecha, et al. A Luminescent Biosensor with Increased Dynamic Range for Intracellular cAMP. ACS Chem Biol.2011,6 (11):1193-1197
    [75]B. Simen Zhao, Y. Liang, Y. Song, et al. A Highly Selective Fluorescent Probe for Visualization of Organic Hydroperoxides in Living Cells. J Am Chem Soc.2010,132 (48),17065-17067
    [76]J. Wang, J. Karpus, B. S. Zhao, et al. A Selective Fluorescent Probe for Carbon Monoxide Imaging in Living Cells. Angew Chem Int Ed Engl.2012,51(38):9652-9656.
    [77]S. Liu, J. He, H. Jin, et al. Enhanced Dynamic Range in a Genetically Encoded Ca2+ Sensor. Biochem Biophys Res Commun.2011,412 (1):155-159
    [78]H. J. Carlson, D. W. Cotton and R. E. Campbell. Circularly Permuted Monomeric Red Fluorescent Proteins with New Termini in the Beta-Sheet. Protein Sci.2010,19 (8): 1490-1499
    [79]B. Shui, Q. Wang, F. Lee, et al. Circular Permutation of Red Fluorescent Proteins. PLoS One.2011,6(5):e20505
    [80]T. J. Magliery, C. G Wilson, W. Pan, et al. Detecting Protein-Protein Interactions with a Green Fluorescent Protein Fragment Reassembly Trap:Scope and Mechanism. J Am Chem Soc.2005,127 (1):146-157
    [81]N. Ohad and S. Yalovsky. Utilizing Bimolecular Fluorescence Complementation (BiFC) to Assay Protein-Protein Interaction in Plants. Methods Mol Biol.2010,655:347-358
    [82]G. Tian, Q. Lu, L. Zhang, et al. Detection of Protein Interactions in Plant Using a Gateway Compatible Bimolecular Fluorescence Complementation (BiFC) System. J Vis Exp.2011 (55):3473
    [83]Y. J. Shyu, C. D. Suarez and C. D. Hu. Visualization of Ternary Complexes in Living Cells by Using a BiFC-Based FRET Assay. Nat Protoc.2008,3 (11):1693-1702
    [84]Y. Kodama and C. D. Hu. Bimolecular Fluorescence Complementation (BiFC) Analysis of Protein-Protein Interaction:How to Calculate Signal-to-Noise Ratio. Methods Cell Biol.2013,113 107-121
    [85]M. Fehr, W. B. Frommer and S. Lalonde. Visualization of Maltose Uptake in Living Yeast Cells by Fluorescent Nanosensors. Proc Natl Acad Sci U S A.2002,99 (15):9846-9851
    [86]S. Okumoto, H. Takanaga and W. B. Frommer. Quantitative Imaging for Discovery and Assembly of the Metabo-Regulome. New Phytol.2008,180 (2):271-295
    [87]I. Lager, L. L. Looger, M. Hilpert, et al. Conversion of a Putative Agrobacterium Sugar-Binding Protein into a FRET Sensor with High Selectivity for Sucrose. J Biol Chem. 2006,281 (41):30875-30883
    [88]L. L. Looger, M. A. Dwyer, J. J. Smith, et al. Computational Design of Receptor and Sensor Proteins with Novel Functions. Nature.2003,423 (6936):185-190
    [89]E. M. W. M. van Dongen, T. H. Evers, L. M. Dekkers, et al. Variation of Linker Length in Ratiometric Fluorescent Sensor Proteins Allows Rational Tuning of Zn(II) Affinity in the Picomolar to Femtomolar Range. J. Am. Chem. Soc.2007,129 (12):3494-3495
    [90]T. Nagai, A. Sawano, E. S. Park, et al. Circularly Permuted Green Fluorescent Proteins Engineered to Sense Ca2+. Proc Natl Acad Sci U S A.2001,98 (6):3197-3202
    [91]T. Mizuno, K. Murao, Y. Tanabe, et al. Metal-Ion-Dependent GFP Emission in Vivo by Combining a Circularly Permutated Green Fluorescent Protein with an Engineered Metal-Ion-Binding Coiled-Coil. J. Am. Chem. Soc.2007,129 (37):11378-11383
    [92]Y. Ohashi, W. Shi, N. Takatani, et al. Regulation of Nitrate Assimilation in Cyanobacteria. J Exp Bot.2011,62 (4):1411-1424
    [93]J. Akerboom, J. D. V. Rivera, M. M. R. Guilbe, et al. Crystal Structures of the GCaMP Calcium Sensor Reveal the Mechanism of Fluorescence Signal Change and Aid Rational Design. J Biol Chem.2009,284 (10):6455-6464
    [94]F. Del Bene, C. Wyart, E. Robles, et al. Filtering of Visual Information in the Tectum by an Identified Neural Circuit. Science.2010,330 (6004):669-673
    [95]D. A. Dombeck, C. D. Harvey, L. Tian, et al. Functional Imaging of Hippocampal Place Cells at Cellular Resolution During Virtual Navigation. Nat Neurosci.2010,13 (11): 1433-1440
    [96]Y. Xiang, Q. Yuan, N. Vogt, et al. Light-Avoidance-Mediating Photoreceptors Tile the Drosophila Larval Body Wall. Nature.2010,468 (7326):921-926
    [97]M. Mank, D. F. Reiff, N. Heim, et al. A FRET-Based Calcium Biosensor with Fast Signal Kinetics and High Fluorescence Change. Biophys J.2006,90 (5):1790-1796
    [98]T. Nagai, S. Yamada, T. Tominaga, et al. Expanded Dynamic Range of Fluorescent Indicators for Ca2+ by Circularly Permuted Yellow Fluorescent Proteins. Proc Natl Acad Sci USA.2004,101 (29):10554-10559
    [99]A. E. Palmer, C. Jin, J. C. Reed, et al. BCL-2-Mediated Alterations in Endoplasmic Reticulum Ca2+ Analyzed with an Improved Genetically Encoded Fluorescent Sensor. Proc Natl Acad Sci U S A.2004,101 (50):17404-17409
    [100]T. Kaper, L. L. Looger, H. Takanaga, et al. Nanosensor Detection of an Immunoregulatory Tryptophan Influx/Kynurenine Efflux Cycle. PLoS Biol.2007,5 (10): e257
    [101]M. Mank, A. F. Santos, S. Direnberger, et al. A Genetically Encoded Calcium Indicator for Chronic in Vivo Two-Photon Imaging. Nat Meth.2008,5 (9):805-811
    [102]S. A. Hires, L. Tian and L. Looger. Reporting Neural Activity with Genetically Encoded Calcium Indicators. Brain Cell Bio.2008,36 (1-4):69-86
    [103]S. Okumoto, A. Jones and W. B. Frommer. Quantitative Imaging with Fluorescent Biosensors. Annu Rev Plant Biol.2012,63 (1):663-706
    [104]E. Pham, J. Chiang, I. Li, et al. A Computational Tool for Designing FRET Protein Biosensors by Rigid-Body Sampling of Their Conformational Space. Structure.2007,15 (5):515-523
    [105]J. M. Siverio. Assimilation of Nitrate by Yeasts. FEMS Microbiol Rev.2002,26 (3): 277-284
    [106]G. Krouk, N. M. Crawford, G. M. Coruzzi, et al. Nitrate Signaling:Adaptation to Fluctuating Environments. Curr Opin Plant Biol.2010,13 (3):266-273
    [107]M. I. Muro-Pastor, J. C. Reyes and F. J. Florencio. Cyanobacteria Perceive Nitrogen Status by Sensing Intracellular 2-Oxoglutarate Levels. J Biol Chem.2001,276 (41): 38320-38328
    [108]H. Kikuchi, M. Aichi, I. Suzuki, et al. Positive Regulation by Nitrite of the Nitrate Assimilation Operon in the Cyanobacteria Synechococcus Sp. Strain PCC 7942 and Plectonema Boryanum. J Bacteriol.1996,178 (19):5822-5825
    [109]M. Aichi and T. Omata. Involvement of NtcB, a LysR Family Transcription Factor, in Nitrite Activation of the Nitrate Assimilation Operon in the Cyanobacterium Synechococcus Sp. Strain PCC 7942. J Bacteriol.1997,179 (15):4671-4675
    [110]M. Aichi, S.-I. Maeda, K. Ichikawa, et al. Nitrite-Responsive Activation of the Nitrate Assimilation Operon in Cyanobacteria Plays an Essential Role in up-Regulation of Nitrate Assimilation Activities under Nitrate-Limited Growth Conditions. J Bacteriol. 2004,186 (10):3224-3229
    [111]Q. Wang, H. Li and A. F. Post. Nitrate Assimilation Genes of the Marine Diazotrophic, Filamentous Cyanobacterium Trichodesmium Sp. Strain Wh9601. J Bacteriol.2000,182 (6):1764-1767
    [112]E. Flores, M. G Guerrero and M. Losada. Photosynthetic Nature of Nitrate Uptake and Reduction in the Cyanobacterium Anacystis Nidulans. Biochimica et Biophysica Acta (BBA)-Bioenergetics.1983,722 (3):408-416
    [113]T. Omata, X. Andriesse and A. Hirano. Identification and Characterization of a Gene Cluster Involved in Nitrate Transport in the Cyanobacterium Synechococcus Sp. PCC7942. Molec. Gen. Genet.1993,236 (2-3):193-202
    [114]T. Sakamoto, K. Inoue-Sakamoto and D. A. Bryant. A Novel Nitrate/Nitrite Permease in the Marine Cyanobacteriumsynechococcus Sp. Strain PCC 7002. J Bacteriol.1999,181 (23):7363-7372
    [115]M. Aichi, S. Yoshihara, M. Yamashita, et al. Characterization of the Nitrate-Nitrite Transporter of the Major Facilitator Superfamily from the Cyanobacterium Strain Atcc 29133. Biosci Biotech Bioch.2006,70 (11):2682-2689
    [116]B. G Forde. Nitrate Transporters in Plants:Structure, Function and Regulation. Biochimica et Biophysica Acta (BBA)-Biomembranes.2000,1465 (1-2):219-235
    [117]S.-i. Maeda and T. Omata. Substrate-Binding Lipoprotein of the Cyanobacterium Synechococcus Sp. Strain PCC 7942 Involved in the Transport of Nitrate and Nitrite. J Biol Chem.1997,272 (5):3036-3041
    [118]M. Aichi, N. Takatani and T. Omata. Role ofNtcB in Activation of Nitrate Assimilation Genes in the Cyanobacterium Synechocystis Sp. Strain PCC 6803. J Bacteriol.2001,183 (20):5840-5847
    [119]R. Tanigawa, M. Shirokane, S.-i. Maeda, et al. Transcriptional Activation of NtcA-Dependent Promoters of Synechococcus Sp. PCC 7942 by 2-Oxoglutarate in Vitro. Proc Natl Acad Sci U S A.2002,99(7):4251-4255
    [120]M. a. F. Vazquez-Bermudez, A. Herrero and E. Flores.2-Oxoglutarate Increases the Binding Affinity of the NtcA (Nitrogen Control) Transcription Factor for the Synechococcus Glna Promoter. FEBS lett.2002,512 (1-3):71-74
    [121]H.-M. Lee, E. Flores, A. Herrero, et al. A Role for the Signal Transduction Protein PII in the Control of Nitrate/Nitrite Uptake in a Cyanobacterium. FEBS lett.1998,427 (2): 291-295
    [122]N. Takatani, M. Kobayashi, S.-i. Maeda, et al. Regulation of Nitrate Reductase by Non-Modifiable Derivatives of PII in the Cells of Synechococcus Elongatus Strain PCC 7942. Plant Cell Physiol.2006,47 (8):1182-1186
    [123]K. Forchhammer. Global Carbon/Nitrogen Control by PII Signal Transduction in Cyanobacteria:From Signals to Targets. FEMS Microbiol Rev.2004,28 (3):319-333
    [124]J. Espinosa, M. A. Castells, K. B. Laichoubi, et al. Mutations at pipXSuppress Lethality of PII-Deficient Mutants of Synechococcus Elongatus PCC 7942. J Bacteriol.2009,191 (15):4863-4869
    [125]J. Espinosa, K. Forchhammer, S. Burillo, et al. Interaction Network in Cyanobacterial Nitrogen Regulation:PipX, a Protein That Interacts in a 2-Oxoglutarate Dependent Manner with PII and NtcA. Mol Microbiol.2006,61 (2):457-469
    [126]J. Espinosa, K. Forchhammer and A. Contreras. Role of the Synechococcus PCC 7942 Nitrogen Regulator Protein PipX in NtcA-Controlled Processes. Microbiol.2007,153 (3): 711-718
    [127]J. L. Llacer, J. Espinosa, M. A. Castells, et al. Structural Basis for the Regulation of NtcA-Dependent Transcription by Proteins PipX and PII. Proc Natl Acad Sci U S A. 2010,107(35):15397-15402
    [128]R. Little and R. Dixon. The Amino-Terminal GAF Domain of Azotobacter Vinelandii NifA Binds 2-Oxoglutarate to Resist Inhibition by NifL under Nitrogen-Limiting Conditions. J Biol Chem.2003,278 (31):28711-28718
    [129]R. Dixon. The Oxygen-Responsive NifL-NifA Complex:A Novel Two-Component Regulatory System Controlling Nitrogenase Synthesis in Gamma-Proteobacteria. Arch Microbiol.1998,169 (5):371-380
    [130]S. Hill, S. Austin, T. Eydmann, et al. Azotobacter Vinelandii NifL Is a Flavoprotein That Modulates Transcriptional Activation of Nitrogen-Fixation Genes Via a Redox-Sensitive Switch. Proc Natl Acad Sci U S A.1996,93 (5):2143-2148
    [131]R. A. Schmitz. NifL of Klebsiella Pneumoniae Carries an N-Terminally Bound Fad Cofactor, Which Is Not Directly Required for the Inhibitory Function of NifL FEMS microbiol lett.1997,157 (2):313-318
    [132]R. Dutta and M. Inouye. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci.2000,25 (1):24-28
    [133]J. Barrett, P. Ray, A. Sobczyk, et al. Concerted Inhibition of the Transcriptional Activation Functions of the Enhancer-Binding Protein NifA by the Anti-Activator NifL. Mol Microbiol.2001,39 (2):480-493
    [134]T. Eydmann, E. Soderback, T. Jones, et al. Transcriptional Activation of the Nitrogenase Promoter in Vitro:Adenosine Nucleotides Are Required for Inhibition of NifA Activity by NifL. J Bacteriol.1995,177 (5):1186-1195
    [135]E. Soderback, F. Reyes-Ramirez, T. Eydmann, et al. The Redox-and Fixed Nitrogen-Responsive Regulatory Protein NifL from Azotobacter Vinelandii Comprises Discrete Flavin and Nucleotide-Binding Domains. Mol Microbiol.1998,28 (1):179-192
    [136]E. Morett and L. Segovia. The Sigma 54 Bacterial Enhancer-Binding Protein Family: Mechanism of Action and Phylogenetic Relationship of Their Functional Domains. J Bacteriol.1993,175 (19):6067-6074
    [137]M. Buck, M.-T. Gallegos, D. J. Studholme, et al. The Bacterial Enhancer-Dependent ∑54(∑n) Transcription Factor. J Bacteriol.2000,182 (15):4129-4136
    [138]L. Aravind and C. P. Ponting. The GAF Domain:An Evolutionary Link between Diverse Phototransducing Proteins. Trends Biochem Sci.1997,22 (12):458-459
    [139]Y. S. Ho, L. M. Burden and J. H. Hurley. Structure of the GAF Domain, a Ubiquitous Signaling Motif and a New Class of Cyclic GMP Receptor. EMBO J.2000,19 (20): 5288-5299
    [140]V. Anantharaman, E. Koonin and L. Aravind. Regulatory Potential, Phyletic Distribution and Evolution of Ancient, Intracellular Small-Molecule-Binding Domains. J Mol Biol.2001,3071271-1292
    [141]T. Kanacher, A. Schultz, J. U. Linder, et al. A GAF-Domain-Regulated Adenylyl Cyclase from Anabaena Is a Self-Activating cAMP Switch. EMBO J.2002,21 (14):3672-3680
    [142]S. Hopper and A. Bock. Effector-Mediated Stimulation of ATPase Activity by the Sigma 54-Dependent Transcriptional Activator FhlA from Escherichia Coli. J Bacteriol.1995, 177 (10):2798-2803
    [143]R. Little, F. Reyes-Ramirez, Y. Zhang, et al. Signal Transduction to the Azotobacter Vinelandii NifL-NifA Regulatory System Is Influenced Directly by Interaction with 2-Oxoglutarate and the PII Regulatory Protein. EMBO J.2000,19 (22):6041-6050
    [144]P. J. Senior. Regulation of Nitrogen Metabolism in Escherichia Coli and Klebsiella Aerogenes:Studies with the Continuous-Culture Technique. J Bacteriol.1975,123 (2): 407-418
    [145]F. Reyes-Ramirez, R. Little and R. Dixon. Role of Escherichia Coli Nitrogen Regulatory Genes in the Nitrogen Response of the Azotobacter Vinelandii NifL-NifA Complex. J Bacteriol.2001,183 (10):3076-3082
    [146]T. Arcondeguy, R. Jack and M. Merrick. PII Signal Transduction Proteins, Pivotal Players in Microbial Nitrogen Control. Microbiol Mol Biol R.2001,65 (1):80-105
    [147]R. Little, V. Colombo, A. Leech, et al. Direct Interaction of the NifL Regulatory Protein with the GlnK Signal Transducer Enables the Azotobacter Vinelandii NifL-NifA Regulatory System to Respond to Conditions Replete for Nitrogen. J Biol Chem.2002, 277 (18):15472-15481
    [148]P. Rudnick, C. Kunz, M. K. Gunatilaka, et al. Role of GlnK in NifL-Mediated Regulation of NifA Activity in Azotobacter Vinelandii. J Bacteriol.2002,184 (3):812-820
    [149]M. Lancien, P. Gadal and M. Hodges. Enzyme Redundancy and the Importance of 2-Oxoglutarate in Higher Plant Ammonium Assimilation. Plant Physiol.2000,123 (3): 817-824
    [150]V. Buchanan-Wollaston and C. Ainsworth. Leaf Senescence in Brassica Napus:Cloning of Senescence Related Genes by Subtractive Hybridisation. Plant Mol Biol.1997,33 (5): 821-834
    [151]N. Hirose, T. Hayakawa and T. Yamaya. Inducible Accumulation of mRNA for NADH-Dependent Glutamate Synthase in Rice Roots in Response to Ammonium Ions. Plant Cell Physiol.1997,38 (11):1295-1297
    [152]R. Morcuende, A. Krapp, V. Hurry, et al. Sucrose-Feeding Leads to Increased Rates of Nitrate Assimilation, Increased Rates of A-Oxoglutarate Synthesis, and Increased Synthesis of a Wide Spectrum of Amino Acids in Tobacco Leaves. Planta.1998,206 (3): 394-409
    [153]M. Taniguchi and T. Sugiyama. Isolation, Characterization and Expression of Cdna Clones Encoding a Mitochondrial Malate Translocator from Panicum Miliaceum L. Plant Mol Biol.1996,30 (1):51-64
    [154]M.-H. Hsieh, H.-M. Lam, F. J. van de Loo, et al. A PⅡ-Like Protein in Arabidopsis: Putative Role in Nitrogen Sensing. Proc Natl Acad Sci U S A.1998,95 (23):13965-13970
    [155]I. C. Oliveira and G. M. Coruzzi. Carbon and Amino Acids Reciprocally Modulate the Expression of Glutamine Synthetase in Arabidopsis. Plant Physiol.1999,121 (1):301-310
    [156]J. Yuan, C. D. Doucette, W. U. Fowler, et al. Metabolomics-Driven Quantitative Analysis of Ammonia Assimilation in E. Coli. Mol Syst Biol.2009,5:302
    [157]P. B. Dennis, A. Jaeschke, M. Saitoh, et al. Mammalian TOR:A Homeostatic ATP Sensor. Science.2001,294 (5544):1102-1105
    [158]P. F. Ledur, E. S. Villodre, R. Paulus, et al. Extracellular ATP Reduces Tumor Sphere Growth and Cancer Stem Cell Population in Glioblastoma Cells. Purinergic Signal.2012, 8 (1):39-48
    [159]P. Pellegatti, L. Raffaghello, G. Bianchi, et al. Increased Level of Extracellular ATP at Tumor Sites:In Vivo Imaging with Plasma Membrane Luciferase. PLoS One.2008,3 (7): e2599
    [160]H. Imamura, K. P. Nhat, H. Togawa, et al. Visualization of ATP Levels inside Single Living Cells with Fluorescence Resonance Energy Transfer-Based Genetically Encoded Indicators. Proc Natl Acad Sci U S A.2009,106(37):15651-15656
    [161]J. Berg, Y. P. Hung and G. Yellen.. A Genetically Encoded Fluorescent Reporter of ATP:ADP Ratio. Nat Methods.2009,6 (2):161-166
    [162]C. J. Bell, G Manfredi, E. J. Griffiths, et al. Luciferase Expression for ATP Imaging: Application to Cardiac Myocytes. Methods Cell Biol.2007,80:341-352
    [163]S. S. Kannurpatti and N. B. Joshi. Energy Metabolism and NAD-NADH Redox State in Brain Slices in Response to Glutamate Exposure and Ischemia. Metab Brain Dis.1999, 14 (1):33-43
    [164]Y. Li, R. K. Dash, J. Kim, et al. Role of NADH/NAD+ Transport Activity and Glycogen Store on Skeletal Muscle Energy Metabolism During Exercise:In Silico Studies. Am J Physiol Cell Physiol.2009,296 (1):C25-46
    [165]Q. Zhang, S. Y. Wang, A. C. Nottke, et al. Redox Sensor CtBP Mediates Hypoxia-Induced Tumor Cell Migration. Proc Natl Acad Sci U S A. 2006,103 (24):9029-9033
    [166]M. Garriga-Canut, B. Schoenike, R. Qazi, et al.2-Deoxy-D-Glucose Reduces Epilepsy Progression by NRSF-CtBP-Dependent Metabolic Regulation of Chromatin Structure. Nat Neurosci.2006,9 (11):1382-1387
    [167]Y. Zhao, J. Jin, Q. Hu, et al. Genetically Encoded Fluorescent Sensors for Intracellular NADH Detection. Cell Metab.2011,14 (4):555-566
    [168]Y. P. Hung, J. G Albeck, M. Tantama, et al. Imaging Cytosolic NADH-NAD(+) Redox State with a Genetically Encoded Fluorescent Biosensor. Cell Metab.2011,14 (4):545-554
    [169]B. G. Forde and P. J. Lea. Glutamate in Plants:Metabolism, Regulation, and Signalling. J Exp Bot.2007,58 (9):2339-2358
    [170]V. Paczek, F. Dubois, R. Sangwan, et al. Cellular and Subcellular Localisation of Glutamine Synthetase and Glutamate Dehydrogenase in Grapes Gives New Insights on the Regulation of Carbon and Nitrogen Metabolism. Planta.2002,216 (2):245-254
    [171]A. Plaitakis and I. Zaganas. Regulation of Human Glutamate Dehydrogenases: Implications for Glutamate, Ammonia and Energy Metabolism in Brain. J Neurosci Res. 2001,66 (5):899-908
    [172]S. Peng, Y. Zhang, J. Zhang, et al. Glutamate Receptors and Signal Transduction in Learning and Memory. Mol Biol Rep.2011,38 (1):453-460
    [173]C. Dulla, H. Tani, S. Okumoto, et al. Imaging of Glutamate in Brain Slices Using FRET Sensors. J Neurosci Methods.2008,168 (2):306-319
    [174]K. Gruenwald, J. T. Holland, V. Stromberg, et al. Visualization of Glutamine Transporter Activities in Living Cells Using Genetically Encoded Glutamine Sensors. PLoS One.2012,7 (6):e38591
    [175]S. Okada, K. Ota and T. Ito. Circular Permutation of Ligand-Binding Module Improves Dynamic Range of Genetically Encoded FRET-Based Nanosensor. Protein Sci.2009,18 (12):2518-2527
    [176]M. X. Zhao, Y. L. Jiang, Y. X. He, et al. Structural Basis for the Allosteric Control of the Global Transcription Factor NtcA by the Nitrogen Starvation Signal 2-Oxoglutarate. Proc Natl Acad Sci U S A.2010,107 (28):12487-12492
    [177]I. Martinez-Argudo, R. Little, N. Shearer, et al. Nitrogen Fixation:Key Genetic Regulatory Mechanisms. Biochem Soc Trans.2005,33 (Pt 1):152-156
    [178]J. A. Leigh and J. A. Dodsworth. Nitrogen Regulation in Bacteria and Archaea. Annu Rev Microbiol.2007,61:349-377
    [179]H. Okano, T. Hwa, P. Lenz, et al. Reversible Adenylylation of Glutamine Synthetase Is Dynamically Counterbalanced During Steady-State Growth of Escherichia Coli. J Mol Biol.2010,404:522-536
    [180]M. Fehr, S. Okumoto, K. Deuschle, et al. Development and Use of Fluorescent Nanosensors for Metabolite Imaging in Living Cells. Biochem Soc Trans.2005,33:287-290
    [181]T. Yano, M. Oku, N. Akeyama, et al. A Novel Fluorescent Sensor Protein for Visualization of Redox States in the Cytoplasm and in Peroxisomes. Mol Cell Biol.2010, 30 (15):3758-3766
    [182]L. M. DiPilato, X. Cheng and J. Zhang. Fluorescent Indicators of cAMP and Epac Activation Reveal Differential Dynamics of cAMP Signaling within Discrete Subcellular Compartments. Proc Natl Acad Sci U S A.2004,101 (47):16513-16518
    [183]B. Ponsioen, J. Zhao, J. Riedl, et al. Detecting cAMP-Induced Epac Activation by Fluorescence Resonance Energy Transfer:Epac as a Novel cAMP Indicator. EMBO Rep. 2004,5 (12):1176-1180
    [184]A. Honda, S. R. Adams, C. L. Sawyer, et al. Spatiotemporal Dynamics of Guanosine 3',5'-Cyclic Monophosphate Revealed by a Genetically Encoded, Fluorescent Indicator. Proc Natl Acad Sci U S A.2001,98 (5):2437-2442
    [185]V. O. Nikolaev, S. Gambaryan and M. J. Lohse. Fluorescent Sensors for Rapid Monitoring of Intracellular cGMP. Nat Methods.2006,3 (1):23-25
    [186]G. Cicchetti, M. Biemacki, J. Farquharson, et al. A Ratiometric Expressible FRET Sensor for Phosphoinositides Displays a Signal Change in Highly Dynamic Membrane Structures in Fibroblasts. Biochem.2004,43 (7):1939-1949
    [187]A. Tanimura, T. Morita, A. Nezu, et al. Use of Fluorescence Resonance Energy Transfer-Based Biosensors for the Quantitative Analysis of Inositol 1,4,5-Trisphosphate Dynamics in Calcium Oscillations. J Biol Chem.2009,284 (13):8910-8917
    [188]M. Sato, Y. Ueda and Y. Umezawa. Imaging Diacylglycerol Dynamics at Organelle Membranes. Nat Methods.2006,3 (10):797-799
    [189]S. Rajamani, J. Zhu, D. Pei, et al. A Luxp-FRET-Based Reporter for the Detection and Quantification of AI-2 Bacterial Quorum-Sensing Signal Compounds. Biochem.2007,46 (13):3990-3997
    [190]M. Fehr, S. Lalonde, I. Lager, et al. In Vivo Imaging of the Dynamics of Glucose Uptake in the Cytosol of Cos-7 Cells by Fluorescent Nanosensors. J Biol Chem.2003,278 (21): 19127-19133
    [191]I. Lager, M. Fehr, W. B. Frommer, et al. Development of a Fluorescent Nanosensor for Ribose. FEBS Lett.2003,553 (1-2):85-89
    [192]J. S. Ha, J. J. Song, Y. M. Lee, et al. Design and Application of Highly Responsive Fluorescence Resonance Energy Transfer Biosensors for Detection of Sugar in Living Saccharomyces Cerevisiae Cells. Appl Environ Microbiol.2007,73 (22):7408-7414
    [193]I. Martinez-Argudo, R. Little and R. Dixon. Role of the Amino-Terminal GAF Domain of the NifA Activator in Controlling the Response to the Antiactivator Protein NifL. Mol Microbiol.2004,52 (6):1731-1744
    [194]J. C. Ewald, S. Reich, S. Baumann, et al. Engineering Genetically Encoded Nanosensors for Real-Time in Vivo Measurements of Citrate Concentrations. PLoS One. 2011,6(12):e28245
    [195]T. Kaper, I. Lager, L. L. Looger, et al. Fluorescence Resonance Energy Transfer Sensors for Quantitative Monitoring of Pentose and Disaccharide Accumulation in Bacteria. Biotechnol Biofuels.2008,1 (1):11
    [196]B. D. Bennett, E. H. Kimball, M. Gao, et al. Absolute Metabolite Concentrations and Implied Enzyme Active Site Occupancy in Escherichia Coli. Nat Chem Biol.2009,5 (8): 593-599
    [197]A. Iqbal, S. Arslan, B. Okumus, et al. Orientation Dependence in Fluorescent Energy Transfer between Cy3 and Cy5 Terminally Attached to Double-Stranded Nucleic Acids. ProcNatl Acad Sci U S A.2008,105 (32):11176-11181
    [198]T. Ansbacher, H. K. Srivastava, T. Stein, et al. Calculation of Transition Dipole Moment in Fluorescent Proteins--Towards Efficient Energy Transfer. Phys Chem Chem Phys. 2012,14 (12):4109-4117
    [199]K. M. Pos, P. Dimroth and M. Bott. The Escherichia Coli Citrate Carrier Citt:A Member of a Novel Eubacterial Transporter Family Related to the 2-Oxoglutarate/Malate Translocator from Spinach Chloroplasts. J Bacteriol.1998,180 (16):4160-4165
    [200]E. Giorgetti, S. Cicchi, M. Muniz-Miranda, et al. Forster Resonance Energy Transfer (FRET) with a Donor-Acceptor System Adsorbed on Silver or Gold Nanoisland Films. Phys Chem Chem Phys.2009,11 (42):9798-9803
    [201]P. F. Teixeira, A. Jonsson, M. Frank, et al. Interaction of the Signal Transduction Protein GlnJ with the Cellular Targets AmtBl, GlnE and GlnD in Rhodospirillum Rubrum: Dependence on Manganese,2-Oxoglutarate and the ADP/ATP Ratio. Microbiol.2008, 154 (8):2336-2347
    [202]A. P. Harrison and S. G. Pierzynowski. Biological Effects of 2-Oxoglutarate with Particular Emphasis on the Regulation of Protein, Mineral and Lipid Absorption/Metabolism, Muscle Performance, Kidney Function, Bone Formation and Cancerogenesis, All Viewed from a Healthy Ageing Perspective State of the Art-Review Article. J Physiol Pharmacol.2008,59 Suppl 1:91-106
    [203]O. Z. Fomenko, H. O. Ushakova and S. H. Piierzhynovs'kyi. Astroglia Proteins in the Rat Brain in Experimental Chronic Hepatitis and 2-Oxoglutarate Effect. Ukr Biokhim Zh.2011,83(1):69-76
    [204]W. L. Araujo, L. Trofimova, G. Mkrtchyan, et al. On the Role of the Mitochondrial 2-Oxoglutarate Dehydrogenase Complex in Amino Acid Metabolism. Amino Acids.2013, 44 (2):683-700
    [205]W. L. Araujo, T. Tohge, S. Osorio, et al. Antisense Inhibition of the 2-Oxoglutarate Dehydrogenase Complex in Tomato Demonstrates Its Importance for Plant Respiration and During Leaf Senescence and Fruit Maturation. Plant Cell.2012,24 (6):2328-2351
    [206]M. Bogner and U. Ludewig. Visualization of Arginine Influx into Plant Cells Using a Specific FRET-Sensor. J Fluoresc.2007,17 (4):350-360
    [207]A. N. Vallejo, R. J. Pogulis and L. R. Pease. PCR Mutagenesis by Overlap Extension and Gene SOE. CSH Protoc.2008,3(2):1-6
    [208]B. Song, Y. Yue, T. Xie, et al. Mutation of Tyrosinel67histidine at Remote Substrate Binding Subsite-6 in Alpha-Cyclodextrin Glycosyltransferase Enhancing Alpha-Cyclodextrin Specificity by Directed Evolution. Mol Biotechnol.2014,56 (3):232-239
    [209]M. Alvaro-Benito, M. de Abreu, F. Portillo, et al. New Insights into the Fructosyltransferase Activity of Schwanniomyces Occidentalis Ss-Fructofuranosidase, Emerging from Nonconventional Codon Usage and Directed Mutation. Appl Environ Microbiol.2010,76 (22):7491-7499
    [210]J. W. Costerton, P. S. Stewart and E. P. Greenberg. Bacterial Biofilms:A Common Cause of Persistent Infections. Science.1999,284 (5418):1318-1322
    [211]S. A. West, A. S. Griffin, A. Gardner, et al. Social Evolution Theory for Microorganisms. Nat Rev Micro.2006,4 (8):597-607
    [212]S. P. Diggle, A. S. Griffin, G. S. Campbell, et al. Cooperation and Conflict in Quorum-Sensing Bacterial Populations. Nature.2007,450 (7168):411-414
    [213]N. A. Whitehead, A. M. L. Barnard, H. Slater, et al. Quorum-Sensing in Gram-Negative Bacteria. FEMS Microbiol Rev.2001,25 (4):365-404
    [214]C. N. Wilder, et al. Cooperation and Cheating in Pseudomonas Aeruginosa:The Roles of the las, rhl and pqs Quorum-Sensing Systems. ISME J.2011,5 (8):1332-1343
    [215]C. N. Wilder, S. P. Diggle and M. Schuster. Social Cheating in Pseudomonas Aeruginosa Quorum Sensing. Proc Natl Acad Sci USA.2007,104 (40):15876-15881
    [216]E. Banin, A. Lozinski, K. M. Brady, et al. The Potential of Desferrioxamine-Gallium as an Anti-Pseudomonas Therapeutic Agent. Proc Natl Acad Sci USA.2008,105 (43): 16761-16766
    [217]V. C. Kalia and H. J. Purohit. Quenching the Quorum Sensing System:Potential Antibacterial Drug Targets. Crit Rev Microbiol.2011,37 (2):121-140
    [218]U. Muh, B. J. Hare, B. A. Duerkop, et al. A Structurally Unrelated Mimic of a Pseudomonas Aeruginosa Acyl-Homoserine Lactone Quorum-Sensing Signal. Proc Natl Acad Sci USA.2006,103 (45):16948-16952
    [219]U. Muh, M. Schuster, R. Heim, et al. Novel Pseudomonas Aeruginosa Quorum-Sensing Inhibitors Identified in an Ultra-High-Throughput Screen. Antimicrob Agents Ch.2006, 50 (11):3674-3679
    [220]A. Tomasz. Control of the Competent State in Pneumococcus by a Hormone-Like Cell Product:An Example for a New Type of Regulatory Mechanism in Bacteria. Nature. 1965,208 (5006):155-159
    [221]A. Eberhard. Inhibition and Activation of Bacterial Luciferase Synthesis. J Bacteriol. 1972,109(3):1101-1105
    [222]M. Schuster, D. Joseph Sexton, S. P. Diggle, et al. Acyl-Homoserine Lactone Quorum Sensing:From Evolution to Application. Annu Rev Microbiol.2013,67 (1):43-63
    [223]L. C. M. Antunes, A. L. Schaefer, R. B. R. Ferreira, et al. Transcriptome Analysis of the Vibrio Fischeri LuxR-LuxI Regulon. J Bacteriol. 2007,189 (22):8387-8391
    [224]A. Eberhard, A. L. Burlingame, C. Eberhard, et al. Structural Identification of Autoinducer of Photobacterium Fischeri Luciferase. Biochem.1981,20 (9):2444-2449
    [225]J. Engebrecht, K. Nealson and M. Silverman. Bacterial Bioluminescence:Isolation and Genetic Analysis of Functions from Vibrio Fischeri. Cell.1983,32 (3):773-781
    [226]H. B. Kaplan and E. P. Greenberg. Diffusion of Autoinducer Is Involved in Regulation of the Vibrio Fischeri Luminescence System. J Bacteriol.1985,163 (3):1210-1214
    [227]E. G. Ruby. Lessons from a Cooperative, Bacterial-Animal Association:The Vibrio Fischeri-Euprymna Scolopes Light Organ Symbiosis. Annu Rev Microbiol.1996,50 (1): 591-624
    [228]W.-L. Ng and B. L. Bassler. Bacterial Quorum-Sensing Network Architectures. Ann Rev Genet.2009,43 (1):197-222
    [229]M. I. More, L. D. Finger, J. L. Stryker, et al. Enzymatic Synthesis of a Quorum-Sensing Autoinducer through Use of Defined Substrates. Science.1996,272 (5268):1655-1658
    [230]A. L. Schaefer, D. L. Val, B. L. Hanzelka, et al. Generation of Cell-to-Cell Signals in Quorum Sensing:Acyl Homoserine Lactone Synthase Activity of a Purified Vibrio FischeriLuxIProtein. ProcNatl Acad Sci U S A.1996,93 (18):9505-9509
    [231]J. Engebrecht and M. Silverman. Identification of Genes and Gene Products Necessary for Bacterial Bioluminescence. Proc Natl Acad Sci U S A.1984,81 (13):4154-4158
    [232]A. M. Stevens, K. M. Dolan and E. P. Synergistic Binding of the Vibrio Fischeri LuxR Transcriptional Activator Domain and RNA Polymerase to the Lux Promoter Region. Proc Natl Acad Sci U S A.1994,91 (26):12619-12623
    [233]E. A. Meighen. Molecular Biology of Bacterial Bioluminescence. Microbiol Rev.1991, 55 (1):123-142
    [234]K. H. McClean, M. K. Winson, L. Fish, et al. Quorum Sensing and Chromobacterium Violaceum:Exploitation of Violacein Production and Inhibition for the Detection of N-Acylhomoserine Lactones. Microbiol.1997,143 (Pt 12) 3703-3711
    [235]L. Ravn, A. B. Christensen, S. Molin, et al. Methods for Detecting Acylated Homoserine Lactones Produced by Gram-Negative Bacteria and Their Application in Studies of AHL-Production Kinetics. J Microbiol Methods.2001,44 (3):239-251
    [236]G C. Palmer, J. W. Schertzer, L. Mashburn-Warren, et al. Quantifying Pseudomonas Aeruginosa Quinolones and Examining Their Interactions with Lipids. Methods Mol Biol.2011,692207-217
    [237]C. Zhang, Z. H. Wei and B. C. Ye. Quantitative Monitoring of 2-Oxoglutarate in Escherichia Coli Cells by a Fluorescence Resonance Energy Transfer-Based Biosensor. Appl Microbiol Biotechnol.2013,97 (18):8307-8316
    [238]O. E. Mel'kina, I. V. Manukhov and G B. Zavi'gel'skii. The C-Terminal Domain of the Vibrio Fischeri Transcription Activator LuxR Is Not Essential for Degradation by Lon Protease. Mol Biol.2010,44 (3):515-519
    [239]N. Augustine, P. Kumar and S. Thomas. Inhibition of Vibrio Cholerae Biofilm by AiiA Enzyme Produced from Bacillus Spp. Arch Microbiol.2010,192 (12):1019-1022
    [240]A. Dos Reis Ponce, M. L. Martins, E. F. de Araujo, et al. AiiA Quorum-Sensing Quenching Controls Proteolytic Activity and Biofilm Formation by Enterobacter Cloacae. Curr Microbiol.2012,65, (6):758-763
    [241]L. Molina, F. Rezzonico, G. Defago, et al. Autoinduction in Erwinia Amylovora: Evidence of an Acyl-Homoserine Lactone Signal in the Fire Blight Pathogen. J Bacteriol. 2005,187 (9):3206-3213
    [242]C. Zhang and B. C. Ye. Real-Time Measurement of Quorum-Sensing Signal Autoinducer 3OC6HSL by a FRET-Based Nanosensor. Bioprocess Biosyst Eng.2013. doi: 10.1007/s00449-013-1055-7.
    [243]S. M. Callahan and P. V. Dunlap. LuxR-and Acyl-Homoserine-Lactone-Controlled Non-Lux Genes Define a Quorum-Sensing Regulon in Vibrio Fischeri. J Bacteriol.2000,182 (10):2811-2822
    [244]Y. C. Yong and J. J. Zhong. A Genetically Engineered Whole-Cell Pigment-Based Bacterial Biosensing System for Quantification of N-Butyryl Homoserine Lactone Quorum Sensing Signal. Biosens Bioelectron.2009,25 (1):41-47
    [245]J. S. Paige, K. Y. Wu and S. R. Jaffrey, RNA Mimics of Green Fluorescent Protein, Science,2011,333,642-646.
    [246]J. S. Paige, T. Nguyen-Duc, W. Song, et al., Fluorescence Imaging of Cellular Metabolites with RNA, Science,2012,335,1194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700