用户名: 密码: 验证码:
长春市绿地铅污染评价及其植物修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市土壤重金属污染日趋严重,特别是铅(Pb)污染已导致城市儿童血Pb含量升高。植物修复技术以其低成本和环境友好等优点成为污染土壤修复行之有效的方法,成为国内外研究的热点。超积累植物筛选是植物修复能否成功的关键,也是植物修复技术的难点所在。本文以长春市为例,首先对城市表层土壤理化性质与Pb污染进行评价;其次通过分析12个绿化植物叶片对铅的吸收量,筛选出对大气铅吸收力强的植物种,为城市土壤铅污染的植物修复提供理论依据;以杨树叶片为代表,初步判断植物大气铅污染等级;土壤Pb污染主要来源于交通污染等人为活动,人们往往忽略了自然落叶或人为施用有机肥带给土壤的影响,因此初步探讨了城市土壤中外源有机物料对Pb吸附的影响,充分肯定了花卉植物修复具有巨大潜力;然后通过砂培、水培和土培试验,研究了32种常见花卉植物(包括一串红、绣线菊、紫花玉簪、鸭跖草、马蔺、石碱花、石竹、波斯菊、福禄考、四季海棠、金鱼草、金盏菊、天竺葵、雁来红、红王子锦带、紫茉莉、蜀葵、茶花凤仙、百日草、万寿菊、大丽花、八仙花、月季、美人蕉、银边天竺葵、彩叶草、金边天竺葵、矮牵牛、孔雀草、八宝景天、君子兰、射干)对Pb胁迫的生长反应及Pb在植物体内的富集特征,筛选出了Pb富集能力较强且适于北方种植的的花卉品种,为探索花卉植物修复城市Pb污染土壤的技术提供理论和实践依据。主要研究结果归纳如下:
     1、以长春市为例,对城市表层土壤的理化性质与Pb污染评价结果表明,城市表层土壤物理性质略差,但多数有利于植物根系的正常生长;化学指标总体上处于较高水平。长春城区表层土壤Pb含量差异性很大,变幅为18.7~125.8 mg·kg-1,平均含量为57.1 mg·kg-1。采用Pb污染指数法和地积累指数评价法,长春城区表层土壤Pb总体上处于轻度向偏中度污染水平。
     2、通过14个主要街路两侧12种植物叶片中Pb的含量测定,采用单项污染指数法计算污染指数进行大气质量等级评价结果表明:运用聚类分析得出,12种植物对Pb吸收能力最强的是绣线菊,其次是杨树、油松、矮牵牛和彩叶草;而对Pb吸收能力最弱的树种是榆树、女贞、小叶女贞、八宝景天。采用单项污染指数评价法计算大气质量等级,长春市红旗街和同志街大气Pb污染达到严重污染程度,火车站北口属于重度污染区,会展大街已达到中度污染,人民大街和南湖大路属于轻度污染区,无污染的是凯旋路、前进大街和延安大路。
     3、城市土壤外源有机物料原样及其HLA、HLM对Pb2+的等温吸附曲线研究结果表明,树叶、草坪草和牛粪原样及其HLA、HLM对Pb2+的吸附量随平衡溶液中Pb2+浓度的增加而增加;在相同初始浓度下,对于Pb2+的吸附量的顺序是树叶>牛粪>草坪草,对于同一有机物料来说,草坪草、树叶对Pb2+的吸附量的顺序是HLM>HLA>原样,HLA>HLM>原样。各组分的吸附等温线可以用Freundlich、Langmiur和Temkin方程很好的描述,且都呈显著线性相关,且与吸附等温曲线所表述的规律性一致,最大吸附量的顺序为HLA>HLM>原样。
     4、种子萌发试验分析结果显示,供试花卉植物中对Pb胁迫的耐性最强的是马蔺种子,其次是百日草种子和紫茉莉种子,耐性最差的是黑心菊种子。与对照相比,孔雀草和百曰草的根长分别下降了66.2%、55.1%,黑心菊下降了85.2%。说明种子幼根对Pb的耐性最强的花卉是孔雀草和百日草,最弱的是黑心菊。Pb胁迫对萌发后幼苗生长影响研究进一步证实植物根系对Pb的耐受能力较强的四种为马蔺、茶花凤仙、百日草和孔雀草,强弱顺序为马蔺>茶花凤仙>百日草>孔雀草。
     5、水培试验结果表明,供试花卉植物中四季海棠、百日草、紫茉莉和紫花玉簪的地上部最大Pb含量达到了超富集植物的临界含量标准,并且所有处理中它们的地上部Pb含量和富集系数数值最大,均显著高于其它花卉植物。供试花卉植物中,Pb转移系数最高值可达0.8以上的有四季海棠、百日草、紫茉莉、紫花玉簪和鸭跖草,并且百日草在200 mg Pb/L时的转移系数仍高于100 mg Pb/L时的转移系数。这说明四季海棠、百日草、紫茉莉、紫花玉簪和鸭跖草不仅对Pb胁迫具有较强的耐性,而且具有较高的Pb富集能力和转移能力。
     6、土培试验结果表明,1)供试花卉植物中,紫茉莉、蜀葵、四季海棠和茶花凤仙的地上部最大Pb含量都超过了100 mg-kg-1,其顺序为紫茉莉>蜀葵>四季海棠>茶花凤仙,并且它们的地上部Pb含量和Pb富集系数均显著高于其它花卉植物。2)供试花卉植物中,Pb转移系数最高值可达0.45以上的有紫茉莉、银边天竺葵、金边天竺葵、八宝景天,同时它们高浓度Pb处理下的转移系数均显著高于低浓度的。从花卉植物地上部修复能力来看,四季海棠的修复效率和Pb迁移总量最高,其次是紫茉莉、蜀葵、茶花凤仙、万寿菊、百日草,但都没有超过0.2%。3)综合以上研究结果可知,紫茉莉不仅对Pb胁迫具有较强的耐性,而且具有较高的Pb富集能力和转移能力,在Pb污染土壤的修复方面具有较大的应用价值。从花卉植物地上部修复能力来看,四季海棠、紫茉莉、百日草、茶花凤仙对Pb污染土壤有良好的修复潜力,蜀葵、茶花凤仙和万寿菊的修复潜力亦不可忽视。
     综上所述,通过系统研究适于长春市种植的32种常见花卉植物对Pb的生长反应及富集特征,从中发现了4种具备Pb超富集潜力的花卉植物,即四季海棠、百日草、紫茉莉和紫花玉簪,这4种花卉植物的Pb富集量均超过1000 mg-kg-1,富集系数均大于1,证明能够从花卉植物中筛选出对Pb具有较强耐性和富集能力的品种,利用花卉植物进行Pb污染土壤的修复是可行的,在降低土壤Pb含量的同时美化了城市环境,这为长春市Pb污染土壤的修复提供了新的模式。
Heavy metal contamination in the urban soil is become increasingly. Especially, lead (Pb) pollution has caused a serious increase in blood Pb levels for urban children. Phytoremediation, which is of features for low cost and environmentally friendly, have been an effective method of contaminated soil remediation, and attracted great attention for domestic and foreign scholars. The screening of the hyperaccumulator is the key of phytoremediation, which is also the difficult point of phytoremediation. On the basis of exploration on the mechanism of urban soil lead contamination, the growth responses and accumulation characteristics of 32 common ornamental plants, including Salvia splendens Ker-Gawler, Spiraea salicifolia L., Hosta plantaginea Aschers, Commelina communis L., Iris lactea, Saponaria officinalis, Dianthus chinensis L., Cosmos bipinnatus Cav., Phlox drummondii Hook., Begonia semper. norms, Antirrhinum majus L., Calendula officinalis, Pelargonium hortorum, Amaranthus tricolorL., Weigela florida cv.Red Prince, Mirabilis jalapa Linn., Althaea rosea, Impatiens balsamena. L, Zinnia L., Tagetes erecta L., Dahlia pinnata Cav., Hydrangea macrophylla (Thunb.)Seringe, R chinensis, Canna indica, Pelargonium hortorum Bailey. var. vareigata, Coleus blumei, Pelargonium, Petunia hybrida Vilm, Tagetes patula L., Sedum spectabile Boreau, Clivia and Rhizoma Belamcandae, were studied through the sand culture, hydroponic culture and soil culture experiment. The ornamental species, which is suitable to growth in northern city of China and has high Pb enrichment ability, were screened out. This aimed at exploring the suitable phytoremediation technology of Pb contaminated soil using ornamental plants. The main results are summarized as follows:
     1. Take Changchun city as an example, the physical and chemical properties and Pb pollution evaluation of surface urban soils positioned were carried out. The results showed that the physical properties of urban soil were slightly worse, and the chemical indicators were in general at a high level. Most of the soils were benefit to the normal growth of plant roots. The Pb content of urban green earth soil in Changchun city varied widely, ranged from 18.7-125.8 mg/kg with an average of 57.1 mg/kg. With lead pollution index and accumulate index method, the Pb content in urban green earth soil of Changchun city generally between the light and moderate pollution levels.
     2. Both sides of the main street through 14 of the 12 species leaves the determination of lead, calculated using the single pollution index of the quality level of atmospheric pollution index evaluation showed that:the use of cluster analysis,12 species most capable of lead uptake Is Spiraea, followed by leaf boxwood, pine, Petunia and Coleus; while the weakest absorption of lead is the elm trees, privet, Ligustrum leaf, Eight Sedum. Use of single pollution index level of air quality assessment method, Hongqi Street, Changchun City, and comrades Street atmospheric lead pollution to serious pollution, the railway station north exit of the heavily polluted area are lead, Exhibition Avenue has reached moderate pollution, the people are light Avenue and South Lake road Degree of contaminated areas, pollution is Kaixuan, forward Avenue and Yan'an road.
     3. Adsorption isotherms of Pb2+ onto turfgrass, cattle manure and leaves, its HLA and HLM added in urban soils show that the adsorption capacity data increases at the same increasing Pb2+ concentrations of equilibrium. On the conditions of Identical initial concentration, he adsorption capacity data is following:leaves>cattle manure>turfgrass. On the conditions of Identical initial concentration, the adsorption capacity data is following: HLA>HLM>organic matters. The adsorption capacity data is well correlated by both Langmuir and Freundlich isotherm models, attain remarkable linear correlation. As the same as the regularity of adsorption isotherms, the adsorption capacity data is the same following:HLA>HLM> organic matters.
     4. Seed germination test results show that the tested plants flowers on lead tolerance Iris seed is the strongest, followed by zinnia seeds and seeds of Mirabilis, patience is the worst seeds Rudbeckia hirta. Compared with the control patula and zinnia root length decreased by 66.2%,55.1%, down 85.2% Rudbeckia hirta. That the patience of the seed radicle of the strongest lead is patula and zinnia flowers, the weakest is Rudbeckia hirta. Pb stress on seedling growth after germination studies confirm the tolerance of plant roots on the ability of lead of four to Iris, Camellia impatiens, zinnia, and maidenhair, the strength of the order of Iris> Camellia impatiens> Zinnia> maidenhair.
     5. Results from the hydroponic experiment showed that the highest Pb contents in shoot of Begonia semperflorens, Zinnia elegan, Mirabilis jalapa. and Hosta ventricosa reached the critical standard of Pb hyperaccumulating plant. And the Pb content and bioaccumulation coefficient of the 4 ornamental plants was significantly higher than that of the else tested ornamental plants. Among the ornamental plants tested, the highest Pb translocation factor of Begonia semperflorens, Zinnia elegan, Mirabilis jalapa., Hosta ventricosa and Commelina communis were above 0.8. Meantime, the TF of Zinnia elegan was still higher for 200 mg Pb/L than for 100 mg Pb/L. These results indicated that Begonia semperflorens, Zinnia elegan, Mirabilis jalapa., Hosta ventricosa and Commelina communis have stronger tolerance under Pb stress and higher ability of enrichment and translocation for Pb.
     6. Results from soil culture experiment showed that:1) the tested plants flower, Mirabilis, hollyhock, impatiens Camellia Begonia and the maximum shoot Pb concentrations are more than 100 mg/kg, the order of Mirabilis> hollyhock> Begonia> Camellia impatiens, and they shoot Pb content and Pb enrichment factors were significantly higher than other plants.2) for the test in the flowering plants, Pb transfer coefficient than the maximum value of up to 0.45 with Mirabilis, Silver geranium, Geranium Phnom Penh, eight treasures Sedum, while they are treated with high concentrations of the transfer coefficient of Pb were significantly higher than the low concentration The. Shoot from the repair capacity of flower plants of view, the repair of Begonia efficiency and the highest total Pb migration, followed by Mirabilis, hollyhocks, camellias impatiens, marigold, zinnia, but did not exceed 0.2%.3) The above study results, Mirabilis not only has a strong tolerance to Pb stress, and with high capacity and transfer capacity of Pb enrichment, remediation of polluted soil in Pb has great application value. Shoot from the repair capacity of flower plants of view, Begonia, Mirabilis, zinnia, impatiens on Pb contaminated soil Camellia good repair potential, hollyhock, impatiens, and marigold Camellia repair potential should not be ignored.
     In summary,4 ornamental plants with feature of Pb hyperaccumulation potential, that is, Begonia semper. norms, Zinnia L., Mirabilis jalapa Linn. and Hosta plantaginea Aschers, were found through systematic study the growth responses and accumulation characteristics of Pb for the 32 common ornamental plants suitable planting in Changchun city. The Pb concentrations for the above 4 ornamental plants were all over 1000mg/kg, and the enrichment factors were all greater than 1. This proved that the screen of the ornamental plants with strong patience and high accumulation ability to Pb is feasible. Thus, it is suitable for the restore of Pb contaminated soils using the ornamental plants. At the same time of reducing the Pb content of the soil, the urban environment is beautified. This provides a new mode for the remediation of Pb contaminated soils in Changchun city.
引文
[1]World Resources Institute. Cities and the Environment [M]. New York:World Resources 1996-1997, Oxford University Press,1996.1-30
    [2]UNPD (United Nations Population Division). World Urbanization Prospects:The Revision [M]. New York:United Nations, 1995,132-139
    [3]杨元根,EPaterson,C.Campbel.l城市土壤中重金属元素的积累及其微生物效应[J].环境科学,2001,22(3):44-48
    [4]史贵涛,陈振楼,李海雯,王利,许世远.城市土壤重金属污染研究现状与趋势[J].环境监测管理技术,2006,18(6):9-12.
    [5]张甘霖,龚子同城市土壤与环境保护[J].科学新闻周刊,2000,37:7
    [6]De Kimple C R, Jean-LouisMorel. Urban soil management:a growing concern [J]. Soil Sci,2000,165(1):31-40
    [7]李敏,林玉锁.城市环境铅污染及其对人体健康的影响[J].环境监测管理与技术,2006,18(5):6-10.
    [8]Markus J A, Mcbratney A B. An urban soil study:Heavymetals in Globe[J]. Australian Journal of Soil Science, 1996,34:453-465.
    [9]Mielke H W. Lead in the inner cities [J]. American Scientist,1999,87:62-73.
    [10]Lottermoser B G. Natural enrichment of top soils with chromium and other heavy metals, Port M Acquire, New South Wales, Australia[J]. Australian Journal of Soil Research,1997,35:1165-1176.
    [11]Susanne M U, Michael H R, Edeltrauda H R..Total and exehangeable concentrations of heavy metals in soils near Bytom, an area of Pb/Zn mining and smelting in Upper Silesia, Poland[J].Applied Geocheistry,1999,14(2):187-196
    [12]Czarnowska K. Akumulacja metali ciezick wglebach, oslinach inie-ktoych zw ieretach na erenie[J]. Warzawy Rocz Glebozn,1980,31:77-115.
    [13]Committee on Measuring Lead in Critical Populations.Measuring Lead exposure ininants, children and othersensitive population [M]. Washington DC:National Academy Press,1993:1-72.
    [14]Orlovaao, Bannon D L, Farffel M R,et al.Pilotstudy of sources of Lead exposure in Moscow,Russia[J]. Environmental Geochemistry and Health,1995,17:200-210.
    [15]Cal-PrietoM J, Carlosena A, Andrade JM, et al. Antimony as tracer of the anthropogenic influence on soils and estuarine sediments [J]. Water, Air and Soil Pollution,2001,129:248-333.
    [16]WangHH, LiLQ, Wu XM, et al. Distribution of Cu and Pb in particle size fractions ofurban soils from different city zones of Nanjing[J]. China. Journal of Environmental Sciences,2006,18(3):482-487.
    [17]Farfel M R.Chisolm J J.Health and environmental outcomes of traditional and modified practices for abatement of Fe Bidential Lead-based paint [J].Am J. Public Health.1990,80:1240-1245.
    [18]Nevin R. How lead exposure relates to temporal changes in IQ, violent violence, and unwed pregnancy [J]. Environment Research. Section A.2000,83:1-22.
    [19]Wei B, Yang L. A review of heavy metal contaminations in urban soils, urban, road dusts and agricultural soils from China[J]. Microchemical Journal,2010,94; 99-107
    [20]卢瑛.龚子同,张甘霖.南京城市上壤Pb的含量及其化学形态[J].环境科学学报2002.22(2):156-160
    [21]吴新民.李恋卿.潘根兴.等.南京市不同功能城区十壤中重金属Cu、Zn、Pb和Cd的污染特征[J].环境科学.2003,24(3):105-111.
    [22]廖金凤.城市化对土壤环境的影响[J].生态科学,2001,20(1/2):91-94.
    [23]郭朝晖,黄昌勇,廖柏寒.模拟酸雨对污染十壤中Cd. Cu和Zn释放及其形态转化的影响[J.应用生态学报,2003,14(9):1547-1550.
    [24]庄家尧,张波,苏继申等.城市土壤重金属污染与植物修复技术研究进展[J].林业科技开发,2009,23(4):6-12
    [25]Zhang S, Dai Y, Xie, X, et al. Surveillance of childhood blood lead levels in 14 cities of China in 2004-2006[J]. Biomedical and Environmental Sciences,2009,22:288-296
    [26]王耘,边红枫,刘静玲.长春市土壤铅污染及其对策[J].中国环境管理.2000,12(3):31-32
    [27]刘乃瑜,马小凡,谢忠雷等.长春市城市土壤中重金属元素的积累及其微生物特性研究[J].吉林大学学报(地球科学版),2004,34(增刊):134-138
    [28]郭平,谢忠雷,李军等.长春市土壤重金属污染特征及其潜在生态风险评价.[J]地理科学,2005,25(1):108-112
    [29]郭平,张毅军,万婷婷等.长春市土壤中Pb含量、化学形态和空间分布及其影响因素[J].吉林大学学报(地球科学版),2006,36(增刊):113-118
    [30]杨忠平,卢文喜,辛欣等.长春市城市土壤铅同位素组成特征及其来源解析[J].吉林大学学报(地球科学版),2008,38(4):663-669
    [31]郭亚平,胡曰利.土壤-植物系统中重金属污染及植物修复技术[J].中南林学院学报,2005,.25(2):59-62.
    [32]王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报,2005,25(3):596-605
    [33]Harris on R M, Laxen D P H, Wils on S J.Chemical ass ociation of lead, cadmium, copper and zinc in street dust and roadside soil[J].Environ. Sci.Technol.,1981,15:1378-1383.
    [34]Thornton I. Metal contamination of s oils in urban areas[A].In:Bullock P, Gregory P J. Soils in the Urban Environment [C].Blackwell,1991.47-75.
    [35]Hu XF.WuHX, ZhangGY, Fang SQ,Wu CJ. Impact of urbanizationon Shanghai's soil environmental quality [J]. Pedosphere, 2004,14(2):151-158
    [36]王慎强,陈怀满,,司有斌我国十壤环境保护研究的回顾与展望[J].十壤,1999,(5):255-260
    [37]Manta D S, Angelone M, Bellanca A,et al. Heavy metals in urban soils:A case study from the city of Palermo (Sicily), Italy[J]. Science of the Total Environment,2002,300(1/3):229-243
    [38]Wilcke W, Muller S, Kanchanakool N,et al. Urban soil contamination in Bangkok:Heavy metal and aluminium partitioning in topsoils[J]. Geoderma,1998,86(3/4):211-228
    [39]Wilcke W, Lilienfein J, Lima S D C,et al. Contamination of highly weathered urban soils in Uberlandia, Brazil[J]. Journal of Plant Nutrition and Soil Science,1999,162(5):539-548
    [40]卢瑛,龚子同,张甘霖.南京城市土壤中重金属的化学形态分布[J].环境化学,2003,22(2):131-136.
    [41]吴新民.潘根兴影响城市土壤重金属污染因子的关联度分析[J].土壤学报.2003,40(6):921-928.
    [42]张甘霖,赵玉国,杨金玲.城市土壤环境问题及其研究进展[J].土壤学报.2007.44(5):925-933
    [43]张甘霖,朱永官 傅伯杰.城市十壤质量演变及其生态环境效应[J].生态学报,2003,23(3):539-546.
    [44]黄勇,郭庆荣,任海等城市土壤重金属污染研究综述[J].热带地理,2005,25(1):14-18.
    [45]Pizl V., Josens G. Earthworm communities along a gradient of urbanization[J]. Environmental Pollution,1995,90(1):7-14
    [46]张辉,马东升.城市生活垃圾向土壤释放重金属研究[J].环境化学,2001,20(1):43-47
    [47]龙於洋,胡立芳,沈东升,等.城市生活垃圾中重金属污染研究进展[J].科技通报,2007,23(5):760-764
    [48]Sankam, Strnadm, Vondra, et al. Sources of Soil and Plant Contamination in an Urban Environment and Possible Assessment Methods[J]. International Journal of Environmental Analytical Chemistry,1995,59:327-343
    [49]Chen T B, Wong M H, Wong J W C, et al. Heavy Metal Distribution in Surface Soils of Hongkong and the Assessment of the Soil Environmental Quality:A Case Study [J]. Environmental Pollution,1997,96 (10):61-68
    [50]官东生,陈玉娟,阮国标.广州城市及近郊土壤重金属含量特征及人类活动的影响[J].中山大学学报:自然科学版,2001,40(4):94-101
    [51]卢瑛,龚子同,张甘霖.南京城市土壤重金属含量及其影响因素[J].应用生态学报,2004,15(2):123-126
    [52]马建华,张丽,李亚丽.开封市城区土壤性质与污染的初步研究[J].土壤通报,1999,30(2):93-96
    [53]陈华林,周江敏,金煜彬,等.温州城市土壤Cu, Zn, Pb含量及其形态研究[J].水土保持学报,2007,21(6):75-78
    [54]吴新民,潘根兴.城市不同功能区土壤重金属分布初探[J].土壤学报,2005,42(3):513-517
    [55]Zhixun Lin, Kristina Harsbo, Malin Ahlgren and Ulf Qvarfort. Thesource and fate of Pb in contaminated soils at the urban area of Falun in central Sweden [J]. The Science of the Total Environment,1998,209:47-581
    [56]Y Ge, P Murray, W H Hendershot. Trace metal speciation and bioavailability in urban soils [J]. Environmental Pollution, 2000,107:137-1441
    [57]陶澎,曹军,李本纲等。深圳市_土壤微量元素含量成因分析[J].土壤学报,2001,38(2):248-255
    [58]郑袁明,陈煌,陈同斌等。北京市土壤中Cr、Ni含量的空间结构与分布特征[J].第四纪研究,2003,23(4):436-445
    [59]王海燕,叶芳,王登芝等。北京市土壤重金属污染研究[J].城市环境与城市生态,2005,18(6):34-36
    [60]Gallego J L R, Ordonez A, Loredo J. Investigation of trace element sources from an Industrialized area(Aviles, northern Spain) using multivariate statistical methods[J]. Environment International,2002,27(7):589-596.
    [61]Sanka M, Strnad M, Vondra J, et al. Sources of soil and plant contamination in an urban environment and possible assessment methods. International Journal of Environmental Analytical Chemistry,1995,59:327-343
    [62]刘廷良,高松武次郎,左濑裕之.日本城市土壤的重金属污染.环境科学学报,1996,9(2):47-51.
    [63]菲尔汗·汉杰尔,潘丽英,陈勇,等.汽车废气中的铅对城市土壤污染状况调查[J].干旱环境监测,2002,16(3):1 54-161.
    [64]刘俊华,王文华,彭安.北京市二个主要工业区求污染及其来源的初步研究[J].环境科学学报,1998,18(3):331-336.
    [65]王起超,沈文国,麻壮伟.中国燃煤汞排放量估算[J].中国环境科学,1999,19(4):318-321.
    [66]孙卫玲,倪晋仁.泥沙吸附重金属研究中的若十关键问题[J].泥沙研究,2002,(6):55-56
    [67]章明奎,王美青.杭州市城市土壤重金属的潜在可淋洗性研究[J].十壤学报,2003.40(6):9 1 5-919
    [68]He Q B & Singh B R J. Effect of organic matter on the distribution, extractability and uptake of cadmium in soils[J]. Soil Science.1993.44(4):641-650
    [69]Wang D Y. Qing C L. Guo T Y. et al..Effects of humic acid on transport and transformation of mercury in soil-plant systems[J]. Water. Air, and Soil Pollution,1997,95(1/4):35-43
    [70]Sworth S M, Lees J A. The distribution of heavy metals in deposited dusts and sediments from Coventry. England[J]. Environmental geochemistry and health,1999,21(2):97-115.
    [71]Vousta D, Grimanis A, Samara C. Trace elements in vegetables grown in an industrial area in relation to soil and air particulate matter[J]. Environmental Pollution,1996,94 (3):325-335.
    [72]和莉莉,李冬梅,吴钢.我国城市十壤重金属污染研究现状和展望[J].土壤通报,2008,39(5):1210-1215
    [73]张浩,王济,曾希柏等.城市土壤重金属污染及其生态环境效应[J].环境监测管理与技术,2010,22(2):11-17
    [74]李恋卿,潘根兴,张平究等.太湖地区水稻土颗粒中重金属元素的分布及其对环境变化的响应[J].环境科学学报,2001,21(5):607-612.
    [75]Calabrese E J, Stanek E J, Barnes R. Methodology to estimate the amount and particle size of soil ingested by children: Implications for exposure assessment at waste sites[J]. Regulatory Toxicology And Pharmacology,1997,25 (1):87-87.
    [76]仇志军,姜达,陆荣荣,等.基于核探针研究的大气气溶胶单颗粒指纹数据库的研制[J].环境科学学报,2001,21(6):660-663.
    [77]DeMiguel E., Iribarren 1., Chacon E., Ordoez, A.,& Charlesworth, S. Risk-based evaluation of the exposure of children to trace elements in playgrounds inMadrid (Spain)[M].Chemosphere.2007,66,505-513.
    [78]Ng, S L, Chan, L S, Lam,K C,& Chan,W K.Heavy metal contents and magnetic properties of playground dust inHong Kong [J]. Environmental Monitoring and Assessment,2003,89:221-232.
    [79]蒋海燕,刘敏,黄沈发,等.城市土壤污染研究现状与趋势[J].安全与环境学报,2004,14(5):73-77.
    [80]WangHH,LiLQ,Wu XM, et a.l Distribution of Cu and Pb in particle size fractions ofurban soils from different city zones ofNan-jing[J]. China. Journal of Environmental Sciences,2006,18(3):482-487.
    [81]Cal-PrietoM J,Carlosena A, Andrade J M, et al. Antimony as tracer of the anthropogenic influence on soils and estuarine sediments[J]. Water Air Soil Pollution,2001,129:248-333.
    [82]汀权方,陈百明,李家永等.城市土壤研究进展与中国城市土壤生态保护研究[J].水土保持学报,2003,17(4):142-145
    [83]陈怀满,郑春荣,涂从,朱永官.中国土壤重金属污染现状与防治对策[J].AMBIO,人类环境杂志,1999,28(2):130-134
    [84]Sims J. T. Soil PH effeets on the distribution and Plant availability of Manganese Copper and Zine[J].Soil Science Soc. AM. J.1986,150:367-373.
    [85]杨居荣等.我国几种主要土类对重金属污染物的吸附特性[J]农业环境保护,1982.4:8-1 1
    [86]陈世宝等.有机质在土壤重金属污染治理中的应用[J].农业环境与发展,1997.3:26-29.
    [87]Elliott H A and BrownG A. Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils[J]. Water, Air and Soil Pollution,1989.45:361-369
    [88]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报.2004.35(3):366-370
    [89]Mulligan C N. Yong R N.and Gibhbs B F. Surfactant-enhanced remediation of contaminated soil:a Review[J]. Engineering Geology.2001.60(14):371-380.
    [90]周启星.土壤环境污染化学与化学修复研究最新进展[J].环境化学,2006,25(3):257-265
    [91]Probstein R F, Hick R E. Removal of contaminants from soils by electric fields [J]. Science,1993,260:498-503.
    [92]郑喜坤,鲁安怀等.土壤重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
    [93]薛生国.超积累植物商陆的锰富集机理及其对污染水体的修复潜力[D].浙江大学博士学位论文,2005
    [94]叶常明,王春霞,金龙珠.21世纪的环境化学[M]北京:科学出版社,2004
    [95]张孝飞,林玉锁,俞飞,等.城市典型工业区土壤重金属污染状况研究[J].长江流域资源与环境,2005,14(4):512-515.
    [96]Brooks RR. Plants that hyperaccumulate heavy metals[J]. Annals of B otany,1998,82(2):267-271.
    [97]P endergrass A, Butcher DJ. Uptake of lead and arsenic in food plants grown in contaminated soil from Barber Orchard NC[J].Microchem ical Journal,2006,83(1):14-16.
    [98]Baker A J M, Reeves R D and McGrath S P. In situ decontamination of heavy metal polluted soils using crops of metal-zccumulating plants:A feasilility study[J].In:Hinchey R E,Offenbach R F(eds.), In situ bioreclamatiaon. Butterworth Heinemann, Boston,1991,601-605
    [99]陈同斌,韦朝阳,黄泽春等.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3):207-210
    [100]韦朝阳,陈同斌,黄泽春等.大叶井口边草—一种新发现的富集砷的植物[J].生物学报,2002,22(5):777-778
    [101]杨肖娥,龙新宪,倪吾钟等.东南景天(Sedum alfredii H)-—一种新的锌超积累植物[J].科学通报,2002,47(13):1003-1006
    [102]Wei S-H (魏树和), Zhou Q-X(周启星),WangX(王新),et al.2005. A newly-discovered Cd-hyper accumulator Solanum nigrum L[J]. Chinese Science B ulletin(科学通报),50(1):33-38.
    [103]束文圣,杨开颜,张志权等.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究[J].应用与环境生物学报,2001,7(1):7-12
    [104]廖晓勇,陈同斌,阎秀兰.提高植物修复效率的技术途径与强化措施[J].环境科学学报,2007,27(6):881-893
    [105]王林,周启星.化学与工程措施强化重金属污染土壤植物修复[J].安全与环境学报,2007,7(5):50-56
    [106]王林,周启星.农艺措施强化重金属污染土壤植物修复[J].中国生态农业学报,2008,16(3):772-777
    [107]Lestan D, Luo C, Li X. The use of chelating agents in the remediation of metal-contaminated soils:A review[J]. Environmental Pollution,2008,153:3-13
    [108]张玉秀,黄智博,柴团耀.螯合剂强化重金属污染土壤植物修复的机制和应用研究进展[J].自然科学进展,2009,19(11):1149-1158
    109] Blais J F, Meunier N, Mercier G. New technologies for toxic metals removal from contaminated sites[J]. Recent Patents on Engineering,2010,4:1-6
    110] Luo C L, Shen Z G, Li X D. Ehanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere,2005, 59:1-11
    [111]杨智宽,舒俊林,刘良栋.壳聚糖螫合剂对Pb污染土壤植物修复的促进作用[J].农业环境科学学报,2006,25(1): 86-89
    [112]魏岚.陈亚华.钱猛等.可降解螯合剂EDDS诱导植物修复重金属污染十壤的潜力[J].南京农业大学学报,2006,29(2) :33-38
    [113]Huang J W, Chen J, Berti W R, et al. Phytoremediation of lead-contaminated soils:Role of synthetic chelates in lead phytoextraction[J]. Environmental Science & Technology,1997,31:800-805
    [114]Chen Y X, Lin Q, Luo Y M, et al. The role of citric acid on the phytoremediation of heavy metal contaminated soil[J]. Chemosphere,2003,25:807-811
    [115]肖璇.油菜和向日葵修复Pb污染土壤的研究[D].西北农林科技大学颂士学位论文,2009
    [116]]王恒.螯合剂对黑麦草(Loliurn perenne L.)铅锌富集及养分吸收的影响[D].四川农业大学颂士学位论文,2009
    [117]Alkorta I, Hernandez-Allica J, Becerril J.M., et al. Chelate-enhanced phytoremediation of soils polluted with heavy metals[J]. Reviews in Environmental Science and Biotechnology,2004,3:55-70
    [118]Soleimani M, Hajabbasi M A, Afyuni M, et al. Comparison of natural humic substances and synthetic ethylenediaminet etraacetic acid and nitrilotriacetic acid as washing agents of a heavy metal-polluted soil[J]. Journal of Environmental Quality, 2010,39:855-862
    [119]赵中秋,席梅竹,降光宇等.冬氨酸二丁二酸醚(AES)诱导黑麦草提取污染土壤重金属的效应[J].环境化学,2010,29(3):407-411
    [120]Wenger K, Kayser A, Gupta S K, et al. Comparison of NTA and elemental sulfur as potential soil amendments in phytoremediation[J]. Soil and Sediment Contamination:An International Journal,2002,11:655-672
    [121]Angin 1, Turan M, Keterings Q M, et al. Humic Acid Addition Enhances B and Pb Phytoextraction by Vetiver Grass (Vetiveria zizanioides (L.) Nash) [J]. Water, Air, & Soil Pollution,2008,188:335-343,
    [122]杜葳.螯合诱导修复中天然螯合剂的筛选研究[D].东北林业大学硕士学位论文,2008
    [123]李玉双,孙丽娜,王升厚等.EDTA对4种花卉富集Cd、Pb的效应[J].环境科学与技术,2007,30(7):16-17,34
    [124]邢前国,潘伟斌,张太平.金属污染土壤的植物修复技术[J].生态科学,2003,22(3):275-279
    [125]王鸣刚,任小换,刘晓风.植物修复重金属污染土壤的机理及其应用前景[J].廿肃农业大学学报,2007,5(42):108-113.
    [126]Kenlampi S., Schat H., Vangronsveld J.,et al.. Genetic engineering in the improvement of plants for phytoremediation of metal polluted soil[J]. Environmental Pollution,2000,107:225-231
    [127]骆永明金属污染土壤的植物修复[J].十壤,1999,31(5):261-265
    [128]程国玲,杜葳,马晓凤等.重金属污染十壤植物修复技术及其辅助措施的结合应用[J].东北林业大学学报,2008,36(11):101-103
    [129]刘家女,周启星,孙挺等.花卉植物应用于污染十壤修复的可行性研究[J].应用生态学报,2007,18(7):1617-1623.
    [130]张频,连芳青,米美英等.抗污染园林植物的选择[J].江西农业大学学报,2004,26(6):941-943.
    [131]杨晓泉.卞华伟.食品毒理学[M].北京:中国轻工业出版社,1999,115-121
    [132]邓碧云,陈下成.城市十壤铅污染的分布特征及治理措施[J].微量元素与健康研究2006,23(4):36-38
    [133贾玲侠.宋文斌.城市铅污染对人体健康的影响及防治措施[J].微量元素与健康研研究2007.24(6):38-41
    [134]黄吕勇.土壤学[M].北京:中国农业出版社,2000.
    [135]张春兴,张有标,黄会一.利用树木叶片铅含量指示大气铅污染状况的研究[J].生态学杂志,1996,17(2):74-76,96
    [136]Ter Haar G., Environment Sciece[M],Plant and soil,1997,36 (4):226
    [137]朱颜明译.微量元素地理学[M].北京:科学出版社,1987:214-216
    [138]索有瑞,黄雅丽.西宁地区公路两侧土壤和植物中铅含量及其评价[J].环境科学,1996,17(2):74-76,96。
    [139]张志红,杨文敏.汽油车排出颗粒物化学组分分析[M].中国公共卫生.2001.17(7):623-624
    [140]陈炳卿,孙长.食品污染与健康[M].北京:化学工业出版社,2002.155-160.
    [141]王夔.生命科学中的微量元素[M].北京:中国计量出版社,1996.
    [142]Drazkiewicz M. Chlorophyll-occurrence, functions, mecha-nism of action, effects of internal and external factors[J]. Photosyntheti-ca,1994(30):321-331.
    [143]Walker W.M.and Hassett J.J. Effect of lead and cadmium upon the calcium, magnesium, potassium and phosphorus concentra-tion in young corn plants[J].Soil Science,1977,124:145-151.
    [144]Verma S and Dubey R.S. Lead toxicity induces lipid peroxi-dation and alters the activities of antioxidant enzymes in growing rice plants[J].Plant Science,2003,164(4):645-655.
    [145]朱燕华.草坪植物对铅的耐性及富集特征[D].扬州大学硕士学位论文,2008.6
    [146]贾玉华,朱建雯,钱翌等.天竺葵对土壤中铅的吸收和耐性研究[J].新疆农业大学学报,2008,31(4):38-40.
    [147]韩玉林.鸢尾属(Iris L.)植物铅积累、耐性及污染土壤修复潜力研究[D].南京:南京农业大学,2007.
    [148]林淳纯,陈尊贤.孔雀草、非洲凤仙及美女樱对污染土壤镉铅累积吸收之研究[A].见:李保国,张福锁.中国土壤学会第十一届全国会员代表大会暨第七届海峡两岸土壤肥料学术交流研讨会论文集(下)[C].北京:中国农业大学出版社,2008:253-258.
    [149]Vassil A D, Apulnik Y,Ruskin L, et al.The role of EDTA in lead transport and accumulation in Indian mustard[J].Plant Physioloy,1998,117(2):447-453.
    [150]Lim J M,Salido A L,Butcher D J. Phytoremediation of lead using India mustard (Brassica, juncea) with EDTA and electrodics[J]. Microchemical Journal,2003,76(1):3-9
    [151]刘艳.北京市崇文区绿地表层土壤质量研究与评价[D].北京:中国林业研究院博士论文,2009,7
    [152]章家恩,徐琪.城市土壤的形成特征及其保护[J].十壤.1997,4:189-193
    [153]管东生,何坤志,陈玉娟.广州城市绿地土壤特征及其对树木生长的影响[J].环境科学研究,1998,11(4):51-54
    [154]管东生,丁健,王林.旅游和环境污染对广州城市公园森林植被和土壤的影响[J].中共环境科学,2000,20(3):277-280
    [155]史正军,吴冲,卢瑛.深圳市主要公园及道路绿地十壤重金属含量状况比较研究[J].土壤通报,2007,38(1):133-136
    [156]于法展,尤海梅,李保杰等.徐州市不同功能城区绿地土壤的理化性质分析[J].水土保持研究,2007,14(3):85-88
    [157]包兵,丁武泉,吴丹.重庆市城区园林土壤质量现状研究[J].环境科学与技术,2008,31(12):51-52,156
    [158]吴克宁,韩春建,孙志英等.城市化过程中十壤肥力的时空变化分析[J].十壤通报,2007,38(2):242-246
    [159]盂昭虹,周嘉.哈尔滨城市十壤理化性质研究[J].哈尔滨师范大学自然科学学报,2005,21(4):102-105
    [160]劳家柽.土壤农化分析手册[M].北京:农业出版社,1988.
    [161]李纯、岑况.王雪.北京市主要公园十壤中铅含量及污染评价[J].环境科学与技术.2006,29(10):64-66
    [162]郑袁明.余轲.吴泓涛.等.北京城市公园十壤铅含量及其污染评价[J].地理研究.2002,21(4):418-424.
    [163]Tyutyunik Y G. Dependence of the content of heavy metals in urban soils on atmospheric pollution[J]. Eurasian Soil Science,1993,25(4):18-21
    [164]陈恩凤等,十壤肥力实质的研究1.黑土[J]._土壤学报,1984,21(3):229-237
    [165]陈恩凤,周礼恺,武冠云.微团聚体的保肥供肥性能及其组成比例在评判十壤肥力中的作用[J].十壤学报,1994,31(1):18-28
    [166]陈恩凤,关连珠,汪景宽等.土壤特征微团聚体的组成比例与肥力评价[J].土壤学报,2001,38(1):49-53
    [167]Slam K R,Weil R R.Land use effects on soil quality in a tropical forest ecosystem of Bangladesh[J].Agriculture Ecosystem & Environment,2000,79:9-16
    [168]罗新正,孙广友.松嫩平原含盐碱斑的重度盐碱化草甸土种稻脱盐过程[J],.生态环境,2004,13(1):41-50
    [169]邱仁辉,杨玉盛,陈光水等.森林经营措施对土壤的扰动和压实影响[J].山地学报,2000,18(3):231-236
    [170]单奇华,李卫正,俞元春等.南京城市林业土壤的肥力特征分析[J].江西农业大学学报,2008,30(1):86-89,98
    [171]Hajabbasi M A,Ahmad alalian,Hamid R.K.Deforestation effect in soil physical and chemic M propeics, Lordgan, Iran[J].Plant and Soil,1997:301-308.
    [172]王秀兰,包玉海.土壤利用变化研究方法探讨[J],地球科学进展,1999,18(1):81-86
    [173]张崇宝.长春市街路土壤分析与改善措施[J],中国园林,2004,10:42-44
    [174]王辛芝.南京市公园绿地土壤性质及其变化特征[D].南京:南京林业大学.2006
    [175]卢瑛,甘海华.深圳城市绿地土壤肥力质量评价及管理对策[J].水土保持学报,2005,19(1):153-156.
    [176]王永.长春市不同利用方式土壤有机碳及其组分数量特征的研究[D卜长春:吉林农业大学.2010
    [177]杨忠平.长春市城市重金属污染的生态地球化学特征及其来源解析[D].长春:吉林大学,2008
    [178]陈中赫,刘敬娟.辽宁铁岭农田耕层土壤养分状况及其变化[J].土壤通报,2003,34(1):77-78
    [179]全国土壤普查办公室.中国土壤[M].北京:中国农业出版社,1998
    [180王永,李春阳,李翠兰等.长春市不同利用方式土壤有机碳数量特征的初步研究[J].吉林农业大学学报,2011,33(1):51-56
    [181]吉林省土壤肥料总站.吉林土壤[M].北京:中国农业出版社,1998
    [182]鲁如坤.土壤农业化学分析方法[M].北京:北京农业科技出版社,1999:107-240.
    [183]张甘霖,卢瑛,龚子同等.南京城市十壤某些元素的富集特征及其对浅层地下水的影响[J].第四纪研究,2003,23(4):446-453
    [184]中国环境监测总站.中国十壤元素背景值[M].北京:中国环境科学出版社,1990.
    [185]盂宪玺,李生智,吉林省土壤元素背景值研究[M].北京:科学出版礼,1995,64-69
    [186]Tam, N F Y.Liu W K.Wong M H,et al..Heavy metal Pollutionin roadside urban Parks and gardens in Hong Kong[J]. Seience of theTotal Environment,1986,59:325-328.
    [187]张菊.陈振楼.许世远等.上海城市街道灰尘重金属铅污染现状及评价[J].环境科学.2006.27(3):519-523
    [188]殷云龙,宋静,骆永明等.南京市城乡公路绿地土壤重金属变化及其评价[J].土壤学报,2005,42(2):206-210
    [189]史贵涛,陈振楼,许世远等.上海市区公园土壤重金属含量及其污染评价[J].土壤通报,2006,37(3):490-494
    [190]Stone M,Marsalek J.Trace metal composition in street sediment:Sault site.Marie,Canada[J].Water,Air and Soil Pollution, 1996,87:149-169
    [191]Wang W H,Wong M H,Leharne S,et al.Fractionation and biotoxicity of heavy metals in urban dusts collected from Hong Kong and London [J].Environmental Geochemistry and Health,1998,20:185-198
    [192]闫小红,曾建国,周兵,等.10种绿化植物叶片对铅·锌吸收能力的研究[J].安徽农业科学,2009,37(29):14137-14139,14159
    [193]蒋高明.植物硫含量法监测大气污染数量模型[J].中国环境科学,1995,15(3):208-214.
    [194]陈学泽,谢耀坚,彭重华.城市植物叶片金属元素含量与大气污染的关系[J].城市环境与城市生态,1997,10(1):45-47.
    [195]闵运江.六安市区常见树附生苔藓植物及其对大气污染的指示作用研究[J].城市环境与城市生态,1997,10(4):31-33.
    [196]梁淑英,夏尚光,胡海波.南京市15种树木叶片对铅锌的吸收吸附能力[J].城市环境与城市生态,2008,21(5):21-24
    [197]马跃良,桂梅,王云鹏等.广州市区植物叶片重金属元素含量及其大气污染评价[J].城市环境与城市生态2001,14(6):28-30
    [198]王崇臣,黄忠臣.北京市区植物叶片铅镉污染现状.北京建筑工程学院学报,2008,24(3):23-25,29
    [199]杨义波,赵大生,程振田.长春市街路园林植物结构的研究[J].长春大学学报,2007,17(1):87-89
    [200]王晓红,王雅琴,王素玲.长春市园林绿化树种的选择[J].东北林业大学学报,2006,34(5):95-97
    [201]谷颐.长春市露地栽培多年生草本花卉的调查研究[J].长春大学学报,2007,17(1):81-83
    [202]何蓉,张学星,周筑,施莹,邵金平.几种城市绿化树种叶片中铅砷铬镉汞元素的含量特征[J].西部林业科学,2005,34(3):11-24.
    [203]韦进宝,吴峰.环境监测手册[M].北京:化学工业出版社,2006
    [204]王翠香,房义福,吴晓星等.21种园林植物对环境污染物吸收净化能力的研究[J].山东林业科技.2006,6:11-1 3
    [205]江苏省植物研究所.城市绿化与植物保护.北京:中国建筑工业出版社.1977,5,62
    [206]任乃林,陈玮彬,黄俊生等.用植物叶片中重金属含量指示大气污染的研究[J],广东微量元素科学,2004,11(10):41-45
    [207]姜虎生,汤沽,刘丽.城市公路两侧树叶铅、锅含量的测定[J].甘肃科学学报,2008,20(4):48-50
    [208]杜振宇,邢尚军,宋玉民等.山东省高速公路主要绿化树木叶片硫、铅含量分析[J].生态环境2007,16(6):1608-1611
    [209]王春梅,王汝南.沈阳市力加杨(Populus Canadensis)叶铅污染的空间分布[J].生态环境学报,2009,18(4):1307-1311
    [210]薛姣亮,刘红霞,谢映平城市空气中铅在国槐树体内SO2的积累[J].中国环境科学,2000,20(6):536-539.
    [211]韦朝阳,陈同斌,重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1196-1203
    [212]王庆仁,崔岩山,董艺婷.植物修复—重金属污染土壤整治有效途径[J].生态学报,2001,21(2):326-331.
    [213]邵泽强,李翠兰,张晋京.花卉植物修复铅污染土壤的研究现状与展望[J].环境科学与管理,2010,35(9):23-25.
    [214]国家自然科学基金委员会编.十壤学[M].北京:科学出版社,1996.
    [215]窦森,姜岩.土壤施用有机物料后重组有机质变化规律的探讨Ⅱ.腐殖质组成和胡敏酸光学性质[J].土壤学报,1988, 25(3):252-261.
    [216]吴景贵.王明辉.姜亦梅等.玉米秸秆还田后土壤胡敏酸变化的谱学研究[J].中国农业科学,2005,38(7):1394-1400.
    [217]张晋京.窦森.施用牛粪对棕壤富半酸结构特征的影响[J].植物营养与肥料学报,2003,9(1):75-80.
    [218]吴景贵,王明辉,姜亦梅等.施用玉米植株残体对十壤富里酸组成、结构及其变化的影响[J].土壤学报,2006,43(1):133-141
    [219]窦森,张晋京Lichtfouse E等.用δ16方法研究玉米秸秆分解期间土壤有机质数量动态变化[J].土壤学报,2003,40(3):328-334.
    [220]张晋京,窦森,黄亚澄.特定培养条件下土壤有机质分解转化规律的研究[J].水土保持学报,2004,18(5):23-26.
    [221]张晋京,窦森.玉米秸秆分解期间胡敏酸、富里酸动态变化的研究[J].土壤通报,2005,36(1):134-136.
    [222]李翠兰,张晋京,窦森等. 玉米秸秆分解期间土壤腐殖质数量动态变化的研究[J].吉林农业大学学报,2009,31(6):729-732.
    [223]王旭东,关文玲,陈多仁.纯有机物料腐解形成腐殖物质性质的动态变化[J].西北农林科技大学学报(自然科学版),2001,29(5):88-91.
    [224]陈怀满等.土壤中化学物质的行为与环境质量[J].矿物学报,2000,64:45-50
    [225]王意锟.有机物料、粘土矿物对重金属污染土壤的修复[D].南京林业大学,2009,6
    [226]文启孝.土壤有机质研究法[M].北京:农业出版社,1984,112-124
    [227]李光林,魏世强,牟树森.土壤胡敏酸对Pb的吸附特征与影响因素[J].农业环境科学学报,2004,23(2):308-312
    [228]刘峙嵘,周利民,韦鹏等.胡敏素在水溶液中吸附镍[J].石油化工高等学校学报,2007,20(2):5-8
    [229]卢丹丹.以纤维素类生物废弃物—草为基质的新型吸附材料的制备及其对吸附重金属Pb(Ⅱ)和Cd(Ⅱ)的应用研究[D].东北师范大学,2009,5
    [230]谢忠雷,董德明,赵晓松等.草甸黑土对铜镍铅砷的吸附特征[J].吉林大学自然科学学报,2000,4:99-101
    [231]Todd A C, Wetmur 3 G, Moline J M, et al. Unraveling the chronic toxicity of lead:An essential priority for environmental health [J]. Environmental Health Perspectives,1996,104 (11):141-146.
    [232]郑世英,王丽燕,商学芳,等.铅胁迫对玉米种子萌发及叶片渗透调节物质含量的影响[J].安徽农业科学,2006,34(21):5471-5472
    [233]邱清华,邓绍云,黄娟等。铅胁迫对十字花科种子萌发及幼苗生长的影响[J].[J].中国农学通报,2010,26(18):175-179
    [234]张含辉,曹铭寻.Hg2+、Pb2+对小白菜种了萌发的影响研究[J].广西园艺,2004,15(4):2-3.
    [235]仇硕,黄苏珍.镉(Cd)胁迫下黄莒蒲种子荫发和幼根生长的影响[J].北方园艺,2007,11:68-70
    [236]王树会,许美玲.重金属铅胁迫对不同烟草品种种了发芽的影响[J].种了,2006,25(8):27-29.
    [237]王鸿燕,黄苏珍.Pb胁迫对马蔺种了萌发和幼苗根尖细胞有丝分裂的影响[J].植物资源与环境学报,2009.18(2):53-56
    [238]Zhou W B, Qiu B S. Effects of cadmium hyperaccumulation physiological characteristics of Sedum alfredill Hance (Crassulaceae) [J]. Plant Science.2005,169:737-745
    [239]Wilkins D A.A technique for the measurement of lead tolerance in plants[J]. Nature 1957,180:37-38
    [240]贾永华.四种花卉种子解除休眠及萌发生理的研究[D].西北农林科技大学硕士论文,2006,6
    [241贺士元.北京植物志[M].北京:北京出版社:,1992.
    [242]刘长江.中国植物种子形态学研究方法和术语[J].西北植物学报,2004,24(1):178-188.
    [243]彭胜巍,周启星,张浩,等.8种花卉植物种子萌发对石油烃污染土壤的响应[J].环境科学学报,2009,29(4):786-790
    [244]王鸿燕,黄苏珍.Pb胁迫对马蔺种子萌发和幼苗根尖细胞有丝分裂的影响[J].植物资源与环境学报,2009,18(2):53-56
    [245]杨晓玲.凤仙花和万寿菊对铅胁迫的生理响应及其对铅污染土壤的修复[D].湖南农业大学硕士学位论文,2008.6
    [246]唐为萍,陈树思,陈琳.铅处理对含羞草种子荫发及幼苗生长的影响[J].湖北农业科学,2009,48(11):2777-2779
    [247]黄铭洪.环境污染与生态恢复[M].北京:科学出版社.2003:176-177
    [248]杨梅生,梁海永,王进茂等.水平胁迫下白杨双交杂种无性系苗生长研究[J].河北农业大学学报,2002,25(4):2-6,24
    [249]陆引罡.铅镍富集植物的筛选及根际微生态特征[D].西南大学博士学位论文,2006,3
    [250]朱云集,王晨阳,马元喜等.砷胁迫对小麦根系生长及活性氧代谢的影响[J].生态学报,2000,20(4):707-710
    [251]Piechalak A, Tomaszewaska B and Baralkiewisz D. Accumulation and detoxification of lead ion in legumes[J]. Phytochemistry,2002,60:153-162
    [252]张兆金.土荆芥对铅胁迫的生理响应及其对铅污染土壤的修复[D].南京林业大学硕士学位论文,2006,6
    [253]Chaney R L, Malik M,Li YM,ect.al.Phytoremediation of soi lmetals [J]. Current Opinion in Biotechnology.2002,8:279-284
    [254]周启星.污染土壤修复的技术再造与展望[J].环境污染治理技术与设备,2002,3(8):36-40.
    [255]牛之欣,孙丽娜,孙铁珩.水培条件下四种植物对Cd、Pb富集特征[J].生态学杂志,2010,29(2):261-268.
    [256]沈振国,刘友良.1995.重金属超积累植物研究进展[J].植物生理学通讯.34(2):133-139
    [257]刘家女,周启星,孙挺Cd-Pb复合污染条件下3种花卉植物的生长反应及超积累特性研究[J].环境科学学报,2006,26(12):2039-2044.
    [258]Tanhan P, Kruatrachue M, Pokethitiyook P, et al. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson] [J]. Chemosphere,2007,68:323-329.
    [259]林长存.不同营养水平和EDTA对铅污染土壤植物修复的影响及植物对铅胁迫响应的研究[D].师大博士论文,2009,6
    [260]唐世荣.污染环境植物修复的原理与方法[M].北京:科学出版社,2006.
    [261]Baker A J M, Brooks R R, Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry [J], Biorecovery,1989:81-126.
    [262]Alkorta, I., Hernande-Allica, J.J.,Becerril, J.M., et al. Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such an zinc, cadmium, lead, and arsenic[J]. Science and Bio/Technology, 2004,3:71-90
    [263]Liu Z L, He X Y, Chen W, et al. Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator— Lonicera japonica Thunb [J]. Journal of Hazardard Materials,2009,169:170-175.
    [264]Barker A J M, Reevers R D, Mcgrath SR. In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants-a feasibility study[C]. Hinchee RE, Olfenbuttel RF,editors,In situ bioreclamation[A].Butterworth, 1991.539-544
    [265]Salt D E. Smith R D.Raskin Ⅰ. Phytroremediation Annual Review of Plant[J] Molecular Biology,1998,49:643-648
    [266]Sahi S V,Bryant N L.Sharma N C.et al.Characterization of a lead hyperaccumulator shrub. Sesbania drummondii[J]. Environmental Science Technology,2002,36:4676-4680.
    [267]何冰.东南景天对铅的耐性和富集特性及其对铅污染土壤修复效应的研究[D].浙江大学博士学位论文,2003.5
    [268]崔爽.铅超积累花卉的筛选与螯合强化及其应用[D].沈阳:中国科学院研究生院,2007.
    [269]Long X.X., Yang X.E., Ye Z.Q., et al. Differences of uptake and accumulation of Zinc in four species of Sedum[J]. Acta Botanica Sinica,2002,44:152-157.
    [270]Schwartz C., Echevarria G, Morel J.L. Phytoextraction of cadmium with Thlaspi caerulescens[J]. Plant and Soil,2003, 249:27-35.
    [271]孔令韶.植物对重金属元素的吸收积累及忍耐、变异[J].环境科学,1982,1:65-69.
    [272]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001.
    [273]Begonia GB., Davis C D, Begonia M.F. et al.. Growth responses of Indian Mustard(Brassicajuncea (L.) Czern.) and its phytoextraction of lead from a contaminated soil[J].Bulletin of Environmental Contamination and Toxicology,1998,61:38-43.
    [274]杜连彩.铅污染土壤植物修复中螯合诱导技术的应用现状与前景[J].潍坊学院,2006,6(4):88-89.
    [275]周启星,宋玉芳.污染土壤修复的原理与方法[M].北京:科学出版社,2004
    [276]Fayiga A,Ma L..Arsenic uptake by two hyper accumulator fems from arsenis contaminated soil [J].Water Air and Soil Pollution,2005,168(1/4):71-89
    [277]Monni S, Salemaa M, White C,et al. Copper resistance ofCalluna vulgarisoriginating from the pollution gradient of a Cu-Ni smelter, in south-west Finland[J]. Environmental Pollution,2000,109:211-219.
    [278]Arazi T,Kaplan B,Sunkar R,et al.Cyclicnucleotide and Ca2+/calmodulin-regulated channels in plants:Targets for manipulating heavy-metal tolerance,and possible physiological roles[J].Biochemistry Soc Trans,2000,28:471-475.
    [279]Liu J G,Li K Q,Xu J K,et al.Lead toxicity, uptake, and translocation in different rice cultivars[J]. Plant Science,2003, 165:793-802.
    [280]He J-Q, Xu J-L, Yang J-R, et al..Study of the extractants for availableCd, Cu, Zn and Pb in soil[J]. Agro-Environmental Protection,1994,13 (8):246-251.
    [281]Xu Y-P, Liu F-Z, Cai Y-M, et al. Study of the extractants for available Pb and Cd in soil[J]. Agro-Environment and Development,2005,22 (4):46-48.
    [282]骆永明.金属污染土壤的植物修复[J].土壤,1999,6:261-265,280
    [283]林琦,陈怀满,郑春荣.根际和非根际土中铅、镉行为及交互作用的研究[J]浙江大学学报(农业与生命科学版),2000.26(5):527-532.
    [284]Schmidt U. Enhancing phytoextraction:the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals[J]. J Environ Qual,2003.32:1939-1954.
    [285]Liphadzi M S. Kirkham M B. Availability and plant uptake of heavy metals in EDTA-assisted phytoremediation of soil and composted biosolids[J]. S Afr J Bot,2006,72:391-397.
    [286]Lopez M L, Peralta-Videa J R, Benitez T, et al. Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter[J]. Chemosphere,2005,61:595-598.
    [287]廖晓勇,陈同斌,谢华等.磷肥对砷污染土壤的植物修复效率的影响:田间实例研究[J].环境科学学报,2004,24(3):455-462

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700