假型猪瘟病毒体系构建及衣壳蛋白靶向灭活策略抗猪瘟病毒感染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪瘟(Classical Swine Fever, CSF)是一种由猪瘟病毒(Classical Swine Fever virus, CSFV)引起的急性、热性和高度接触性的传染病,流行广泛,发病率高、死亡率高,危害极大,给世界和我国的养猪业造成严重经济损失。其特征为发病急,高热稽留和微血管壁变性、引起全身泛发性小点出血、脾梗死等。世界动物卫生组织(OIE)将本病列入A类法定的传染病,并规定为国际重点检疫对象。在我国制定的《家畜家禽防疫条例实施细则》中也被列为一类传染病。
     在进行对于猪瘟等致病性和传染性很强的病毒,操作活毒都会面临着高风险,假病毒技术是一种非常有效的研究手段。假病毒是指一种反转录病毒的囊膜糖蛋白被另外一种病毒的囊膜蛋白所置换,而基因组仍保持反转录病毒本身的特性。因为其仅能引起单循环感染(复制缺陷型),作为研究病毒的侵入模型是非常安全的,便于研究病毒的侵入机制、组织嗜性、中和抗体分析以及受体的鉴定等。另外,虽然世界上多采用疫苗免疫来控制猪瘟的流行,但是免疫失败或免疫无效现象常有发生,因此探索新的行之有效的抗病毒策略已经成为当务之急。衣壳蛋白靶向性抗病毒灭活(capsid-targeted antiviral inactivation; CTVI)是近年来兴起的基于胞内免疫的抗病毒策略,其基本原理是在病毒的组装过程中将特定的核酸酶引入到病毒颗粒内部,破坏病毒基因组,从而达到灭活子代病毒的目的。
     因此本研究构建了猪瘟病毒囊膜糖蛋白的假病毒体系,应用该体系研究了囊膜蛋白对猪瘟病毒侵入细胞的重要性,鉴定了病毒感染的宿主细胞谱;并建立了可替代活病毒在操作上更安全的猪瘟病毒中和试验技术平台,利用该技术平台对临床免疫囊膜糖蛋白E2的B细胞表位亚单位疫苗免疫猪群进行了中和抗体检测。同时,利用CTVI原理,构建了猪瘟病毒衣壳蛋白(Cap)与葡萄球菌核酸酶(SNase)的融合蛋白的PK-15细胞系,通过IFA、Q-PCR和ELISA证明稳定表达融合蛋白的细胞系可以抑制猪瘟病毒的增殖。论文的主要研究内容如下:
     1.猪瘟病毒囊膜糖蛋白的克隆及其在293T中的表达
     通过反转录-聚合酶链式反应(RT-PCR)扩增了猪瘟病毒(CSFV) Shimen株囊膜糖蛋白E0、E2和E012三个完整的阅读框基因并进行了克隆与序列鉴定,分别将其插入真核表达载体pcDNA3.0,构建了重组真核表达质粒pcDNA-E0, pcDNA-E2和pcDNA-E012。将此3个质粒经大量提取并纯化后,经磷酸钙转染人胚肾细胞(293T)。采用兔抗猪瘟高免血清为一抗,FITC-SPA为二抗,分别应用流式细胞术(FACS)和免疫转印(Western blot)鉴定真核质粒在293T细胞中的表达。结果表明3个质粒均可在293T细胞中表达,Western blot检测分析到了25.7、41.5和90kDa的3个条带,FACS检测到荧光细胞比例分别为60.2%、55.2%和56.5%。说明囊膜糖蛋白E0、E2和E012均能表达在细胞膜上,为后续假病毒颗粒的形成奠定了基础。
     2.构建整合囊膜糖蛋白的假型猪瘟病毒体系及其鉴定
     将上述已经鉴定的重组真核表达质粒pcDNA-E0, pcDNA-E2和pcDNA-E012分别与MuLv假型病毒构建体系的两种骨架载体pHIT60(包括MuLV的结构蛋白基因,即gag和pol)和pHIT111(为MuLV的基因组,还包括一个报告基因LacZ)经磷酸钙瞬时共转染293T细胞,48h后收集假病毒上清,超速离心后纯化假病毒颗粒。用抗CSFV的多抗为一抗,通过Western blot证明了整个囊膜糖蛋白E012能够在假病毒颗粒表面表达,说明E012能够整合到MuLv病毒粒子表面,该假型猪瘟病毒感染SK6、PK-15、ST、BHK21、Vero、COS7、293T和CEF等8种细胞,48h后检测发现只有在猪源细胞SK6、PK-15和ST中标记基因Lac Z能有效表达,表明所构建的假病毒具有感染性,但只能够感染猪源细胞。因此通过该假型猪瘟病毒进一步证实了猪瘟病毒对猪的单一嗜性。另外,纯化后的病毒经Reed-Muench计算其TCID50为104.58。
     加入各种浓度的NH4Cl(0~30 mmol/L)预先处理PK-15细胞,37℃温育1h,而后加入MuLV-E012作用,48h后,检测Lac Z.表达量;同时设pH依赖性的MuLV-VSV-G为阳性对照。实验结果表明MuLV-E012感染性与NH4Cl浓度存在极显著的线性负相关性,即随着pH值的升高,假型病毒MuLV-E012对PK-15细胞感染能力逐渐降低,而当NH4Cl浓度达到30 mmol/L时MuLV-E012进入宿主细胞几乎被完全抑制。因此通过假型猪瘟病毒证实了猪瘟病毒侵入细胞是受到pH影响的,即是pH值依赖型囊膜病毒。
     为避免操作活的病毒带来的搞危险性,本研究利用假型猪瘟病毒建立了微量中和试验。标准阴阳性血清和倍比稀释的待检血清56℃灭活30min后,对每份血清进行2倍梯度稀释,分别与假病毒MuLV-E012按1:1混合,4℃过夜。分别取100-tL上述病毒血清混合物一式3份加到96孔板PK15细胞中,建立了微量中和试验,与全病毒微量中和试验进行了比较,实验结果表明所建立的方法能够代替全病毒进行血清中和抗体滴度的测定,能够检测临床血清的猪瘟抗体中和效价。
     3.假病毒微量中和试验评价CSFV E2 B细胞表位亚单位疫苗免疫效果
     本研究目的是将E2的B细胞表位a(aa844-865)和b(aa693-716)串联和单独原核表达后研制亚单位疫苗,通过上述建立的假病毒微量中和试验评价亚单位疫苗的免疫效果,鉴定联合表位的优越性。实验优化了含有重组质粒(pET-rE2-a、pET-rE2-b和pET-rE2-ba)的BL21 (DE3)大肠杆菌的表达条件,将重组工程菌(BL21-rE2-a、BL21-rE2-b和BL21-rE2-ba)大量诱导表达,通过His-Bind螯合层析柱纯化融合蛋白,经SDS-PAGE和薄层扫描分析,结果表明:融合蛋白rE2-a, rE2-b和rE2-ba获得了较好的纯化。用猪抗CSFV阳性血清为一抗,HRP-SPA为二抗,DAB显色表明分别在22、22和25 kDa处出现明显条带,与预期大小相符,证实表达纯化的蛋白rE2-a、rE2-b和rE2-ba有良好的抗原性。将此3个重组蛋白分别与SEPPIC 206 VG白油佐剂进行乳化后免疫6周龄猪瘟抗体阴性的三元商品仔猪,间隔2周再疫1次。2免后3周所有实验组用200TCID50的猪瘟石门株进行动物攻毒实验。各组仔猪在初免后间隔7d采血,应用假病毒微量中和试验检测血清中和抗体水平。实验期间,观察攻毒后各组临床症状、发病率、死淘率和保护率,每天测量实验猪的肛温。
     动物实验结果表明:3个重组蛋白rE2-a (A组)、rE2-b (B组)和rE2-ba (C组)均能诱导仔猪产生中和抗体水平,在攻毒后4周,中和抗体分别达到64、128和256;而疫苗组(D组)为128。重组蛋白组的保护率分别达到80%、100%和100%,D组也达到100%,因此说明B或C组产生的中和抗体达到或超过D组,免疫保护率可以与D组相当。攻毒后,A-C组的仔猪仅出现轻微的发热,但是持续时间不长,几乎全部健活;仅A组1头仔猪在发热过程中因为受到细菌继发感染,其死亡剖检发现有轻微的猪瘟病变,说明A组保护率欠缺。空白对照组(E组)的仔猪没有中和抗体产生,出现明显的猪瘟临床症状,攻毒后3周全部死亡。该结果为猪瘟病毒囊膜糖蛋白E2 B细胞表位亚单位疫苗的临床应用奠定了基础。
     4.构建稳定表达CSFV Cap蛋白和SNase融合蛋白的细胞系
     猪瘟病毒为有包膜的RNA病毒,位于病毒颗粒内部的衣壳蛋白与病毒的RNA结合构成病毒的核衣壳,因此我们可以考虑利用CTVI的原理,构建猪瘟病毒衣壳蛋白(cap)与葡萄球菌核酸酶(SNase)的融合蛋白,用于抗猪瘟病毒感染的研究。
     根据猪瘟病毒核衣壳蛋白(cap)基因序列设计一对引物,RT-PCR扩增获得编码Cap基因的完整阅读框,将其插入到含有金黄色葡萄球菌核酸酶(SNase)基因的真核表达载体pcDNA-SNase中,筛选获得重组质粒pcDNA-Cap-SNase.测序鉴定后,脂质体转染猪肾细胞(PK-15),经终浓度1000μg/mL的G418稳定筛选,建立稳定表达Cap-SNase融合蛋白的细胞系(PK-15/Cap-SNase)。通过RT-PCR、蛋白免疫印迹(Western blot)和间接免疫荧光(IFA)鉴定Cap-SNase融合蛋白的表达,通过体外消化线性阳性质粒DNA对核酸酶活性进行检测。实验结果表明:建立的PK-15/Cap-SNase细胞系可以稳定表达融合蛋白Cap-SNase,该融合蛋白能够被兔抗核衣壳蛋白抗体所识别,并且具有良好的核酸酶活性,能够对线性阳性质粒DNA进行切割。因此,该细胞系的建立为CTVI策略抑制猪瘟病毒的增殖和感染奠定了基础。
     5.应用衣壳蛋白靶向灭活策略抗猪瘟病毒感染研究
     将猪瘟病毒Shimen株感染PK-15/Cap-SNase细胞系后,应用间接免疫荧光(IFA)、荧光定量PCR和ELISA方法鉴定CTVI系统抑制猪瘟强毒的增殖效果。实验结果表明,CTVI能有效抑制病毒的繁殖。IFA鉴定病毒感染5d后PK-15/Cap-SNase细胞中产生的子代病毒滴度与正常PK-15细胞相比较下降了102倍,6d后产生的子代病毒滴度与正常PK-15细胞相比较下降了103倍;real-time PCR分析表明,阴性对照正常PK-15细胞无明显的抑制作用,与而稳定表达融合蛋白Cap-SNase的细胞株在病毒进入的3天出现明显的抑制,接种后6天抑制趋向平稳,在第8天抑制率达到78%,差异显著。应用美国IDEXX CSFV Ag ELISA Kit的检测结果:PK-15对照细胞呈现强阳性,而PK-15/Cap-SNase细胞系的ELISA光吸收度数值明显低,呈现弱阳性。因此本研究表明PK-15/Cap-SNase细胞在不同程度上抑制了猪瘟病毒粒子的增殖。这些结果为进一步将衣壳蛋白靶向病毒灭活策略应用于抵抗猪瘟病毒感染奠定了基础。
Classical swine fever(CSF) is a kind of acute, febrile and highly contagious disease that caused by the pathogen Pestivirus suis. CSF can cause great damages to the domestic and international pig breeding industry as it is characterized by high-contagious, high morbidity and mortality and wide range of transmission. The clinical symptoms including acute fever, hyperpyrexia, degeneration in micrangium wall, extensive dot-sized hemorrhage within the skin and infarction in the spleen. Office International Des Epizooties(OIE) has categorized CSF as A class infectious diseases according to related laws, and also specified CSF as one of the international quarantine item. According to the Implementating regultions for quarantine and prevention of livestock and poultry disease ordinance, CSF was classified as the Class A infectious disease.
     The retroviral envelope protein can be exchanged for envelope proteins from non-related viruses, a process called pseudotyping. Pseudotyped viruses with heterogenic glycoprotein incorporated into retroviral particles were proved to be a safe viral entry model, which only go through a single cycle infection(replication-deficient) and acquired the host range of the parent viruses where the glycoprotein were derived, thus they could facilitate the research on viral entry mechanism, viral tropism, neutralization antibody analysis, and receptor identification. In addition, One of the potential strategies, referred to as capsid-targeted viral inactivation (CTVI), is a conceptually powerful antiviral approach. In this strategy, the viral capsid protein is designed as the carrier of a deleterious enzyme, such as a nuclease, a proteinase, or even a single-chain antibody to bind to a native viral protein. These recombinant proteins are targeted specifically to progeny virions during their assembly to prevent the production of infectious viral particles and the subsequent spread of de novo infection. CTVI has been investigated extensively and shown to be a promising antiviral strategy against several important viruses.
     Therefore, in this study, the pseudotype system of MuLV particles with CSFV E012 was set up and it can be used to study the entry of CSFV. The results shown SK6、PK15 and ST infected were Lac Z positive, indicating viral entry, and revealed the pseudtype virions of MuLV-E012 were infectious. The pseudotyped particles were used to develop an in vitro micro neutralization assay that was both sensitive and specific for CSFV neutralizing antibody. In addition, serum samples from piglets immunized with E2 subunit vaccine were detected by this micro neutralization assay. To explore the feasibility of using capsid-targeted viral inactivation (CTVI) as an antiviral strategy against CSF infection, a stable cell line was constructed for expressing a fusion protein of CSFV capsid (Cap) and Staphylococcus aureus nuclease (SNase). Then we apply it into the study of anti-CSF infections.
     The contents of the paper contain five parts as following:
     1. Cloning and eukaryotic expression of the glycoprotein genes of CSFV
     Two basic requirements are essential for successful pseudotyping:(1) the glycoprotein has to be incorporated onto the virions, and (2) the pseudotyped virions have to be infectious. Or the system is not useful. The generation of high titer retro viral stocks for the efficient transduction is an important technical for a pseudotype system.
     In this study, the glycoprotein E0, E2 and E012 genes of CSFV were amplified by RT-PCR and cloned into pMD-18T vector and sequenced. Then three genes were cloned into eukaryotic expression vector pcDNA3.0, designated pcDNA-E0, pcDNA-E2 and pcDNA-E012 respectively. HEK293T cell were transfected with these three plasmid using calcium phosphate method. The cells were collected cells after 48 h, and incubated for 1 h at 4℃with 1:100 CSFV anti-serum. After three washes with PBS/FCS, the cells were incubated with fluorescein-labelled staphylococcal protein A for 1h at 4℃, subsequently subjected to flow cytometry using a FACSCalibur. Meanwhile, protein expression of recombinant plasmids were also determined by Western blot assay. The results showed that the recombinant plasmids pcDNA-E0, pcDNA-E2 and pcDNA-E012, could be effective expressed in HEK293T cells. It provided a foundation to study the function relationship of the EO and E2 glycoproteins.
     2. Construction of pseudotype CSFV and study on characteristic and application of pseudotype virus
     Three plasmids, namely pcDNA-EO/2/012, pHIT60 (including the structural genes of MuLV) and pHIT111 (including the retroviral genome, containing LacZ as a reporter) were co-transfected into HEK293T cells for the production of pseudotyped virions with EO/2/012 glycoproteins of CSFV Shimen strain. The retroviral supernatants were harvested at 48 hours post-transfection, filtered through a 0.45μM filter, and used in western blot and infection assays. Parallel transfections were carried out with supernatants produced in absence of a viral envelope and with the vesicular stomatitis virus (VSV) G proteins, which is known to efficiently pseudotype MuLV. Western-blotting revealed only E012 could be expressed on the virions, indicated the glycoprotein E012 was incorporated onto the retroviral virions. Infection test were performed on SK6、PK15、ST、BHK21、Vero、COS7、HEK293T and CEF cells. The results shown SK6、PK15 and ST infected were Lac Z positive, indicating viral entry, and revealed the pseudtype virions of MuLV-E012 were infectious. The pseudotype system of MuLV particles with CSFV E012 was set up and it could be used to study the entry of CSFV. To assess whether the CSFV pseudotyped virus entry is pH-dependent, PK15 cells were treated with well-characterized lysosomotropic agent NH4Cl. The pH dependency of infection was evaluated by pretreating PK15 cells for 1 h with serum-free 1640 containing ammonium chloride at various concentrations (0-30 mM) at 37℃; this was followed by incubation with supernatants containing the pseudotyped viruses in the presence of ammonium chloride at the consistent concentration as in the pretreating procedure. After 2 h, the supernatants were replaced with 1640 containing 10% FBS. The luciferase activity was determined 48 h later as described above. Treatment with 30 mM NH4C1 caused >90% inhibition of infection by MuLV-E012 or MuLV-VSV G. These data indicated the MuLV-E012's entry may be pH-dependent. The pseudotyped MuLV-E012 particles were used to develop an in vitro microneutralization assay that was both sensitive and specific for CSFV neutralizing antibody. Neutralization titers measured by this assay were highly parallel with those measured by the assay using live csfv high virulence strain. Because the pseudotype assay does not require handling live CSFV virus, it is a useful tool to determine serum neutralizing titers during natural infection and the preclinical evaluation of candidate vaccines.
     3. B-cell epitopes of classical swine fever virus glycoprotein E2 expressed in Escherichia coli as subunit vaccine induces protection against CSFV
     Based on sequence analysis, three B-cell epitopes were chosen to be expressed in prokaryotic express system. One of them was multiple epitopes, the others were mono-epitope. Three recombinant expression plasmids expressing thess epitopes were constructed into pET32a vector, designated pET-rE2-a, pET-rE2-b and pET-rE2-ba. They were transformed into host bacterium BL21(DE3). Single colony was chosen to incubate in LB at 37℃, the protein were induced with 0.1mM IPTG when OD600 was 0.6, the cell grown 3 hours in 37℃. The cell were harvested and lysed with ultrasonication, and then clarified by centrifuge at 12000rpm. The supernatant and pellet were analyzed with SDS-PAGE. In all these cases, most of the proteins were found predominantly in inclusion bodies. The proteins were purified on a His·Bind chelation affinity column. The SDS-PAGE analysis indicated three proteins were purified, and displayed a single band with a molecular weight of 22 kDa,22 kDa and 25 kDa, respectively. Western blotting indicated that purified rE2-a, rE2-b and rE2-ba were recognized by CSFV positive sera specifically and reacted strongly. This suggested that the three linear peptides all possessed immunogenicity.
     Twenty-five 6-week-old piglets with negative CSFV antibody titers, which were purchased for animal expriments and equally divided into five groups. The pigs were acclimatized for 2 weeks, the body temperatures were measured once daily. Three groups were inoculated with purified rE2-a, rE2-b, and rE2-ba. The fourth group was immunized with a commercial vaccine (HCLV) to serve as a positive control. The fifth group was immunized with PBS as a negative control. All three proteins, rE2-a, rE2-b and rE2-ba, were combined with ISA 206 VG adjuvant in immunization. The pigs were inoculated with 50μg of each peptide for the first and second immunization at an interval of 2 weeks. Pigs immunized were inoculated intranasally (mimicking natural infection) with a lethal dose(200 TCID50) of CSFV on day 21 after the second immunization. Serum samples of immunized pigs were collected by jugular venipuncture every week before and after immunization and every week post-challenge. Each sample was heated to inactivate at 56℃for 30 min, and then was subjected to detection by a safe MuLV-E012 neutralization assay. In vivo, all these epitope-based proteins induced an antibody response and protected pigs against lethal challenge with virulent CSFV strain Shimen. The multiple epitope protein rE2-ba showed better protective effect (similar to that of HCLV vaccine) than that of mono-epitope peptide (rE2-a or rE2-b). The results demonstrated that the reactogenic and immunogenic proteins were produced by the prokaryotic system, and CSFV B-cell linear epitope peptides induced immunoregulation, similar to that of attenuated virus. Therefore, CSFV B-cell linear epitope based peptides expressed in a prokaryotic system can be used as immunogens in pigs, and may be used to develop more effective subunit vaccines.
     4. Establishment and identification of a stable cell line by CSFV capsid and Staphylococcus aureus nuclease fusion protein
     For construction of the vector expressing the fusion protein, a pair of specific primers were designed and used to amplify the coding region of the Cap. Then the gene Cap was ligated into the expression plasmid pcDNA-SNase and resulted in pcDNA-Cap-SNase plasmid. The positive recombinant products were confirmed by restriction enzyme digestion and DNA sequencing. Then pcDNA-Cap-SNase was transfected into the PK-15 cells. The cell line was passaged continuously for 15 generations or more under G418 selection, which was named as PK-15/Cap-SNase cells. In order to confirm whether the screened PK-15/Cap-SNase cells expressed stably Cap gene (317 bp) and SNase gene (469 bp), PCR was performed using specific primers to amplify the products from the isolated total RNA; however, the products were not detected in Rnase-treated total RNA (negative control), indicating that fusion gene Cap-SNase was transcribed in the PK-15/Cap-SNase cells. To identify further the expression products of the recombinant plasmid, Western blot was carried out using an anti-Cap antibody. A protein band of 31 KDa (Cap=14 KDa and SNase=17 KDa) was detected in the transfected cell lysis. The expressed fusion protein was detected by indirect immunofluorescent signals in the cytoplasm.
     An in vitro DNA digestion assay was designed to determine nuclease activity. The activity of 5μL of cell lysate containing Cap-SNase was similar to that of 0.5 pg of a standard preparation of SNase, while the linearized plasmid DNA could not be digested when removing Ca+ by EDTA treatment, indicating that the expressed Cap-SNase retained a good Ca2+-dependent nuclease activity.
     5. Inhibition of replication of CSFV by capsid-targeted virus inactivation
     PK-15/Cap-SNase and normal PK-15 cells were infected with the CSFV Shimen strain, and then titers of the progeny virus in cell supernatants were detected. The results showed that after infection for 5 d, virus titer produced by PK-15/Cap-SNase cells was 102 lower compared with that of normal PK-15 cells. After 6 d, a greater antiviral effect was observed in the PK-15/Cap-SNase which produced a virus titer that was 103.5 lower than the control (P<0.01). The results of Real-time PCR showed that genomic copy numbers of CSFV in PK-15 cells and PK-15/Cap-SNase cells both increased with time post-infection. The virus in PK-15 cells reached peak at 6dpi then gradually decreased. However, the viral genomic copy number in PK-15/Cap-SNase cells began to decrease at 3dpi, reaching a stable low level at 6 dpi, and the inhibitory rate was 70.8% at 8 dpi. Compared with the parental PK-15 cells, the CSFV genome replication was significantly inhibited in PK-15/Cap-SNase cells (P<0.01). CSFV was positive in the supernatant of PK-15 cell culture but weakly positive in the supernatant of PK-15/Cap-SNase cell culture, further indicating fusion Cap-SNase protein mediated inhibition of CSFV replication. The ELISA results showed stable expression of Cap-SNase could inhibit the proliferation of CSFV virions in PK-15 cells.
引文
[1]蔡宝祥.家畜传染病学,第四版[M].北京:中国农业出版社,2001,147-153.
    [2]殷震,刘景华.动物病毒学,第二版[M].北京:科学出版社,1997,652-664.
    [3]F. A. Murphy, C. M. Fauquet, D. H. L. Dishop, et al. Sixth report of the international committee on taxonomy of viruses[J].Arch Virol Suppl,1995,10:415-427.
    [4]杜念兴.猪瘟的回顾与展望.中国畜禽传染病,1998,(5):317-319.
    [5]刘湘涛,赵启祖,李忠润,等.猪瘟病毒和猪瘟的防制.谢庆阁,翟中和主编.畜禽重大疫病免疫研究进展.北京:中国农业科技出版社,1996,321-338.
    [6]Deng R, Brock K. 5'and 3'untranslated regions of pestivirus genome:primary and secondary structure analyses[J].Nucleic Acid Res,1993,21:1949-1957.
    [7]Kozak M. The scanning model for translation:an update [J]. J Cell Biol,1989,108:229-241.
    [8]Thiel H. J, Stark R, Weiland E, et al. Hog cholera virus:molecular composition of irions from a pestvirus[J]. J Virol,1991,65:4705-4712.
    [9]龚人雄,张晓琴,蒋桃珍,等.猪瘟兔化毒株纯化方法的研究,兽医药品通讯,1987,(2):1-4.
    [10]李成,郝桂玉,谷守林,等.应用电镜技术对猪瘟病毒的观察[J].中国兽医科技,1989,(07):24-25.
    [11]谢庆阁,翟中和主编.畜禽重大疫病免疫防制研究[M].北京:中国农业科技出版社,1997,22-26.
    [12]林荣泉.非洲猪瘟与猪瘟的鉴定及防控技术[J].肉类工业,2001,3:25-28.
    [13]罗廷荣.猪瘟病毒生物学特性研究的一些新进展[J].广西农业生物科学,2001,20(1):55-63.
    [14]Sakoda Y, Hikawa M, Tamura T, et al. Establishment of a serum-free culture cell line, CPK-NS which is useful for assays of classical swine fever virus [J]. J Virol Methods,1998,75(1):59-68.
    [15]Pirtle EC, Kniazeff AJ. Susceptibility of cultred mammalian cells to infection with virulent and modified hog cholera viruses [J]. Am J Vet Res.1968,29(5):1033-40.
    [16]王镇,丁明孝.猪瘟病毒致病机制及防治的研究进展[J].畜牧兽医学报,1998,29(5):385-391.
    [17]国际兽疫局编著.诊断试验和疫苗标准手册[M].农业部畜牧兽医局,1996.
    [18]丁明孝,陆宁,陈建国.猪瘟病毒及其疫苗研究[A].谢庆阁,翟中和主编.畜禽重大疫病免疫研究进展[M].北京:中国农业科技出版社,1996,41-50.
    [19]Rumenapf T, Ungher C, Strauss J. H. H, et al. Processing of the envelope glycoproteins of pestivirus[J]. J Virol,1993,67:3288-3294.
    [20]Elbers K, Tautz N, Becher P, et al. Processing in the pestivirus E2-p7 region:identification of protein p7 and E2p7[J]. J Virol,1996,70:4131-4135.
    [21]Wensvoort GBoonstra J, Bodzinga B G. Immunoaffinity purification and characterization of the envelope protein E1 of hog cholera virus[J]. J Gen Virol,1990,71:531-540.
    [22]高彦生,陈琨.2002年1月国际动物疫情[J].中国畜牧兽医(试刊),2002,29(2):48-50.
    [23]高彦生,马珊珊.2002年3月国际动物疫情[J].中国畜牧兽医(试刊),2002,29(3):48-50.
    [24]高彦生,邵洁环.2002年4月国际动物疫情[J].国外畜牧科技,2002,29(3):51-53.
    [25]高彦生,兰乃洪.2002年6月国际动物疫情[J].中国畜牧兽医,2002,29(4):54-56.
    [26]Gomez-Villamandos J C, Ruiz-Villamor E, Bautista M J, et al. Pathogenesis of classical swine fever: renal haemorrhages and ervthrodiapedesis [J]. J Comp Pathol,2000,123(1):47-54.
    [27]Stark R, Rumenapf T, G Meyers, et al. Genomic localization of hog cholera virus glyvoproteins[J]. Virology,1990,174:286-289.
    [28]Collier A J, Gallego J, Klinck R, et al. A conserved RNA structure within the HCV IRES eIF3-bingding site [J]. Nat Struct Biol,2002,9:375-380.
    [29]Lowings P, Ibata G, Needham, et al. Classical swine fever virus diversity and evolution [J]. J Gen Virol,1996,77:1131-1132.
    [30]Hergarten G, Hurter KP, Hess RG. Detection of infection with classical swine fever virus in wild boar:a comparison of different laboratory diagnostic methods [J]. Dtsch Tierarztl Wochenschr,2001, 108(2):51-54.
    [31]王德海译.欧洲野猪古典猪瘟的现状及对策[J].动物医学进展,2002,23(2):77-79.
    [32]Vannier P, Plateau E, Tillon JP. Congenital tremor in pigs farrowed from sows given hog cholera virus during pregnancy [J]. Am J Vet Res,1981,42(1):135-137.
    [33]Ahrens U, Kaden M Drexler C, et al. Efficacy of the classical swine fever (CSF) marker vaccine Porcilis Pesti in pregnant sows [J]. Vet Microbiol,2000,77(1-2):83-97.
    [34]黄鉴明.繁殖障碍型猪瘟的诊断与防制[J].中国畜禽传染病,1995,4:16-18.
    [35]孟晓芹,郑明.国内猪瘟研究概况[J].中国兽药杂志,1995,29(3):56-58.
    [36]吴增坚,杨奎.非典型猪瘟[J].畜牧与兽医,2000,32(2):35-37.
    [37]Lorena J, Barlic-Maganja D, Lojkic M, et al. Classical swine fever virus (C strain) distribution in organ samples of inoculated piglets[J]. Vet Microbiol,2001,81(1):1-8.
    [38]Edwards, Moennig V, Wensvoort G. The development of an international reference panel of monoclonal antibodies for the differentiation of hog cholera virus from other pesti viruses [J]. Vet Microbiol,1991,29:101-108.
    [39]邵振华,田海燕.多价荧光抗体监测外源病毒污染的研究[J].中国兽药杂志,1997,31(2):1-6.
    [40]Rumenupf T, Stark R, Meyers G, et al. Structual proteins of hoglera virus expressed by vaccine virus further characterization and induction of protective immunity [J]. J Virol,1991,65:589-597.
    [41]Schrijver RS, Kramps JA. Critical factors affecting the diagnostic reliability of enzyme-linked immunosorbent assay formats[J]. Rev Sci Tech,1998,17(2):550-561.
    [42]Hahn J. Construction of recombinant swine poxviruses and expression of classical swine fever virus E2 protein [J].J Virol Methods,2001,93(1-2):49-56.
    [43]Mette MF, van der Winden J, Matzke MA, et al. Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans[J].EMBO J, 1999,18:241-248.
    [44]Mette M F, Aufsatz W, van der Winden J, et al.Transcriptional gene silencing and promoter methylation triggered by double stranded RNA[J]. EMBO J,2000,19:5194-5201.
    [45]Ramsahoye B, Biniszkiewicz D, Lyko F, et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a [J]. Proc Natl Acad Sci,2000,97: 5237-5242.
    [46]Jones PA, Takai D. The role of DNA methylation in mammalian pigenetics. Science,001, 293:1068-1070.
    [47]张富强,李志华,张念祖.猪瘟病毒囊膜糖蛋白E2中和表位的定位及其免疫反应性分析[J].病毒学报,2005,21(2):53-58.
    [48]Pauly, E Weiland, W Hirt, et al. Differentiation between MHC-restricted and non-MHC-restricted porcine cytolytic T lymphocytes [J]. Immunology,1996,88(2):238-246.
    [49]Artur Summerfield, Sonja M Knotig, Kenneth C, et al. Lymphocyte Apoptosis during Classical Swine Fever:Implication of Activation-Induced Cell Death [J]. J Virol,1998,72(3):1853-1861.
    [50]Maurice B Pensaert, Romeo E Sanchez, Anne-Sofie. Viremia and effect of fetal infection with porcine viruses with special reference to porcine circovirus 2 infection [J]. Vet Microbiol,2004, 98(2):175-183.
    [51]M Konig, T Lengsfeld, T Pauly. Classical swine fever virus:independent induction of protective immunity by two structural glycoproteins [J]. J Virol,1995,69(10):6479-6486.
    [52]Oliver Bauhofer, Artur Summerfield, Kenneth C, et al. Role of double-stranded RNA and Npro of classical swine fever virus in the activation of monocyte-derived dendritic cells [J]. Virology,2005, 343(5):93-105.
    [53]Hust M M, Pauoto F E, Hoekman A, et al. nactivation of the RNase activity of glycoprotein Erns of classical swine fever virus results in a cytopathogenic virus[J]. J Virol,1998,729:151-157.
    [54]Sanipa Suradhat, Roongroje Thanawongnuwech, Yong Poovorawan. Upregulation of IL-10 gene expression in porcine peripheral blood mononuclear cells by porcine reproductive and respiratory syndrome virus [J]. J Gen Virol,2003,84453-459.
    [55]C P Carrasco, R C Rigden, I E Vincent. Interaction of classical swine fever virus with dendritic cells [J]. J Gen Virol,2004,85:1633-1641.
    [56]S Anna La Rocca, Rebecca J Herbert, Helen Crooke. Loss of Interferon Regulatory Factor 3 in Cells Infected with Classical Swine Fever Virus Involves the N-Terminal Protease, Npro [J]. J Virol,2005, 79(11):7239-7247.
    [57]Ischaemic jejunal. vasculitis during treatment with pegylated interferon-alpha 2b and ribavirin for hepatitis C virus related cirrhosis [J], Digest Liver Dis,2006,38(5):352-354.
    [58]Nicolas Ruggli, Brian H Birdl, Luzia Liu. Npro of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-a/p induction [J]. Virology,340(2):265-276.
    [59]Munir Iqbal, Emma Poole, Stephen Goodbourn. Role for Bovine Viral Diarrhea Virus Erns Glycoprotein in the Control of Activation of Beta Interferon by Double-Stranded RNA [J], J Virol, 2004,78(1):136-145.
    [60]王娟萍,张丽.猪瘟病毒检测的研究进展[J].养猪学报,2007,3:57-59.
    [61]胡慧,邱昌庆.猪瘟诊断和防制研究进展[J].中国兽医科技,2004,6:33-39.
    [62]何若钢,张文明,段福君,等.荧光抗体技术在猪瘟净化中的应用[J]. Animal Husbandry Veterinary Medicine,2008,40:19.
    [63]何玲,黄文科,裴仉福.猪瘟诊断技术的应用进展[J].兽医导刊,2010,149.
    [64]王志杰,何学谦.猪瘟实验室常规诊断方法[J].科技信息(学术版),2007(16).
    [65]邹明静,王英玲,李刚.胶体金标记技术在免疫分析中的研究进展[J].菏泽医学专科学校学报,2009,21(4):18-20.
    [66]王慧杰,宁豫昌.猪瘟胶体金免疫层析快速诊断法的建立及应用[J].中国农学通报,2007,23(6):27-29.
    [67]秦彤.猪瘟病毒SPA协同凝集试验及双夹心ELISA检测方法的建立[M].河北农业大学硕士论文、2006.
    [68]Peter Moinar, Paui Tapponnier. Cenozoic Tectonics of Asia:Effects of a Continental Collision [J]. Science,1975,189(4201):419-426.
    [69]李卫,李树春.猪瘟正向间接血凝试验的改进与应用中国畜牧兽医学会动物传染病学分会第十二次学术研讨会.2007.
    [70]朱小甫,李晓成,陈德坤,等.猪瘟诊断技术研究进展[J].中国动物检疫,2007,24(2):45-47.
    [71]虞伟,陶洋,王艾丽.基于免疫金银染色的蛋白质与抗原分子微阵列技术[J].临床检验杂志,2004,6:46-48.
    [72]权中会,王小平,惠临风.猪瘟荧光抗体的制备及应用[J].中国兽医科技,2004,6:33-39.
    [73]E O Colijn, M Bloemraad, G Wensvoort. An improved ELISA for the detection of serum antibodies directed against classical swine fever virus [J]. Veterinary Microbiology,1997,59(1):15-25.
    [74]马吉春,柳忠辉,方芳.检测外周血MUC1蛋白双抗体夹心ELISA的建立和应用[J].免疫学杂志,2010,01:39-42.
    [75]高华峰,宋建领.猪瘟的诊断与新出现的诊断技术[J].动物科学与动物医学,2003,20(8):17-21.
    [76]YS Park, KS Cheong, YN Park. Classical swine fever disease in Cheolwon[J]. Korean J Vet Serv, 2004,9:314-319.
    [77]肖国生,曹三杰,文心田Dot-PPA-ELISA对猪丹毒的免疫监测及抗体保护效价的测定[J].中国兽医科技,2003,12:13-17.
    [78]吴文福,岑小清,任向阳.猪瘟免化弱毒疫苗的研究概况[J].广东畜牧兽医科技,2009,34(6):28-32.
    [79]仇华吉,童光志,沈荣显.猪瘟兔化弱毒疫苗--半个世纪的回顾[J].中国农业科学,2005,38(8):1675-1685.
    [80]中华人民共和国农业部.中华人民共和国兽用生物制品规程[M].1992(附录),40-41.
    [81]蔡一鸣,骆科念.防制猪瘟的超前免疫法[J].中国兽医科技,1995,25(4):34-35.
    [82]孙泉云,李宝龙,顾永远.引起病毒持续感染的重要猪传染病[J].养殖与饲料,2007,9:57-60.
    [83]韩雪清,刘湘涛,赵启祖,等.猪瘟病毒遗传发生关系分析[J].中国兽医科技,1999,29(6):3-7.
    [84]丘惠深,郎洪武.猪瘟兔化弱毒疫苗与我国近年猪瘟野毒的免疫保护相关性试验[J].中国兽药杂志,1997,31(3):1-3.
    [85]李锦钰.论集约化养猪生态系统[J].家畜生态,2001,6:48-49.
    [86]王雯慧,陈怀涛.猪瘟流行的病因学分析与防制[J].中国兽医科技,2000,30(3):13-16.
    [1]殷震,刘景华.动物病毒学,第二版[M].北京:科学山版社,1997,652-664.
    [2]Stark R, Rumenapf T, G Meyers, et al. Genomic localization of hog cholera virus glyvoproteins[J].Virology,1990,174:286-289.
    [3]蔡宝祥.家畜传染病学,第四版[M].北京:中国农业出版社,2001,147-153.
    [4]Deng R, Brock K. 5'and 3'untranslated regions of pestivirus genome:primary and secondary structure analyses[J].Nucleic Acid Res.1993,21:1949-1957.
    [5]Kozak M. The scanning model for translation:an update [J], J. Cell.Biol.1989,108:229-241.
    [6]肖明,张楚瑜,祝志展,等.猪瘟病毒基因组非编码区的定性、定量与结构分析[J].科学通报,2001,46:544-550.
    [7]Stark R, Rumenapf T, Meyers G, et al. Processing of pestivirus:cleavage site between autoprotease and nucleocapsid protein of classical swine fever virus[J]. J Virol,1993,67:7088-7099.
    [8]K Ishikawal, H Nagail, K Katayama. Comparison of the entire nucleotide and deduced amino acid sequences of the attenuated hog cholera vaccine strain GPE and the wild-type parental strain ALD [J]. Arch Virol,1995,140(8):1385-1391.
    [9]P A van Rijn, A Bossers, G Wensvoort. Classical swine fever virus (CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge[J]. J Gen Virol, 1996,77:2737-2745.
    [10]N Ruggli, JD Tratschin, C Mittelholzer. Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA[J]. J Virol, 1996,70(6):3478-3487.
    [11]王家富.猪瘟病毒兔化弱毒株和石门强毒株基因组结构分析[D].武汉:武汉大学,1999.
    [12]黄茜华,张楚瑜,王家富.猪瘟病毒石门株全基因组cDNA文库构建,序列测定及分析[J].科学通报,1999,44(17).
    [13]黄茜华,张楚瑜.猪瘟病毒石门株NS2-3基因片段的序列测定及比较[J].中国病毒学,1999,14(2):163-168.
    [14]杨仁全猪瘟病毒E2糖蛋白抗原结构域的原核高效表达及表达产物提取[M].南京农业大学硕十论文,2001.
    [15]聂玉春,陈建国,丁明孝.由标准强毒F114株全长cDNA克隆恢复猪瘟病毒[J].科学通报,2003,48(10):1059-1063.
    [16]Nicolas Ruggli, Jon-Duri Tratschin, Matthias Schweizer. Classical Swine Fever Virus Interferes with Cellular Antiviral Defense:Evidence for a Novel Function of Npro[J]. J Virol,2003, 77(13):7645-7654.
    [17]Jon-Duri Tratschin, Christian Moser, Nicolas Ruggli. Classical Swine Fever Virus Leader Proteinase Npro Is Not Required for Viral Replication in Cell Culture[J]. J Virol,1998,72(9):7681-7684.
    [18]Manuela Heimann, Gleyder Roman Sosa, Bruno Martoglio. Core Protein of Pestiviruses Is Processed at the C Terminus by Signal Peptide Peptidase [J]. J Virol,2006,80(4):1915-1921.
    [19]H J Thiel, R Stark, E Weiland. Hog cholera virus:molecular composition of virions from a pestivirus[J]. J Virol,1991,65 (1991):4705-4712.
    [20]M M Hulst, H G P van Gennip, A C Vlot. Interaction of Classical Swine Fever Virus with Membrane-Associated Heparan Sulfate:Role for Virus Replication In Vivo and Virulence [J]. J Virol, 2001,75(20):9585-9595.
    [21]Schneider R, Unger G, Stark R, et al. Identification of a structural glycoprotein of an RNA virus as a ribonuclease[J]. Science,1993,261(5125):1169-1171.
    [22]Hulst M M, Pauoto F E, Hoekman A, et al. Nactivation of the RNase activity of glycoprotein Erns of classical swine fever virus results in a cytopathogenic virus[J]. J Virol,1998,729:151-157.
    [23]Rumenupf T, Stark R, Meyers G, et al. Structual proteins of hoglera virus expressed by vaccine virus further characterization and induction of protective immunity [J]. Virol,1991,65:589-597.
    [24]李红卫,刘湘涛,李小兵.我国猪瘟病毒兔化弱毒株囊膜糖蛋白E0基因的克隆及序列测定[J].中国病毒学,1999,14:169-173.
    [25]Bruschke C H, Hust M M, Moormann R J, et al. Glycoprotein Erns of pestivirus induces apoptosis in lymphocytes of several species [J].J. Virol.1997,71:6692-6696.
    [26]Hust M M, Moormann R J. Inhibition of pestivirus infection in cell culture by envelope proteins Erns and E2 of classical swine fever virus:Erns and E2 interact with different receptors [J]. J Gen Virol, 1997,78:2779-2787.
    [27]Birke Andrea Tews, Eva-Maria Schurmann, Gregor Meyers. Mutation of Cysteine 171 of Pestivirus Erns RNase Prevents Homodimer Formation and Leads to Attenuation of Classical Swine Fever Virus [J]. J Virol,2009,83(10):4823-4834.
    [28]Maritza Barreraa, Oliberto Sanchezb, Yanet Prieto. Thermal stress treatment does not affect the stability and protective capacity of goat milk derived E2-marker vaccine formulation against CSFV [J]. Veterinary Immunology and Immunopathology,2009,127(3-4):325-331.
    [29]张富强,李志华,张念祖.猪瘟病毒糖蛋白Erns中和表位的鉴定和比较[J].微生物学报,2005,45(1).
    [30]Wensvoort GBoonstra J, Bodzinga B G. Immunoaffinity purification and characterization of the envelope protein E1 of hog cholera virus [J]. J Gen Virol,1990,71:531-540.
    [31]Saskia Ronecker, Gert Zimmer, Georg Herrler. Formation of bovine viral diarrhea virus E1-E2 heterodimers is essential for virus entry and depends on charged residues in the transmembrane domains[J]. J Gen Virol,2008,89:2114-2121.
    [32]J P M Langedijk, P A van Veelen, W M M Schaaper, et al. A Structural Model of Pestivirus Erns Based on Disulfide Bond Connectivity and Homology Modeling Reveals an Extremely Rare Vicinal Disulfide [J]. J Virol,2002,76(20):10383-10392.
    [33]Hust M M, Himes G, Newbigin E, et al. Glycoprotein E2 of the classical swine fever virus:expression in insect cells and identification as aribonuclease[J]. Virology,1994,200:588-565.
    [34]Wensvoort, G.. Epitopes on structural proteins of hog cholera (swine fever) virus[M]. Utrecht, State University,1989.
    [35]Wensvoort, G. Topographical and functional mapping of epitopes on hog cholera virus with monoclonal antibodies[J]. J Gen Virol,1989,70:2865-2876.
    [36]Van Rijn P A, van Gennip H G P, Mei jier E J, et al. Epitople mapping of envelope glycoprotein E1 of hog cholera virus strain Brescia[J]. J Gen Virol,1993,74:2053-2060.
    [37]H G P van Gennip, A Bouma, P A van Rijn. Experimental non-transmissible marker vaccines for classical swine fever (CSF) by trans-complementation of Erns or E2 of CSFV [J].Vaccine,2002, 20(11-12):1544-1556.
    [38]P A van Rijn. A common neutralizing epitope on envelope glycoprotein E2 of different pestiviruses: Implications for improvement of vaccines and diagnostics for classical swine fever (CSF)? [J]. Vet Microbiol,2007,125(15):150-156.
    [39]P A van Rijn, G K Miedema, G Wensvoort, et al. Antigenic structure of envelope glycoprotein E1 of hog cholera virus[J]. J Virol,1994,68:3934-3942.
    [40]G R Risatti, L G Holinka, I Fernandez Sainz. N-Linked Glycosylation Status of Classical Swine Fever Virus Strain Brescia E2 Glycoprotein Influences Virulence in Swine[J]. J Virol,2007, 81(2):924-933.
    [41]Lin M et al. Deletions of structural glycoprotein E2 of classical swine fever virus strain Alfort/187 resolve a linear epitope of monoclonal antibody WH303 and the minimal N-terminal domain essential for binding immunoglobulin G antibodies of a pig hyperimmune serum[J]. J Virol,2000, 74(24):11619-11625.
    [42]G R Risatti et al. Identification of a novel virulence determinant within the E2 structural glycoprotein of classical swine fever virus [J].Virology,2006,355:94-101.
    [43]A Kosmidou, M Biittner, G Meyers. Isolation and characterization of cytopathogenic classical swine fever virus (CSFV) [J]. Arch Virol,1998,143(7):1295-1309.
    [44]ELBER K, Tautz P, Becher D, et al. Processing in the pestivirus E2-NS2 region:identification of protein p7 and E2p7[J]. J Virol,2000,70:4131-4135.
    [45]Cheng-Qiang Hea, Nai-Zheng Dingb, Jian-Guo Chen. Evidence of natural recombination in classical swine fever virus[J]. Virus Res,2007,126(1-2):179-185.
    [46]Ming Xiao, Yujing Wang, Zailing Zhu. Influence of NS5A protein of classical swine fever virus (CSFV) on CSFV internal ribosome entry site-dependent translation [J]. J Gen Virol,2009, 90:2923-2928.
    [47]M Gonzague, C Plin, L Bakkali-Kassimi, et al. Development of an internal control for the detection of the African swine fever virus by PCR[J]. Molecular and Cellular Probes,2002,16(3):237-242.
    [48]P Warrener, M S Collett. Pestivirus NS3 (p80) protein possesses RNA helicase activity[J]. J Virol, 1995,69 (3):1720-1726.
    [49]C Moser, P Stettler, J D Tratschin, et al. Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus[J]. J Virol,1999,73:7787-7794.
    [50]Muramatsu S, Ishido S, Fujita T, et al. Nuclear localization of the NS3 protein of hepatitis C virus and factors affecting the localization [J]. J Virol,1997,71:4954-4961.
    [51]LI-KUANG CHEN, CHING-LEN LIAO, CHING-GONG LIN, et al. Persistence of Japanese Encephalitis Virus Is Associated with Abnormal Expression of the Nonstructural Protein NS1 in Host Cells[J].Virol,1996,217(1):220-229.
    [52]S Muramatsu, S Ishido, T Fujita. Nuclear localization of the NS3 protein of hepatitis C virus and factors affecting the localization [J]. J Virol,1997,71(7):4954-4961.
    [53]Henriette RAU, Hilde REVETS, Carole BALMELLI, et al. Immunological properties of recombinant classical swine fever virus NS3 protein in vitro and in vivo [J]. Vet Res,2006, 37:155-168.
    [54]Vicky C H Lai, Weidong Zhong, Angela Skelton. Generation and Characterization of a Hepatitis C Virus NS3 Protease-Dependent Bovine Viral Diarrhea Virus[J]. J Virol,2000,74(14):6339-6347.
    [55]曾雅梅,肖明,张楚瑜.NS3蛋白在黄病毒科病毒生命活动中的作用[J].中国病毒学,2001,18(5):508-512.
    [56]Karen E Reed, Alexander E, Gorbalenya. The NS5A/NS5 Proteins of Viruses from Three Genera of the Family Flaviviridae Are Phosphorylated by Associated Serine/Threonine Kinases[J]. J Virol, 1998,72(7):6199-6206.
    [57]Sabine Steffens, Heinz-Jurgen Thiel, Sven-Erik Behrens. The RNA-dependent RNA polymerases of different members of the family Flaviviridae exhibit similar properties in vitro[J]. J Gen Virol,1999, 80:2583-2590.
    [58]Vicky C H Lai, Cheng Kao, Eric Ferrari. Mutational Analysis of Bovine Viral Diarrhea Virus RNA-Dependent RNA Polymerase[J]. J Virol,1999,73(12):10129-10136.
    [59]Lihong Liu, Frederik Widen, Claudia Baule, et al. A one-step, gel-based RT-PCR assay with comparable performance to real-time RT-PCR for detection of classical swine fever virus[J]. J Virol Meth,2007,139(2):203-207.
    [60]D J Paton, A McGoldrick, I Greiser-Wilke, et al. Genetic typing of classical swine fever virus[J]. Vet Microbiol,2000,73:137-157.
    [61]D J Paton, A McGoldrick, S Belak, et al. Classical swine fever virus:a ring test to evaluate RT-PCR detection methods [J]. Vet Microbiol,2000,73:159-174.
    [62]傅烈振,朱燕,王宁,等.应用反转录-聚合酶链技术快速检测猪瘟病毒RNA的研究[J].中国兽医科技,1998,06:3-5.
    [63]吴鑫,王军,张以芳.猪瘟病毒一步法RT-PCR检测方法的建立[J].中国畜牧兽医,2002,02:64-66.
    [64]魏淑英,张启迪,刘焕奇,等.巢式PCR技术在猪瘟病毒检测中的应用[J].畜禽业,2008,5:6-8.
    [65]胡建和,杭柏林,王青,等.猪瘟强弱毒鉴别多重RT-PCR方法的建立及应用[J].西北农林科技大学学报(自然科学版),2008,36(11):47-51.
    [66]赵耘,秦玉明,张广川,等RT-PCR和酶切方法区分猪瘟疫苗毒与野毒的研究[J].微生物学通报,2006,33(3):82-87.
    [67]Cruciere C, Bakkali L, Gonzague M, et al. cDNA probes for the detection of pestiviruses [J]. Arch Virol Suppl,1991,3:191-197.
    [68]Schelp C, Greiser-Wilke I. BVD diagnosis:an overview[J]. Berl Munch Tierarztl Wochenschr,2003, 116(5-6):227-33.
    [69]A McGoldrick, J P Lowings, G Ibata, et al. A novel approach to the detection of classical swine fever virus by RT-PCR with a fluorogenic probe (TaqMan) [J]. J Virol Methods,1998,72(2):125-135.
    [70]赵启祖.核酸探针制备方法简介[J].中国兽医科技,1991,21(10):44-45.
    [71]Dirk Deregta, Scott A Gilberta, Sandor Dudasa, et al. J Virol Methods,2006,136(1-2):17-23.
    [72]陈蕾,范学政,王琴.猪瘟病毒RT-LAMP快速诊断方法的建立[J].中国畜牧兽医学会动物传染病学分会第三届猪病防控学术研讨会论文集,2008.
    [73]Hao-tai Chen, Jie Zhang, Li-na Ma, et al. Rapid pre-clinical detection of classical swine fever by reverse transcription loop-mediated isothermal amplification [J]. Molecular and Cellular Probes, 2009,23(2):71-74.
    [74]张兴娟,孙元,刘大飞.猪瘟病毒野毒株RT-LAMP可视化检测方法的建立[J].中国预防兽医 学报,2009,11:864-868.
    [75]G R Risatti, L G Holinka, Z Lu, et al. Mutation of El glycoprotein of classical swine fever virus affects viral virulence in swine[J]. Viology,2005,343(1):116-127.
    [76]赵建军,成丹,李娜,等.猪瘟病毒野毒株和兔化弱毒疫苗株复合实时荧光定量RT-PCR鉴别方法的建立[J].中国兽医科学,2007,37(05):406-412.
    [77]王荣,孔繁德,陈琼,等.猪瘟病毒SYBR Green I实时荧光定量PCR检测方法的建立和初步应用[J].经济动物学报,2009,13(1):39-42.
    [78]A McGoldrick, J P Lowings, G Ibata, et al. A novel approach to the detection of classical swine fever virus by RT-PCR with a fluorogenic probe (TaqMan) [J]. J Virol Methods,1998,72(2):125-135.
    [79]B Hoffmanna, M Beera, C Schelp. Validation of a real-time RT-PCR assay for sensitive and specific detection of classical swine fever[J]. J Virol Methods,2005,130(1):36-44.
    [80]Ralph J A Oude Ophuis, Chris J Morrissy David B Boyle. Detection and quantitative pathogenesis study of classical swine fever virus using a real time RT-PCR assay [J]. J Virol Methods,2006, 131(1):78-85.
    [81]D Barlic-Maganja, J Grom. Highly sensitive one-tube RT-PCR and microplate hybridisation assay for the detection and for the discrimination of classical swine fever virus from other pestiviruses[J]. J Virol Methods,2001,145(5):89-93.
    [82]韩雪清,张涌.猪瘟病毒E2基因在Pichia pastroris中的表达及其免疫活性的初步研究[J].生物工程学报,2002,18(2):208-211.
    [83]A Boum, A J de Smit, E P de Kluijver,et al. Efficacy and stability of a subunit vaccine based on glycoprotein E2 of classical swine fever virus[J]. Vet Microbiol,1999,66(2):101-114.
    [84]Bouma A, de Smi t A J, De Jong M C, et al. De termination of the onset of the herd-immunity induced by the subunit vaccine against classical swine fever virus [J]. Vaccine,2000, 18(14):1374-1381.
    [85]J Dewulf, H Laevens, F Koenenc, et al. A comparative study for emergency vaccination against Classical swine fever with an E2 sub-unit marker-vaccine and a C-strain vaccine [J]. Vaccine,2000, 19(4_5);475-482.
    [86]Rumenapf T, Elbers Knut, et al. Immunogenic composition against Classical Swine Fever Virus (CSFV) [J]. J Virol,1991,65,589-597.
    [87]B Peeters, K Bienkowska-Szewczyk, M Hulst. Biologically safe, non-transmissible pseudorabies virus vector vaccine protects pigs against both Aujeszky's disease and classical swine fever[J]. J Gen Virol,1997,78:3311-3315.
    [88]Junghyun Hahn, Se-Hoon Park, Jae-Young Song, et al. Construction of recombinant swinepox viruses and expression of the classical swine fever virus E2 protein [J]. J Virol Methods,2001, 93(1-2):49-56.
    [89]A Gielkens, A Berns, R Moormann. Live attenuated pseudorabies virus expressing envelope glycoprotein E1 of hog cholera virus protects swine against both pseudorabies and hog cholera [J]. J Virol,1991,65(5):2761-2765.
    [90]余兴龙,涂长春,李红卫,等.猪瘟病毒E2基因真核表达质粒的构建及基因疫苗的研究[J].中国病毒学,2009,15(3):264-271.
    [91]Jef M Hammond, Richard J McCoy, Elisa S Jansen, et al. Vaccination with a single dose of a recombinant porcine adenovirus expressing the classical swine fever virus gp55 (E2) gene protects pigs against classical swine fever[J]. Vaccine,2000,18(11-12):1040-1050.
    [92]Iwona Markowska-Daniel, Robert A Collins, Zygmunt Pejsak. Evaluation of genetic vaccine against classical swine fever [J]. Vaccine,2001,19(17-19):2480-2484.
    [93]周鹏程,陆宇,陈建国,等.猪瘟病毒E2(gp55)基因的克隆表达及其DNA疫苗的初步研究[J].微生物学报,2000,40(3):243-252.
    [94]周鹏程,陈建国,丁明孝.猪瘟病毒NS3丝氨酸蛋白酶功能区基因的克隆及其在大肠杆菌中的高效表达[J].畜牧兽医学报,2001,32(4):330-337.
    [95]Rob J M Moormann, Annemarie Bouma, Johannes A Kramps. Development of a classical swine fever subunit marker vaccine and companion diagnostic test[J]. Vet Microbiol,2000,73(13): 209-219.
    [96]de Smit AJ. Laboratory diagnosis, epizootiology, and efficacy of marker vaccines in classical swine fever:a review [J]. Vet Q,2000,22(4):182-188.
    [97]H G P van Gennip, P A van Rijn, M N Widjojoatmodjo, et al. Recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones by a swine kidney cell line expressing bacteriophage T7 RNA polymerase[J]. J Virol Methods,1999,78(1):117-128.
    [98]H G P van Gennip, P A van Rijn, M N Widjojoatmodjo, et al. Chimeric classical swine fever viruses containing envelope protein ERNS or E2 of bovine viral diarrhoea virus protect pigs against challenge with CSFV and induce a distinguishable antibody response[J].Vaccine,2000,19(4-5): 447-459.
    [99]P A van Rijn, H G P van Gennip, R J M Moormann. An experimental marker vaccine and accompanying serological diagnostic test both based on envelope glycoprotein E2 of classical swine fever virus (CSFV) [J]. Vaccine,1999,17(5):433-440.
    [1]Straw B E, Zimmerman J J, Allaire S D,等.猪病学[M].9版.赵德明,张中秋,沈建中,主译.北京:中国农业大学出版社,2008:325-341.
    [2]Thiel H J,Stark R,Weiland E, et al. Hog cholera virus:mo2lecular composition of virions f rom a pestivirus[J]. J Virol,1991,65 (9):4705-4712.
    [3]Lin M, Trot tier E, Mallory M. Enzyme2linked immunosorbent assay based on a chimeric antigen bearing antigenic regions of structural proteins Erns and E2 for serodiagnosis of classical swine fever virus infection[J]. Clin Vac Immunol,2005,7(12):877-881.
    [4]Flores E F,Kreutz L C,Doins R O. Swine and ruminant pestiviruses require the same cellular factors to enter bovine cells[J]. J Gen Virol,1996,77:1295-1303
    [5]Bartosch B,Dubuisson J,Cosset F L,et al.Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes[J]. J Exp Med,2003,5:633-642
    [6]萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯.分子克隆实验指南[M].2版.金冬燕,黎孟枫,译.北京:科学出版社,1987
    [7]苏鑫铭,徐亚林,于春梅,等.表达Cre重组酶的真核细胞系的建立及在重组伪狂犬病毒研究中的应用[J].南京农业大学学报,2007,30(4):114-119
    [8]Moennig V. Introduction to classical swine fever virus, disease and control policy. Vet Microbiol, 2000,73(2-3):93-102
    [9]OIE. Office International des Epizooties. Diseases notifiable to the OIE.2006, http://www.oie.int/ eng/maladies/en_classification.htm.
    [10]陈溥言主编.兽医传染病学[M].第5版.北京:中国农业出版社,2006:210-215
    [11]Schneider-Schaulies J.Cellular receptors for viruses:links to tropism and pathogenesis [J].J Gen Virol,2000,81(6):1413-1429.
    [12]RisattiGR.,HolinkaLG.,KutishGF.,etal.MutationofE 1 glycoproteinofclassicalswinefevervirusaffectsvi ralvirulencein swine[J].Viology,2005,(343):116-127
    [13]Jordan.M.,F.Wurm.Transfection of adherentand suspended cell by calcium phosphate[J]. Methodes,2004,33:136-143.
    [1]陈溥言.兽医传染病学[M].5版.北京:中国农业出版社,2006:210-215
    [2]Flores E F,Kreutz L C,Doins R O. Swine and ruminant pestiviruses require the same cellular factors to enter bovine cells[J]. J Gen Virol,1996,77:1295-1303
    [3]Briggs J A G,Wilk T,Fuller S D.Do lipid rafts mediate virus assembly and pseudotyping[J].J Gen Virol,2003,84:7572
    [4]Yuan Kehu.Yi Ling,Chen Jian,et al.Suppression of SARS-CoV entry by peptides corresponding to heptad regions on spike glycoprotein[J].Biochem Biophy Res Com,2004(319):746-752
    [5]Wool-Lewis R J,Bates P.Characterization of Ebola Virus Entry by Using Pseudotyped Viruses: Identification of Receptor Deficient CellLines[J].J Virol,1998,72:3155-3160
    [6]Hsu Mayla,Zhang Jie,Flint Mike,et al.Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles[J]. Proc. Natl. Acad. Sci,2003,12(100):7271-7276
    [7]刘华雷,RongLi-Jun,周斌,等.表达H5N1亚型禽流感病毒HA蛋白的重组鼠白血病病毒的特性[J].生物工程学报,2005,1(21):47-51
    [8]萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯.分子克隆实验指南[M].2版.金冬燕,黎孟枫,译.北京:科学出版社,1987
    [9]Reed, L.J., Muench, H.. A simple method for estimating fifty percent endpoints[J]. Am. J. Hyg. 1938,27,493-497.
    [10]Kolokotlsov AA,Wang E,Coplitts TM,et al. Pseudoytped vriuses permti rapdi deetciton of neurtailznig anitbodeis ni human and equnie serum aganis tVenezuealn equnie encephailtis vrius[J].Am J Trop Med Hyg,2006,75(4)7:02-709.
    [11]卢五迅,程通,李少伟,等.人乳头瘤病毒16型假病毒中和实验的建立和初步应用[J].生物工程学报,2006,22(6):990-995.
    [12]闫克夏,谭文杰,张相民,等SARS-CoV假病毒中和试验技术的建立及评价.病毒学报,2007,23(6):440-446.
    [13]Sanders D A. No false start for novel pseudotyped vectors[J].Curr Opin in Biotec,2002,13:437-442
    [14]Wang Zai, Nie Yuchun, Wang Peigang, et al. Characterization of classical swine fever virus entry by using pseudotyped viruses:E1 and E2 are sufficient to mediate viral entry[J]. Virology,2004, 330:332-341
    [15]王庆勇,许于飞,范东升,等.CD40L融合改造后的人乳头瘤病毒16型E7基因DNA疫苗的构建及其免疫原性测定[J].中国医学科学院学报,2007,29(5):584-591
    [16]Klasse P J. Modeling how many envelope glycoprotein trimers per virion participate in human immunodeficiency virus infectivity and its neutralization by antibody[J]. Virology.2007,369(2): 245-262
    [17]Hu QX, Barry AP, Wang ZX, et al. Evolution of the human immunodeficiency virus type-1 envelope during infection reveals molecular corollaries of specificity for corecaptor utilization and AIDS pathogenesis[J].J Virol,2000,74(24):11858-11872.
    [18]Norkin L C.Virus receptors:implications for pathogenesis and the design of antiviral agents [J].Clinical microbiology reviews 1995,8(2):293-315.
    [19]Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector[J].Science,1996,272:263-267.
    [20]Sanders DA. No false start for novel pseudotyped vectors[J].Curr Opin Bio technol,2002,13: 437-442.
    [1]殷震,刘景华.动物病毒学[M].北京:科技出版社,1997.652-664.
    [2]Rumenapf T, Unger G, Strauss JH, Thiel HJ. Processing of the envelope glycoproteins of pestiviruses[J]. J Virol 1993;67:3288-94.
    [3]谢庆阁,翟中和主编.畜禽重大疫病免疫研究进展[M].北京,中国农业科技出版社,1996,321-338.
    [4]Van Rijn P A,Bossers A,Wensvoort G,et al.Classical swine fever virus(CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge[J].J Gen Virol,1996,77(11):2737-2745.
    [5]Wensvoort G,Terpstra C,De Kluijver E P,et al.Antigenic differentiation of pestivirus strains with monoclonal antibodies against hog cholera virus[J].Vet Microbiol,1989,21(1):9-20
    [6]de Smit, A.J., Bouma, A., de Kluijver, et al. Duration of the protection of an E2 subunit marker vaccine against classical swine fever after a single vaccination[J]. Veterinary Microbiology 2001.78,307-317.
    [7]萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯.分子克隆实验指南[M].2版.金冬燕,黎孟枫,译.北京:科学出版社,1987
    [8]姜平主编.兽医生物制品学[M].2版.中国农业出版社,2003.50-56.
    [9]Koenen, F., Vanopdenbosch, E., Wellemans, G., et al. Bovine viral diarrhoea vaccination fails to protect pigs against classical swine fever challenge[J]. Ⅵ. Tijdschrift voor Diergeneeskunde.1998, 57:398-404.
    [10]Koprowski, H., James, T.R., Cox, H.R. Propagation of hog cholera virus in rabbits[J]. Proceedings of the Society for Experimental Biology and Medicine.,1946,63,173-183.
    [11]Gennip H G,Bouma A,Rijn P A,et al. Experimental non-transmissible marker vaccines for classical swine fever(CSF)by trans-complementation of E(rns)or E2 of CSFV[J].Vaccine.2002,20(11-12): 1544-1556.
    [12]Bouma A,Smit A J,Kluijver E P,et al. Efficacy and stability of a subunit vaccine based on glycoprotein E2 of classical swine fever virus [J]. Vet Microbiol.1999,66(2):101-114.
    [13]Dong, X.N., Chen, Y.H.. Candidate peptide-vaccines induced immunity against CSFV and identified sequential neutralizing determinants in antigenic domain A of glycoprotein E2[J]. Vaccine, 2006,24:1906-1913.
    [14]Dong, X.N., Chen, Y., Wu, Y.,et al. Candidate multipeptide-vaccine against classical swine fever virus induced potent immunity with serological marker[J]. Vaccine.2005,23:3630-3633.
    [1]殷震,刘景华主编.动物病毒学[M].2版.北京:科学出版社,1997,652-664.
    [2]陈溥言主编.兽医传染病学[M].5版.北京:中国农业出版社,2006:210-215.
    [3]Cuatrecasas P, Fuchs S, Ailfinsen CB.Catalytic properties and specificity of the extracellular nuclease of staphylococcus aureus. Jbiol Chem.1967,242:1541-1547.
    [4]Natsoulis G, Boeke J D. New antiviral strategy using capsid-nuclease fusion proteins[J].Nature, 1991,352 (15):632-635.
    [5]Schumann G. Hermankova M, Cannon K, et al.Therapeutic effect of a Gag-nuclease fusion protein against retroviral infection in vivo[J]. J Virol,2001,75(15):7030-7041.
    [6]Kobinger GP, Borsetti A, Nie ZL, et al. Virion-argeted viral inactivation of human immunodeficiency virus type 1 by using Vpr fusion proteins[J]. J Virol,1998,72:5441-5448.
    [7]Beterams G, Nassal M. Significant interference with hepatitis B virus replication by a core-nuclease fusion protein[J].J Biol Chem,2001,276(12):8875-8883.
    [8]萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯.分子克隆实验指南[M].2版.金冬燕,黎孟枫,译.北京:科学出版社,1987
    [9]Kern FG, Basilico C.Transcription from the polyoma late promoter in cells stably transformed by chimeric plasmids. Mol Cell Biol.1985,5(4):797-807.
    [10]Heimann M.,Roman-Sosa G.,Martoglio B.,et al.Core protein of pestiviruses is processed at the C terminus by signal peptide peptidase[J].J Virol,2006,80:1915-1921
    [11]Qin C F, Qin E D, Yu M, et al. Therapeutic effects of dengue 2 virus capsid protein and staphylococcal nuclease fusion protein on dengue-infected cell cultures[J]. Arch Virol,2005, 150(4):659-669.
    [12]Beterams G, Bottcher B, Nassal M. Packing of up to 240 subunits of a 17 kDa nuclease into the interior of recombinant hepatitis B virus capsids[J]. FEBS Lett,2000,481(2):169-176.
    [1]Boeke J D, Hahn B. Destroying retro viruses from within[J]. Trends Microbiol,1996,4(11) 421-426.
    [2]殷震,刘景华主编.动物病毒学[M].2版.北京:科学出版社,1997,652-664.
    [3]陈溥言主编.兽医传染病学[M].5版.北京:中国农业出版社,2006:210-215.
    [4]Reed, L.J., Muench, H.,1938. A simple method for estimating fifty percent endpoints[J]. Am. J. Hyg.27,493-497.
    [5]Ralph, J.A., Oude, O., Chris, J.M., et al. Detection and quantitative pathogenesis study of classical swine fever virus using a real time RT-PCR assay[J]. J.Virol. Meth.2006,131,78-85.
    [6]徐兴然,郭焕成,史子学,等.通过基因组定量研究猪瘟病毒在细胞中的增殖特性[J].微生物学报,2007,47(5):800-804.
    [7]Natsoulis G, Boeke J D. New antiviral strategy using capsid-nuclease fusion proteins[J].Nature, 1991,352 (15):632-635.
    [8]Kobinger GP, Borsetti A, Nie ZL, et al. Virion-argeted viral inactivation of human immunodeficiency virus type 1 by using Vpr fusion proteins[J]. J Virol,1998,72:5441-5448.
    [9]Beterams G, Nassal M. Significant interference with hepatitis B virus replication by a core-nuclease fusion protein[J]. J Biol Chem,2001,276(12):8875-8883.
    [10]Schumann G, Hermankova M, Cannon K, et al. Therapeutic effect of a Gag-nuclease fusion protein against retroviral infection in vivo[J]. J Virol,2001,75(15):7030-7041.
    [11]Qin C F, Qin E D, Yu M, et al. Therapeutic effects of dengue 2 virus capsid protein and staphylococcal nuclease fusion protein on dengue-infected cell cultures[J]. Arch Virol,2005, 150(4):659-669.
    [12]Moennig, V. Introduction to classical swine fever virus disease and control policy[J]. Vet. Microbiol,2000,73,93-102.
    [13]Okui, N., Kitamura, Y., Kobayashi, N., et al. Virion-targeted viral inactivation:new therapy against viral infection[J]. Mol. Urol.2001,15,59-66.
    [14]Qin, C.F., Qin, E.D. Capsid-targeted viral inactivation can destroy dengue 2 virus from within in vitro[J]. Arch. Virol,2006,151,379-385.
    [15]Spagnuolo-Weaver M, Walker IW, Campbell ST, et al. Rapid detection of porcine reproductive and respiratory syndrome viral nucleic acid in blood using a fluorimeter based PCR method[J]. Vet Microbiol,2000,76 (1):15-23.
    [16]Dhar AK, Roux MM, Klimpel KR. Detection and quantification of infectious hypodermal and hematopoietic necrosis virus and white spot virus in shrimp using real-time quantitative PCR and SYBR Green chemistry[J]. Journal of Clinical Microbiology,2001,8 (1):2836-2845.
    [17]ChiYoung J W, Joseph J G, Bruce F S. Detection of duck hepatits B virus DNA on filter paper by PCR and SYBR green dye I based quantitative PCR[J].Journal of Clinical Microbiology,2002,7 (2):2584-2590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700