拟南芥响应低氮和低钙分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验室以模式植物拟南芥为材料,研究植物对矿质养分贫瘠响应和适应的分子机制。本论文由两个相对独立的课题组成:一方面通过突变体筛选比较深入的研究了RHD3基因在低氮诱导花青素过量积累过程中的分子功能;另一方面结合对活体细胞内细胞质Ca浓度的动态检测和基因表达谱芯片技术,对植物感应低Ca环境的细胞和分子生物学机制进行了初探。
     (1)本研究筛选到一株在低氮条件下过量积累花青素的、隐性单基因突变体,表现主根短,根毛短而弯曲和植株矮小的表型。结合图位克隆与以二代测序技术为基础的DNA多态性分析,确定突变基因为ROOT HAIR DEFECTIVE3(RHD3),突变位点为第16个内含子的最后一个碱基,导致RNA剪接错误,命名为rhd3-10,其所有表型同已知的rhd3-1以及rhd3-10/rhd3-1杂交F1代植物完全一致,证明我们观察到的表型确实为RHD3基因突变造成。RHD3定位于内质网,基因启动子活性集中在叶子和根尖。在rhd3-10突变体体内引入花青素合成关键基因TT4的突变,完全阻断在低氮条件下rhd3-10过量积累花青素的表型。
     在低氮条件下,rhd3-10相对于野生型植物(Co1),体内花青素合成相关基因表达上调,花青素含量过量积累。证明在Col植物体内,RHD3是低氮诱导花青素积累的负调控因子。乙烯是高光强诱导花青素积累的负调控因子。我们假设RHD3通过介导乙烯途径间接负调控花青素积累。该假设得到如下四个结果的支持:(a)RHD3基因突变部分阻断低氮对乙烯反应基因表达的诱导;(b)在低氮条件下,乙烯信号转导阻断突变体,etrl、ein2、ein3/eill表现出过量积累花青素的表型;而乙烯过量产生突变体eto1则表现出花青素积累显著降低的表型。这证明,乙烯是低氮诱导花青素积累的负调控因子;(c)对于Co1.7烯合成前体ACC强烈抑制低氮诱导的花青素积累;对于乙烯信号转导阻断突变体和rhd3-10, ACC的这种抑制作用显著降低;(d)在乙烯过量产生突变体eto1体内进一步突变RHD3基因可以显著提高突变体花青素的积累。尽管RHD3和ETR1, EIN2和CTR1都位于或同内质网关联,但是通过酵母双杂交实验没有发现RHD3的N和C端同ETR1, EIN2和CTR1相互作用。RHD3调节乙烯信号转导的分子机制还需要进一步研究。
     (2)生态学证据表明,酸雨导致全球范围土壤中Ca含量降低。植物应对低Ca的分子和细胞学机制未知。本研究发现低Ca环境诱导大量基因表达发生显著变化,其中很多基因是以前证明参与植物响应其他逆境信号的基因。一类编码细胞质Ca2+([Ca2+]cyt)感知蛋白的基因显著上调,我们假设[Ca2+]cyt参与植物细胞感应外界低Ca环境。研究证实,降低细胞外Ca2+浓度([Ca2+]ext)确实会激发[Ca2+]cyt瞬时升高,而且[Ca2+]cyt升高的峰值与[Ca2+]ext降低的程度呈正相关。通过提高细胞外K+浓度使细胞质膜电势相对去极化,显著抑制[Ca+2]cxt降低对[Ca2+]cyt的诱导作用,说明Ca2+可能通过受膜电势调节的Ca通道进入细胞内。Gd3+,一个Ca2+通道抑制剂确实强烈抑制这个反应。
     动物细胞质膜存在对细胞外低Ca感知的受体蛋白。受体调节的信号事件经常表现脱敏现象:细胞在对第一次信号刺激作出反应以后,需要一段时间的恢复才能对连续的第二次同样信号刺激作出反应。我们发现植物细胞对低Ca的反应有显著的时间依赖性的脱敏现象,但是对动物细胞Ca感知蛋白拮抗剂不敏感。磷脂酶C拮抗剂neomycin可以抑制细胞外低Ca对[Ca2+]cyt的诱导作用。进一步研究发现,当用Ca2+通道抑制剂Gd3+抑制低Ca引起的[Ca2+]cyt升高以后,可以抑制一部分低Ca诱导的下游基因表达,这说明植物细胞对低Ca环境在基因表达层面的响应有依赖[Ca2+]cyt和不依赖[Ca2+]cyt两条途径。
     综上所述,本研究一方面在植物响应低氮逆境方面鉴定到RHD3基因的新功能,并进一步证明RHD3通过调节乙烯信号转导通路实现对花青素合成的负调控功能。另一方面,本研究建立了植物响应低钙的基本细胞和基因转录机理。为实验室进一步研究植物响应矿质营养贫瘠信号奠定了基础。
Our lab studies molecular mechanism of plants to mineral nutrient deprivation with Arabidopsis as material. This thesis is composed of two relatively independent sections:by screening genetic mutants, we conducted analysis on molecular role of RHD3in low nitrogen-induced anthocyanin accumulation; by combining measuring cytosolic Ca dynamics change in vivo and microarray-based transcriptional analysis, we initiated investigation of cellular and molecular mechanism of plant cell response to low calcium.
     (1) We isolated a single gene and recessive mutant showing anthocyanin overly accumulation phenotype under low nitrogen, which displayed short primary root, short and wavy root hair, dwarf phenotypes. Combination of positional cloning and next generation sequencing-based DNA polymorphisms analysis identified an single base mutation in the last base of16th intro of ROOT HAIR DEFECTIVE3(RHD3) leading truncated RNA product, which was named as rhd3-10. The mutant's phenotype was copied by rhd3-1and rhd3-1/rhd3-10F1plants. It demonstrated that RHD3indeed is the gene responsible for all observed phenotype. RHD3locates in ER and its promoter activity primarily is in the leaf and root tip. Mutating TT4, an essential gene for anthocyanin biosynthesis, completely blocked the low nitrogen-induced anthocyanin accumulation in rhd3-10.
     Under low nitrogen, rhd3-10had higher expression of anthocyanin biosynthesis related genes and accumulation of anthocyanin itself than those of wild type (Col). It demonstrated that RHD3is a negative regulator of the low nitrogen-induced anthocyanin accumulation. Ethylene negatively regulates high light-induced anthocyanin accumulation. We hypothesized that RHD3negatively regulates anthocyanin biosynthesis through modulating ethylene signaling pathway, which was supported by following four evidences:(a) RHD3mutation partially blocked the low nitrogen-induced ethylene responsive gene expression;(b) Under low nitrogen, ethylene signaling blocking mutants etrl、ein2、ein3/eill accumulated more, but ethylene over-producing mutant etol accumulated less anthocyanin. It demonstrated that ethylene indeed is the negative regulator of this process;(c) Ethylene precursor ACC strongly suppressed the low nitrogen-induced anthocyanin accumulation in Col. The suppressive effect of ACC was significantly attenuated in ethylene signaling mutants and rhd3-10;(d) Introducing rhd3-10into etol increased low nitrogen induced anthocyanin accumulation. Though RHD3, ETR1, EIN2and CTR1locate or associate with ER, we didn't detect protein-protein interaction between RHD3N or C terminals and ETR1, EIN2and CTR1. It implies further investigation needed for exploring molecular mechanism of RHD3-regulated ethylene signaling.
     (2) Ecological evidence indicates a worldwide trend of dramatically decreased soil Ca2+levels caused by increasing acid deposition and massive timber harvesting. Little is known about the genetic and cellular mechanism of plants'responses to this decrease. In this study, transcriptional profiling analysis identified many extracellular Ca ([Ca2+]ext) deprivation-responsive genes in Arabidopsis thaliana, many of which are involved in plant responses to other environmental stresses. Interestingly, a group of putative cytosolic Ca2+([Ca2+]cyt) sensor-encoding genes were significantly up-regulated, which implied that [Ca2+]cyt has a role in sensing the [Ca2+]ext deprivation. Supportively, decreasing [Ca2+]ext evoked a transient rise in [Ca2+]cyt, the amplitude of which positively correlated with decreasing [Ca2+]ext and negatively [K+]ext.The response was insensitive to an animal Ca sensor antagonist, but was suppressed by neomycin, an inhibitor of phospholipase C. The [Ca2+]cyt response to [Ca2+]ext deprivation was significantly desensitized after the initial treatment, which was typical of a receptor-mediated signaling event. Gd3+, an inhibitor of Ca2+channels, suppressed the [Ca2+]ext triggered [Ca2+]cyt rise and the downstream gene expressions. Taken together, this study demonstrated that [Ca2+]cyt plays an important role in the putative receptor-mediated cellular and transcriptional sensing of [Ca2+]ext deprivation of plant cells.
     In summary, this study identified a new function of RHD3in plant response to low nitrogen and demonstrated that RHD3negatively regulated low nitrogen-induced anthocyanin biosynthesis through modulating ethylene signaling. On the other hand, this study established the cellular and molecular mechanism of plant response to low calcium. It will pave foundation for conducting further investigation of plant response to mineral nutrition deprivation signals.
引文
[1]Schiefelbein JW and Somenrille C (1990) Genetic Control of Root Hair Development in Arabidopsis thaliana. Plant Cell 2:235-243.
    [2]Wang H, Lee MM, Schiefelbein JW (2002) Regulation of the Cell Expansion Gene RHD3 during Arabidopsis Development. Plant Physiology 129:638-649.
    [3]Wang H, Lockwood SK, Hoeltzel MF, Schiefelbein JW (1997) The ROOT HAIR DEFECTIVES gene encodes an evolutionarily conserved protein with GTP-binding motifs and is required for regulated cell enlargement in Arabidopsis. Genes & Development 11:799-811.
    [4]Hu Y, Zhong R, Morrison WH, Zheng HY (2003) The Arabidopsis RHD3 gene is required for cell wall biosynthesis and actin organization. Planta 217:912-921.
    [5]Stefano G, Renna L, Moss T, McNew JA, Brandizzi F (2012) In Arabidopsis, the spatial and dynamic organization of the endoplasmic reticulum and golgi apparatus is influenced by the integrity the C-terminal domain of RHD3, a non-essential GTPase. Plant Journal 69:957-966.
    [6]Zhang M, Wu F, Shi J, Zhu Y, Zhu Z, Gong Q, Hu J (2013) ROOT HAIR DEFECTIVE3 Family of Dynamin-Like GTPases Mediates Homotypie Endoplasmic Reticulum Fusion and Is Essential for Arabidopsis Development. Plant Physiology 163:713-720.
    [7]Chen J, Doyle C, Qi X, Zheng H (2012) The endoplasmic reticulum:a social network in plant cells. Journal of Integrative Plant Biology 54(11):840-850.
    [8]Zheng H, Kunst L, Hawes C, Moore L (2004) A GFP-based assay reveals a role for RHD3 in transport between the endoplasmic reticulum and Golgi apparatus. The Plant Journal 37:398-414.
    [9]Chen J, Stefano G, Brandizzi F, Zheng H (2012) Arabidopsis RHD3 mediates the generation of the tubular ER network and is required for Golgi distribution and motility in plant cells. Journal of Cell Science 124(13): 2241-2252.
    [10]Parker JS, Cavell AC, Dolan L, Roberts K, Grierson CS (2000) Genetic Interactions during Root Ha Morphogenesis in Arabidopsis. Plant Cell 12:1961-1974.
    [11]Zheng H and Chen J (2010) Emerging aspects of ER organization in root hair tip growth:Lessons from RHD3 and Atlastin. Plant Signal and Behavior 6:1710-1713.
    [12]Zheng H and Chen J (2011) Emerging aspects of ER organization in root hair tip growth. Plant Signaling & Behavior 611:1710-1713.
    [13]Sun Y, Li H, Huang JR (2012) Arabidopsis TT19 Fuctions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Molecular Plant 5(2):387-400.
    [14]Jorgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N, Zagrobelny, M, Bak S, and Moller BL (2005) Metabolon formation andmetabolic channeling in the biosynthesis of plant natural products. Current Opinion Plant Biology 8:280-291.
    [15]Katia Petroni, Chiara Tonelli (2011) Recent advances on th regulation of anthocyanin synthesis in reproductive organs. Plant Science 181:219-229.
    [16]Jeong SW, Das PK, Jeoung SC, Song JY, Lee HK, Kim YK, Kim WJ, Park YI, Yoo SD, Choi SB, Choi G (2010)Ethylene Suppression of Sugar-Induced Anthocyanin Pigmentation in Arabidopsis,'Plant Physiology 154: 1514-1531.
    [17]Grotewold E and Davis K (2008) Trafficking and sequestration of anthocyanins. Nat. Prod. Comm.3: 1251-1258.
    [18]Zhao J and Dixon RA (2010) The'ins'and'outs'of flavonoid transport. Trends in Plant Science 15:72-80.
    [19]Gyula P, Scha'fer E, Nagy F (2003) Light perception and signalling in higher plants. Current Opinion Plant Biology 6:446-452.
    [20]Shin J, Park E, Choi G (2007) PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant Journal 49:981-994.
    [21]Zhou LL, Shi MZ, Xie DY (2012) Regulation of anthocyanin biosynthesis by nitrogen in TTG1-GL3/TT8-PAP1-programmed red cells of Arabidopsis thaliana. Planta 236:825-837.
    [22]Feyissa DN, Lovdal T, Olsen KM, Slimestad R, Lillo C (2009) The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in Arabidopsis rosette stage leaves. Planta 230:747-754.
    [23]Hoth S, Niedermeier M, Feuerstein A, Hornig J, Sauer N (2010) An ABAresponsive element in the AtSUC1 promoter is involved in the regulation of AtSUCl expression. Planta 232:911-923.
    [24]Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, and Tucker ML (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. PNAS 109,19486-19491.
    [25]Kereamya AE, Chervina C, Roustana JP, Cheynierb V, Souquetb JM, Moutounetb M, Raynala J, Fordc C, Latche A, Pecha JC and Bouzayena M (2003) Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiologia plantarum 119:175-182.
    [26]Rengel Z and Kordan HA (1987) Effects of growth regulators on light-dependent anthocyanin production in Zea mays seedlings. Physiology Plant 69:511-519.
    [27]Zheng DC, Han X, An Y, Guo HW, Xia XL and Yin WL (2013) The nitrate transporter NRT 2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis. Plant, Cell and Environment 36:1328-1337.
    [28]Philip JW, Martin RB (2003) Calcium in plants. Annals of Botany,92:487-511.
    [29]Jorg K, Oliver B, Kenji H (2010) Calcium signal:the lead currency of plant information processing. Plant Cell 22:541-563.
    [30]Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiology 126:696-706.
    [31]Blackford S, Rea PA, Sanders D (1990) Voltage sensitivity of H+/Ca2+antiport in higher plant tonoplast suggests a role in vacuolar calcium accumulation. Journal of Biological Chemistry 265:9617-9620.
    [32]Hirschi K (2001) Vacuolar H+/Ca2+transport:who's directing the traffic? Trends in Plant Science 6: 100-104.
    [33]White PJ.1998. Calcium channels in the plasma membrane of root cells. Annals of Botany 81:173-183.
    [34]White PJ (2000) Calcium channels in higher plants. Biochimica et Biophysica Acta 1465:171-189.
    [35]Anne-Alie'nor Ve'ry and Julia M. Davies (2000) Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. PNAS 17:9801-9806.
    [36]Demidchik V, Bowen HC, Maathuis JM, Shabala SN, Tester MA, White PJ and Davies JM (2002) Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. Plant Journal 32:799-808.
    [37]Kohler B, Blatt MR (2002) Protein phosphorylation activates the guard cell Ca2+channel and is a prerequisite for gating by abscisic acid. Plant Journal 32:185-194.
    [38]White PJ and Davenport RL (2002) The Voltage-Independent Cation Channel in the Plasma Membrane of Wheat Roots Is Permeable to Divalent Cations and May Be Involved in Cytosolic Ca2+Homeostasis. Plant Physiology 130:1386-1395.
    [39]Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401-S417.
    [40]Lemtiri-Chlieh F, MacRobbie EA, Brearley CA (2000) Inositol hexakisphosphate is a physiological signal regulating the K+-inward rectifying conductance in guard cells. PNAS 97:8687-8692.
    [41]Reddy AS (2001) Calcium:silver bullet in signaling. Plant Science 160:381-404.
    [42]Zielinski RE (1998) Calmodulin and calmodulin-binding proteins in plants. Annual review of plant biology 49:697-725.
    [43]Van der Luit AH, Olivari C, Haley A, Knight MR, Trewavas AJ (1999) Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiology 121:705-714.
    [44]Yamakawa H, Mitsuhara I, Ito N, Seo S, Kamada H, Ohashi Y (2001) Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plants. European Journal of Biochemistry 268:3916-3929.
    [45]Ling V, Zielinski RE (1993) Isolation of an Arabidopsis cDNA sequence encoding a 22 kDa calcium-binging protein (CaBP-22) related to calmodulin. Plant Molecular Biology 22:207-214.
    [46]Braam J, Sistrunk ML, Polisensky DH, Xu W, Purugganan MM, Antosiewicz DM, Campbell P, Johnson KA (1997) Plant responses to environmental stress:regulation and functions of the Arabidopsis TCH genes. Planta 203:S35-S41.
    [47]Jang HJ, Pih KT, Kang SG, Lim JH, Jin JB, Piao HL, Hwang I (1998) Molecular cloning of a novel Ca2+-binding protein that is induced by NaCl stess. Plant Membrance Biology 37:839-847.
    [48]Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JDG (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant Journal 14:365-370.
    [49]Leung J, Merlot S, Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759-771.
    [50]Luan S, Kudla J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B-like proteins calcium sensors for specific signal response coupling in plants. Plant Cell 14:S389-S400.
    [51]Liu J, Zhu J-K (1998) A calcium sensor homolog required for plant salt tolerance. Science 280:1943-1945.
    [52]Kudla J, Xu Q, Harter K, Gruissem W, Luan S (1999) Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. PNAS 96:4718-4723.
    [53]Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arbidopsis calcium-dependent protein kinase gene family. Plant Physiology 129:469-485.
    [54]Lee SS, Cho HS, Yoon GM, Ahn JW, Kim HH, Pai HS (2003) Interaction of NtCDPK1 calcium-dependent protein kinase with NtRpn3 regulatory subunit of the 26S proteasome in Nicotiana tabacum. Plant Journal 33:825-840.
    [55]Zhang L, Lu YT (2003) Calmodulin-binding protein kinases in plants. Trends in Plant Science 8:123-127.
    [56]Liu Z, Xia M, Poovaiah BW (1998) Chimeric calcium/calmodulin-dependent protein kinase in tobacco: differential regulation by calmodulin isoforms. Plant Molecular Biology 38:889-897.
    [57]Young JJ, Mehta S, Israelsson M, Godoski J, Grill E, Schroeder JI (2006) CO2 signaling in guard cells: Calcium sensitivity response modulation, a Ca2+-independent phase, and CO2 insensitivity of the gca2 mutant. PNAS 103:7506-7511.
    [58]Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca2+-permeable channels and stomatal closure. PLoS Biology 4:1749-1762.
    [59]Cho D, Kim SA, Murata Y, Lee S, Jae SK, Nam HG, Kwak JM (2009) De-regulated expression of the plant glutamate receptor homolog AtGLR3.1 impairs long-term Ca2+-programmed stomatal closure. Plant Journal 58: 437-449.
    [60]Yoon GM, Dowd PE, Gilroy S, McCubbin AG (2006) Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity. Plant Cell 18:867-878.
    [61]Monshausen GB, Messerli MA, Gilroy S (2008) Imaging of the Yellow Cameleon 3.6 indicator reveals that elevations in cytosolic Ca2+follow oscillating increases in growth in root hairs of Arabidopsis. Plant Physiology 147:1690-1698.
    [62]Takeda S, Gapper C, Kaya H, Bell E, Kuchitsu K, Dolan L (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319:1241-1244.
    [63]Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S (2009) Ca2+regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21:2341-2356.
    [64]付晓萍,田大伦(2006)酸雨对植物的影响研究进展.西北林学院学报,21(4):23-27.
    [65]Zhou W, Ling B (1996) Research progress in chemistry behavior and bio-availability of calcium in soil. Soils and fertilizers 5:19:22.
    [66]吴飞华,刘廷武,裴真明(2010)酸雨引起森林生态系统钙流失研究进展.生态学报30(4):1081-1088.
    [67]Borer CH, Schaberg PG, DeHayes DH, Hawley GJ (2004) Accretion, partitioning and sequestration of calcium and aluminum in red spruce foliage:implications for tree health. Tree Physiology 24:929-939.
    [68]Schaberg PG, DeHayes D, Hawley G (2001) Anthropogenic calcium depletion:A unique threat to forest ecosystem health? Ecosystem Health 7:214-228.
    [69]Bedison J, Johnson A (2010) Seventy-Four Years of Calcium Loss from Forest Soils of the Adirondack Mountains, New York. Soil Science Society of America Journal 74:2187-2195.
    [70]Jeziorski A, Norman DY, Paterson AM, Desellas AM, Turner MA, Jeffries DS, Keller B, Weeber RC, Mcnicol DK, Palmer ME, Mclver K, Arseneau K, Ginn BK, Cumming BF, Smol JP (2008) The Widespread Threat of Calcium Decline in Fresh Waters. Science 322:1374-1377.
    [71]Larssen T, Duan L, Mulder J (2011) Deposition and leaching of sulfur, nitrogen and calcium in four forested catchments in China:implications for acidification. Environ Science Technology 45:1192-1198.
    [72]Maclin D, Stephen DT, Roger AL (2010) Calcium storage in plants and the implications for calcium biofortification. Protoplasma 247:215-231.
    [73]Likens GE, Driscoll CT, Buso DC (1998) The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 41 (2):89-173.
    [74]Igawa M, Kase T, Satake K (2002) Severe leaching of calcium ions from fir needles caused by acid fog. Environmental Pollution 119(3):375-382.
    [75]Sherman RE, Fahey TJ (1994) The effects of acid deposition on the biogeochemical cycles of major nutrients in miniature red sp ruce ecosystems. Biogeochemistry 24(2):85-114.
    [76]Wang W, Cao HF, Ying J, Chen YZ, Ye Q, Sun WS (1988) Interaction of acidic cloud drop letwith and it's effects on forest canopy in the J ingdingzone of theMount Emei. Reaearch of Environmental Sciences 1(6):25-31.
    [77]Talhelm A, Pregitzer K, Burton A, Zak D (2012) Air pollution and the changing biogeochemistry of northern forests. Frontiers in Ecology and the Environment 10:181-185.
    [78]刘菊秀(2003)酸沉降对森林生态系统影响的研究现状及展望.生态学杂志22(5):113-117.
    [79]Halman J, Schaberg P, Hawley G, Hansen C (2011) Potential role of soil calcium in recovery of paper birch following ice storm injury in Vermont, USA. Forest Ecology and Management 261:1539-1545.
    [80]Miller G (1999) Potassium application reduces calcium and magnesium levels in bermudagrass leaf tissue and soil. HortScience 34:265-268.
    [81]Freitas ST and Mitcham EJ (1979) Factors Involved in Fruit Calcium Deficiency Disorders. Horticultural Reviews 40:107-146.
    [82]Marschner H (1995) Mineral nutrition of higher plants. London:Academic Press.
    [83]White PJ, Broadley MR (2003) Calcium in plants. Annual Botany 92:487-511.
    [84]王静,陈建华,伊力奇,冯丽霞,亢燕,祁智(2014)低Ca对拟南芥幼苗生长及盐胁迫影响初探.华北农学报29(4):1-6.
    [1]丁立秋(2013)拟南芥抗Cs+突变体的筛选、遗传和表型分析以及基因的定位.《内蒙古大学硕士论文》.
    [2]Rabino I and Mancinelli AL (1986) Light, temperature, and anthocyanin production. Plant Physiology 81: 922-924.
    [3]Daubresse-Masclaux C, Chardon F (2010) Exploring nitrogen remobilization for filling using natural variation in Arabidopsis thaliana. Journal of Experimental Botany 62:2131-2142.
    [4]Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, and Tucker, ML (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. PNAS 109:19486-19491.
    [5]黄文强(2011)绒山羊CRISPs的cDNA克隆、CRISP2的表达定位及其与PDIA3相互结合的研究.《内蒙古大学硕士论文》
    [6]Wang HY, Lee MM, Schiefelbein JW (2002) Regulation of the Cell Expansion Gene RHD3 during Arabidopsis Development. Plant Physiology 129:638-649.
    [7]Austin RS, Vidaurre D, Stamatiou G, Breit R, Provart NJ, BonettaD, Zhang J, FungP, Gong Y, Wang PW, Mccout P, Guttman DS (2011) Next-generation mapping of Arabidopsis genes. Plant Journal 67:715-725.
    [8]Zheng DH, Han X, An Y, Guo HW, Xia XL, Yin WL (2013) The nitrate transporter NRT 2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis. Plant, Cell & Environment 36:1328-1337.
    [9]Zhou L, Shi MZ, Xie DY (2012) Regulation of anthocyanin biosynthesis by nitrogen in TTG1-GL3/TT8-PAP1-programmed red cells of Arabidopsis thaliana. Planta 236:825-837.
    [10]Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul JM, Alboresi A, Weisshaar B, Lepiniec L (2008) MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant Journal 55: 940-953.
    [11]Quattrocchio F, Baudry A, Lepiniec L, Grotewold E (2006) The regulation of flavonoid biosynthesis. The Science of Flavonoids:97-122.
    [12]Matsui K, Umemura Y, Ohme-Takagi M (2008) AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant Journal 55:954-967.
    [13]Rengel Z, Kordan HA (1987) Effects of growth regulators on light-dependent anthocyanin production in Zea mays seedlings. Physiology Planturm 69:511-519.
    [14]Takada K, Ishimaru K, Minamisawa K, Kamada H, Ezura H (2005) Expression of a mutated melon ethylene receptor gene Cm-ETR1/H69A affects stamen development in Nicotiana tabacum. Plant Science 169:935-942.
    [15]Jeong SW, Das PK, Jeoung SC, Song JY, Lee HK, Kim YK, Kim WJ, Park Y, Yoo SD, Choi SB, Choi G, Park Y (2010) Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. Plant Phyiology 154: 1514-1517.
    [16]Stefano G, Renna L, Moss T, Mcnew JA, Brandizzi F (2012) In Arabidopsis, the spatial and dynamic organization of the endoplasmic reticulum and Golgi apparatus is influenced by the integrity of the C-terminal domain of RHD3, a non-essential GTPase. Plant Journal 69:957-966.
    [17]Zhang M, Wu F, Shi J, Zhu Y, Zhu Z, Gong Q, Hu J (2013) ROOT HAIR DEFECTIVE3 Family of Dynamin-Like GTPases Mediates Homotypic Endoplasmic Reticulum Fusion and Is Essential for Arabidopsis Development. Plant Physiology 163:713-720.
    [1]Li F, Wang J, Ma C, Zhao Y, Wang Y, Hasi A, Qi Z (2013) Glutamate receptor-like channel3.3 involved in mediating glutathione-triggered cytosolic calcium transients, transcriptional changes, and innate immunity responses in Arabidopsis. Plant Physiology 162:1479-1509.
    [2]Page B, Mitchell M (2008) Influences of a calcium gradient on soil inorganic nitrogen in the Adirondack Mountains, New York. Journal of Applied Ecology 18:1604-1614.
    [3]Jiang Y, Yang B, Deyholos MK (2009) Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Molecular Genetic Genomics 282:503-516.
    [4]Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972-984.
    [5]Kim JS, Mizoi J, Yoshida T, Fujita Y, Nakajima J, Ohori T, Todaka D, Nakashima K, Hirayama T, Shinozaki K (2011) An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant and Cell Physiology 52:2136-2146.
    [6]Dubois M, Skirycz A, Claeys H, Maleux K, Dhondt S, Bodt SD, Bossche RV, Milde LD, Yoshizumi T, Matsui M, Inze D (2013) ETHYLENE RESPONSE FACTOR6 acts as a central regulator of leaf growth under water-limiting conditions in Arabidopsis. Plant Physiology 162:319-332.
    [7]Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor M-I, Asensi-Fabado MA, Munne-Bosch S, Antonio C, Tohge T (2012) JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24:482-506.
    [8]Liu R, Lii B, Wang X, Zhang C, Zhang S, Qian J, Chen L, Shi H, Dong H (2010) Thirty-seven transcription factor genes differentially respond to a harpin protein and affect resistance to the green peach aphid in Arabidopsis. Journal of Bioscience 35:435-450.
    [9]Kim KC, Lai Z, Fan B, Chen Z (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20:2357-2371.
    [10]Gao QM, Venugopal S, Navarre D, Kachroo A (2011) Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiology 155:464-476.
    [11]Devaiah BN, Karthikeyan AS, Raghothama KG (2007) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiology 143:1789-1801.
    [12]Liu Q, Wen CK (2012) Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes. Plant Physiology 158:1193-1207.
    [13]Chen YF, Li LQ, Xu Q, Kong YH, Wang H, Wu WH (2009) The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell 21:3554-3566.
    [14]McCormack E, Tsai YC, Braam J (2005) Handling calcium signaling:Arabidopsis CaMs and CMLs. Trends Plant Science 10:383-389.
    [15]Vanderbeld B, Snedden WA (2007) Developmental and stimulus-induced expression patterns of Arabidopsis calmodulin-like genes CML37, CML38 and CML39. Plant Molecular Biology 64:683-697.
    [16]Benjamins R, Ampudia CS, Hooykaas PJ, Offiinga R (2003) PINOID-mediated signaling involves calcium-binding proteins. Plant Physiology 132:1623-1630.
    [17]Du L, Poovaiah BW (2004) A novel family of Ca2+/calmodulin-binding proteins involved in transcriptional regulation:interaction with fsh/Ring3 class transcription activators. Plant Molecular Biology 54:549-569.
    [18]Chen Z, Hartmann HA, Wu MJ, Friedman EJ, Chen JG, Pulley M, Schulze-Lefert P, Panstruga R, Jones AM (2006) Expression analysis of the AtMLO gene family encoding plant-specific seven-transmembrane domain proteins. Plant Molecular Biology 60:583-597.
    [20]Spalding E, Harper J (2011) The ins and outs of cellular Ca2+transport. Current Opinion Plant Biology 14: 715-720.
    [21]Conn SJ, Gilliham M, Athman A, Schreiber AW, Baumann U, Moller I, Cheng NH, Stancombe MA, Hirschi KD, Webb AA, Burton R, Kaiser BN, Tyerman SD, Leigh RA (2011) Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell 23:240-257.
    [22]Bradshaw HD (2005) Mutations in CAX1 produce phenotypes characteristic of plants tolerant to serpentine soils. New Phytologist 167:81-88.
    [23]Han S, Tang R, Anderson L, Woerner T, Pei Z (2003) A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature 425:196-200.
    [24]Cessna SQ Low PS (2001) An apoplastic Ca2+sensor regulates internal Ca2+release in aequorin-transformed tobacco cells. Journal of Biology Chemical 276:10655-10662.
    [25]Meier S, Ruzvidzo O, Morse M, Donaldson L, Kwezi L, Gehring C (2010) The Arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes. PLOS ONE 5:e8904.
    [26]Kim JM, Woo DH, Kim SH, Lee SY, Park HY, Seok HY, Chung WS, Moon YH (2012) Arabidopsis MKKK20 is involved in osmotic stress response via regulation of MPK6 activity. Plant Cell Report 31:217-24.
    [27]Schweighofer A, Kazanaviciute V, Scheikl E, Teige M, Doczi R, Hirt H, Schwanninger M, Kant M, Schuurink R, Mauch F, Buchala A, Cardinale F, Meskiene I (2007) The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell 19:2213-2224.
    [28]Zhang J, Li X, He Z, Zhao X, Wang Q, Zhou B, Yu D, Huang X, Tang D, Guo X, Liu X (2013) Molecular character of a phosphatase 2C (PP2C) gene relation to stress tolerance in Arabidopsis thaliana. Molecular Biology Report 40:2633-2644.
    [29]Pierrugues O, Brutesco C, Oshiro J, Gouy M, Deveaux Y, Carman GM, Thuriaux P, Kazmaier M (2001) Lipid phosphate phosphatases in Arabidopsis Regulation of the AtLPPl gene in response to stress. Journal of Biology Chemical 276:20300-20308.
    [30]Wei WL, Sun HS, Olah ME, Sun X, Czerwinska E, Czerwinski W, Mori Y, Orser BA, Xiong ZG, Jackson MF, Tymianski M, MacDonald JF (2007) TRPM7 channels in hippocampal neurons detect levels of extracellular divalent cations. PNAS 104:16323-16328.
    [31]Qi Z, Spalding EP (2004) Protection of plasma membrane K+transport by the salt overly sensitivel Na+-H+ antiporter during salinity stress. Plant Physiology 136:2548-2555.
    [32]Peterlik M, Kallay E, Cross HS (2013) Calcium nutrition and extracellular calcium sensing:relevance for the pathogenesis of osteoporosis, cancer and cardiovascular diseases. Nutrients 5:302-327.
    [33]Bandyopadhyay S, Tfelt-Hansen J, Chattopadhyay N (2010) Diverse roles of extracellular calcium-sensing receptor in the central nervous system. Journal of Neuroscience Research 88:2073-2082.
    [34]Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annual Review of Neuroscience 27:107-144.
    [35]Han S, Tang R, Anderson L, Woerner T, Pei Z (2003) A cell surface receptor mediates extracellular Ca2+ sensing in guard cells. Nature 425:196-200.
    [36]Huang SS, Chen J, Dong XJ, Patton J, Pei ZM, Zheng HL (2012) Calcium and calcium receptor CAS promote Arabidopsis thaliana de-etiolation. Physiology Plantarum 144:73-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700