滇池内源污染治理技术对比分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内源污染的实质是沉积物污染,在适宜的环境条件下,沉积物-水界面氮磷营养盐浓度差达到一定程度则会向水体释放,严重时可造成水体富营养化。同样,沉积物中的重金属和难降解的有机物在一定条件下也会向水体释放,通过生物富集对生物体产生较强的毒害作用,并有可能通过食物链威胁人类身体健康。现阶段,内源污染的治理研究已成为国际上环境保护工作的热点之一。我国也在重点湖泊的内源污染治理方面开展了大量的研究工作,在不同湖泊分别实施了底泥疏挖、生态修复、引水冲刷和原位控制等工程。然而,一直以来对各种内源污染治理技术都只是针对一种技术进行相关分析和效果预测,尚未有人对不同治理技术进行综合对比分析研究。因此,如何选用合理的治理技术,用有限的治理资金去取得最大的环境效益成为环境保护管理决策者面前的一道难题。
     滇池作为三湖治理的难点,其污染问题受到政府的高度重视和国内外学者的广泛关注。当前,滇池外源性污染在严格的环境监管体系下已得到较好的控制,而内源污染则成为水体污染控制所面临的严峻挑战。鉴于滇池治理的紧迫性和重要性,不同内源污染治理技术综合对比研究的缺乏性,本论文以滇池为研究区域,系统研究了滇池污染底泥疏挖及处置工程、滇池水葫芦圈养及资源化利用工程以及牛栏江-滇池补水工程三种不同技术对滇池内源污染治理的影响效果,旨在为滇池以及其他湖泊的内源污染治理工作提供科学依据。
     (1)通过对疏挖区和未疏挖区进行有无对比法研究,综合分析了疏挖工程对水体和底泥理化性质、氮磷营养盐、重金属和砷污染物以及生物多样性的影响,同时对底泥疏挖的社会效益进行了研究。
     水体和底泥的理化性质在疏挖后均有一定程度的改善。相比未疏挖区,草海南部疏挖区水体浊度平均降低5FTU,透明度平均升高11.5cm,盘龙江和大清河疏挖区变化较小;三个疏挖区水体电导率降低5-13s/m,而DO、pH、ORP等指标没有明显变化。盘龙江和大清河疏挖区底泥有机质含量和烧失量明显下降,含水率变化不大,而草海疏挖区含水率明显下降,有机质含量和烧失量变化不大;三个疏挖区粉粒含量均增多,粘粒含量则不同程度的减少。
     各疏挖区水和间隙水中不同形态氮磷含量基本低于未疏挖区,而重金属及砷在水中均未检出。各疏挖区底泥中污染物含量明显低于未疏挖区,经估算疏挖工程共去除总氮1.15万吨,总磷5432吨,Pb458.7吨,Cu439.8吨,Zn1030.5吨,Cd5.3吨,Cr365.7吨,As85.9吨。对外海两个疏挖区的柱状底泥进行氮磷形态分级,结果表明:疏挖后生物有效性氮含量相比未疏挖区大量减少,只有部分表层沉积物呈现出潜在的释放趋势;Ca-P和Fe-P所占总磷的比例较大,其随深度的变化和总磷相似,呈逐渐降低的趋势,而疏挖条件并未导致Ca-P和Fe-P的大量释放,对水体含磷量的影响不大。使用地质累积指数法和潜在生态风险评价法对沉积物中的重金属和砷的污染级别和潜在生态危害性进行评价,结果发现:疏挖区五种重金属和砷的污染程度均低于未疏挖区;以单个重金属的潜在生态危害系数进行评价,疏挖区的生态危害因子小于未疏挖区;以多个重金属的潜在生态危害系数进行评价,发现滇池表层沉积物中重金属和砷的生态危害总体处于轻微程度。对各水域浮游生物多样性的分析研究表明:疏挖区相较于未疏挖区,藻类生物量有所增多,生物多样性指数得到升高,但生物多样性总体处于极低水平,盘龙江和大清河疏挖区仍为重污水带。
     通过问卷调查的方式,研究了该工程的社会效益。绝大部分公众和被调查企事业单位对底泥疏挖工程持积极肯定态度,并具有较高的支付意愿;该工程为周围居民提供了一些就业机会,改善了生态景观和城市投资环境,促进了旅游发展;同时该工程也是一项生动的环保宣传活动,增强了人们的环保意识,具有较好的社会效益。
     (2)在水葫芦圈养种植期间,通过对滇池草海水质8个月的跟踪监测,初步研究了圈养水葫芦对滇池草海水体中氮磷营养盐的去除效果,分析了长期种植水葫芦对草海沉积物间隙水中氮磷营养盐的影响,评估了圈养水葫芦对湖泊内源污染的治理效果。结果表明,草海水域水体理化指标在2011年10月15日前均有不同程度的好转,水体透明度、溶解氧、氧化还原电位升高,pH和电导率降低;而10月15日后各理化指标呈现恶化的趋势。水葫芦在整个试验期间对水体中不同形态磷的净化效果明显,总磷、可溶性总磷和正磷酸盐分别由初始浓度0.44±0.09mg/L、0.17±0.01mg/L、0.15±0.01mg/L降至0.07±0.01mg/L、0.01±0.001mg/L、0.003±0.001mg/L,去除率为84.09%、94.12%和98.00%;而对水体中不同形态氮的净化效果不明显,在10月15日前,水体中总氮、硝氮和氨氮的最高去除率分别为17.24%、50.07%和75.76%,而至次年1月15日,水体中总氮和硝氮浓度明显升高,分别为5.09±0.76mg/L和3.34±0.08mg/L,氨氮浓度相对较低,为0.26±0.08mg/L。间隙水中主要以铵态氮和正磷酸盐为主,且不同形态氮磷浓度均呈现先升高后降低的趋势,表明水葫芦的圈养种植对沉积物中营养盐的释放产生了影响。各水质指标间的相关性分析表明,温度和pH是影响水葫芦净化水体的重要因素,温度升高和pH降低可以促进水体的净化;而pH值的上升则会引起沉积物中营养盐的释放,导致水质恶化。
     (3)通过搜集有关牛栏江补水工程的相关资料,对滇池水污染物最大允许排放量、生态环境补水量以及补水效果进行科学预测。运用二维水质模型得到2020年滇池污染物水平,外海平均水质TP浓度为0.10mg/L、TN为1.45mg/L,CODMn指标好于Ⅲ类水质目标要求,满足2020年滇池外海水质达到Ⅳ类水质的要求。运用零维模型,得到外海TN和TP的衰减系数分别为11.27/a和10.88/a,草海TN和TP的衰减系数分别为2.41/a和2.73/a,生态补水使滇池TN和TP的最大允许纳污量分别提高了约20%。为使2020年滇池水质基本满足其规划水质目标要求,滇池所需环境补水量约为5.5~6.5亿m3/a。
     本文对三种内源污染治理技术的对比研究表明,在滇池草海、外海入湖河口、外海东部、北部等沉积物污染较为严重、水体污染物浓度都较高的区域,可以优先实施底泥疏挖工程,随后实施水葫芦控制性圈养;在滇池外海湖区,由于水体本身较高的污染物负荷以及较长的换水周期,要快速改善滇池水质,在引水水源和资金充足的条件下可考虑实施引水工程。
The essence of internal pollution is sediment contamination. In the appropriate environmental conditions, nitrogen and phosphorus would be released to water resulting from some extent concentration difference in sediment-water interface, which would cause the eutrophication. Similarly, heavy metals and refractory organics in sediments would be released under certain conditions also. They could be enriched through the biological enrichment and cause strong poison effect, while may threat the human health through food chain. Currently, the research of internal pollution management has become one of the hot issues in the international environmental protection. Large numbers of internal pollution management researches have been developed in major lakes in China. Some projects, such as sediments dredging, ecological restoration, water diversion and situ-control have been taken into measures in different lakes. However, the treatment technology of internal pollution has long been focused on the related analysis and outcome prediction for one specific technology, while the comprehensive comparison and study for different treatment techniques has not been carried out. So it is difficult for decision makers of environmental protection management to choose the appropriate technology, which can gain the maximum environmental benefits with limit management funds.
     As a difficulty of management among the Three Lakes, the pollution problem of Dianchi Lake had attracted the government and scholars'widely attentions. At present, external pollution of Dianchi Lake has well controlled under the strict environmental monitoring and managing system. However, the internal pollution has become the severe challenge to water pollution control. In view of the urgency and importance of the Dianchi Lake management, as well as the lack of comprehensive comparable research within the different internal pollution management technologies, Dianchi Lake was chosen as the study area in this paper that the effects of Dianchi Lake polluted sediment dredging and disposal project, captive breeding of Water Hyacinth and resource utilization project, and Niulan River-Dianchi Lake water diversion project in managing internal pollution were studied systematicly. It aims at approving scientific basis to internal pollution management in Dianchi Lake and other lakes.
     (1) Through comparing dredging and un-dredging areas with with and without comparison method, the influences of dredging project on physical and chemical properties, nitrogen and phosphorus pollutants, heavy metals and As loading, and biodiversity in water and sediment were analyzed in this paper, also the social benefits the project brought.
     The results showed that there were some improvements on the physical and chemical properties of the water and sediment. Compared with un-dredging areas, the average turbidity was5FTU lower and average transparency was11.5cm higher in dredging areas of southern Caohai, while there was little difference in Panlong River and Daqing River. Among the three dredging areas, the water conductivity decreased5-13s/m, and DO, pH, ORP didn't change obviously. The organic matter contents and ignition loss decreased sharply, while the moisture contents didn't change too much in dredging areas of Panlong River and Daqing River. However, these indexes were opposite in Caohai dredging areas. The silt contents increased and the clay contents decreased to different degrees in the three dredging areas.
     The contents of various forms of nitrogen and phosphorus in dredging areas were basicly lower than the un-dredging areas, while heavy metals and As were not found in water. The pollutants contents in dredging areas sediment were sharply lower than the un-dredging areas. It was estimated that11,500tons TN,5,432tons TP,458.7tons Pb,439.8tons Cu,1,030.5tons Zn,5.3tons Cd,365.7tons Cr, and85.9tons As were wiped off through the dredging project. The different forms nitrogen and phosphorus in core sediments of the two dredging areas in Waihai have been fractionized, the results showed that the bio-available nitrogen decreased sharply, and only parts of the surface sediments appeared potential releasing trend. Ca-P and Fe-P took a large portion of TP, and the variation trend with depth was gradually decreased, similar to TP. Dredging didn't cause the Ca-P and Fe-P releasing largely, which had little affected on TP contents in water. By using the geological cumulative index method and potential ecological risk assessment method, the potential ecological risk of heavy metals and As have been assessed, the results showed that the pollution levels of five heavy metals and As in dredging areas were lower than the un-dredging areas. The ecological risk in dredging areas was less than the un-dredging areas resulting from the assessment of potential ecological risk factors of single heavy metal. While the ecological risk of heavy metals and As in surface sediment was in a slight degree, using the assessment of potential ecological risk factors of multiple heavy metals. The research of plankton diversity showed that, the alga biomass and diversity indexes in dredging areas were more than that in un-dredging areas, and the biodiversity was in a low level overall, while dredging areas in Panlong River and Daqing River were still polluted seriously.
     In this paper, the social benefits of the project were discussed through questionnaire. The results showed that the project was endorsed by the local people and the enterprises, the majority of the respondents were willing to donate for the project, believing that the dredging project had good social benefits by providing some employment opportunities, improving the ecological landscape and city investment environment and promoting tourism development. Meanwhile, the project was also a vivid propaganda about environmental protection which enhanced the citizens' environmental protection consciousness.
     (2) Through8months monitoring of water quality in Caohai during the captive breeding of water hyacinth experiment, the removal efficiency of nitrogen and phosphorus by captive water hyacinth was investigated preliminary, and the influences to the pore water by long-term planting water hyacinth was analyzed, as well as the effects of improving internal pollution were estimated. The results showed that, the physics and chemistry index was better in different degrees before Oct15th in Caohai, transparency, dissolved oxygen, oxidation-reduction potential increased, while pH and conductivity decreased. However, the physics and chemistry index became worse since Oct15th. In the whole experimental periods, the various forms of phosphorus were purified notably, the contents of TP, DTP, and PO43-were decreased from0.44±0.09mg/L to0.07±0.01mg/L, from0.17±0.01mg/L to0.01±0.001mg/L and from0.15±0.01mg/L to0.003±0.001mg/L respectively, removal rates reached84.09%,94.12%and98.00%; While the various forms of nitrogen were purified poorly, the highest removal rates of TN, NO3--N and NH4+-N were17.24%,50.07%and75.76%before Oct15th. However, the contents of TN and NO3--N increased obviously since Jan15th in the following year, were5.09±0.76mg/L and3.34±0.08 mg/L respectively, while the contents of NH4+-N was comparatively lower,0.26±0.08mg/L. NH4+-N and PO43-were the essential components nutriment in the pore water, and the contents of various forms of nitrogen and phosphorus were increased at first and then decreased. It is indicated that the captive water hyacinth has affected the releasing of nutrient from sediment. The correlation analysis of the water quality indexes showed that temperature and pH were the key factors which affected the purifying capacity of water hyacinth, rising temperature or reducing pH could promote the purification effect; On the contrary, the nutrient in the sediment would release with the rising of pH.
     (3) The allowed maximum of pollutants emissions, supply water quantity of eco-environment and water supplement effect were forecasted scientifically according to the informations of the water supplement project in Niulan River. The pollutant levels in the year2020were calculated by two-dimensional water quality model that the average concentration of TP and TN were0.10mg/L and1.45mg/L respectively, the concentration of permanganate index reached the requirement of grade Ⅲ which meet the water quality of grade IV in Waihai of Dianchi Lake in2020. By using Zero-dimensional model, the attenuation coefficients of TN and TP were11.27/a and10.88/a in Waihai,2.41/a and2.73/a in Caohai, respectively. The maximum permissible quantity of TN and TP pollutants were increased by about20%. In order to meet the project objective, the environment diversion quantity was about5.5*109-6.5*109m3/a in Dianchi Lake.
     In this paper, the results of comparative study of the three internal pollution control technologies showed that the sediment dredging project should be carried out preferentially in the areas where sediment and water pollution was quite serious such as Caohai, the estuary and eastern, northern part of Waihai, then taken the water hyacinth control measure. Considering the high water pollutant loading and long lake residence period in Waihai of Dianchi, in order to improve the water quality quickly, water diversion project could be adopted if the water and funds are sufficient.
引文
[1]中国环境监测总站.环境水质监测质量保证手册.北京:化学工业出版社,1994.
    [2]Committee on Contaminated Marine Sediments, National Research Council. Contaminated sediments in ports and waterways:cleanup strategies and technologies. Washington D. C: National Academy Press,1997.
    [3]牛红义.珠江广州河段沉积物内源污染特征研究[博士学位论文],广州,中山大学,2007.
    [4]范成新,朱育新.太湖宜溧河水系沉积物的重金属污染特征.湖泊科学,2002,14(3):235-241.
    [5]Savvides C, Papadopoulos A, Haralambous K J, et al. Sea sediments contaminated with heavy metals:metal speciation and removal. Water Sci Technol,1995,32(9-10):65-73.
    [6]Sin S N, Chua H, Lo W, et al. Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environmental International,2001,26(5-6):297-301.
    [7]Marchanda C, Lallier-Vergesa E, Baltzerb F, et al. Heavymetalsdistribution in mangrovesedimentsalong the mobile coastline of French Guiana. Marine Chemistry,2006, 98(1):1-17.
    [8]Pekey H. The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Marine Pollution Bulletin,2006,52:1-12.
    [9]Ip C C M, Li X D, Zhang G, et al. Heavy metal and Pb isotopic compositions of aquatic organisms in the Pearl River Estuary, South China. Environmental Pollution,2005,138(3): 494-504.
    [10]陈华林,陈英旭.污染底泥修复技术进展,农业环境保护,2002,21(2):179-182.
    [11]白晓慧,杨万东,陈华林,等.城市内河沉积物对水体污染修复的影响研究,环境科学学报,2002,22(5):562-565.
    [12]Dexter K S, Ward N L. Mobility of heavy metals within freshwater sediments affected by motorway storm water, Science of the Total Environment,2004,334-335:271-277.
    [13]李文红,陈英旭,孙建平.疏挖对影响底泥向上覆水体释放污染物的研究,农业环境科学学报,2003,22(4):446-448.
    [14]Pitkanen H, Lehtoranta J, Raike A. Internal nutrient fluxes counteract decreases in external load:the case of the estuarial eastern Gulf of Finland, Baltic Sea, AMBIO,2001,30:195-201.
    [15]Kuwabara J S, Carter J L, Topping B R, et al. Importance of sediment-water interactions in Coeur d'Alene Lake, Idaho, USA:management implications, Environmental Management, 2003,32:348-359.
    [16]Berelson W M, Heggie D, Longmore A, et al. Benthic Nutrient Recycling in Port Phillip Bay, Australia, Estuarine, Coastal and Shelf Science,1998,46:917-934.
    [17]Moturi M C Z, Rawat M and Subramanian V. Distribution and partitioning of phosphorus in solid waste and sediments from drainage canals in the industrial belt of Delhi, India, Chemosphere,2005,60(2):237-244.
    [18]Pettersson K. Phosphorus characteristics of settling and suspended particles in lake erken, The Science of The Total Environment,2001,266(1-3):79-86.
    [19]Devesa-Rey R, Iglesias M, Diaz-Fierros F, et al. Total phosphorous distribution and bioavailability in the bed sediments of an atlantic basin (galicia, nw spain):Spatial distribution and vertical profiles, Water, Air,& Soil Pollution,2009,200(1):341-352.
    [20]Gonsiorczyk T, Casper P, Koschel R. Phosphorus-binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the baltic lake district (germany), Water Science and Technology,1998,37(3):51-58.
    [21]Kaiserli A, Voutsa D, Samara C. Phosphorus fractionation in lake sediments-lakes volvi and koronia, N. Greece, Chemosphere,2002,46(8):1147-1155.
    [22]Ruban V, Brigault S, Demare D, et al. An investigation of the origin and mobility of phosphorus in freshwater sediments from bort-les-orgues reservoir, France, Journal of Environmental Monitoring,1999,1(4):403-407.
    [23]Jin X C, Wang S R, Pang Y, et al. Phosphorus fractions and the effect of pH on the phosphorus release of the sediments from different trophic areas in Taihu Lake, china, Environmental Pollution,2006,139(2):288-295.
    [24]金相灿,卢少勇,王开明,等.巢湖城区洗耳池沉积物磷及其生物有效磷的分布研究,农业环境科学学报,2007,26(3):847-851.
    [25]金相灿,庞燕,王圣瑞,等.长江中下游浅水湖沉积物磷形态及其分布特征研究,农业环境科学学报,2008,27(1):279-285.
    [26]金相灿,孟凡德,姜霞,等.太湖东北部沉积物理化特征及磷赋存形态研究,长江流域资源与环境,2006,15(3):388-394.
    [27]Jiang X, Jin. X C, Yang Y, et al. Effects of oxygen on the release and distribution of phosphorus in the sediments under the light condition, Environmental Pollution,2006,141(3): 482-487.
    [28]王圣瑞,金相灿,焦立新.不同污染程度湖泊沉积物中不同粒级可转化态氮分布,环境科学研究,2007,20(3):52-57.
    [29]王圣瑞,焦立新,金相灿,等.长江中下游浅水湖泊沉积物总氮、可交换态氮与固定态铵的赋存特征,环境科学学报,2008,28(1):37-43.
    [30]Wang S R, Jin X C, Bu Q Y, et al. Effects of particle size, organic matter and ionic strength on the phosphate sorption in different trophic lake sediments, Journal of Hazardous Materials, 2006,128(2-3):95-105.
    [31]Wang S R, Jin X C, Jin D L, et al. Potentially mineralizable nitrogen in sediments of the shallow lakes in the middle and lower reaches of the Yangtze River area in China, Applied Geochemistry,2009,24(9):1788-1792.
    [32]Wang S R, Jin X C, Pang Y, et al. Phosphorus fractions and phosphate sorption characteristics in relation to the sediment compositions of shallow lakes in the middle and lower reaches of Yangtze River region, China, Journal of Colloid and Interface Science,2005,289(2):339-346.
    [33]Wang S R, Jin X C, Zhao H C, et al. Phosphorus fractions and its release in the sediments from the shallow lakes in the middle and lower reaches of Yangtze River area in china, Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,273(1-3):109-116.
    [34]Wang S R, Jin X C, Bu Q Y, et al. Evaluation of phosphorus bioavailability in sediments of the shallow lakes in the middle and lower reaches of the yangtze river region, china, Environmental Earth Sciences,2010,60(7):1491-1498.
    [35]王圣瑞,焦立新,金相灿,等.长江中下游浅水湖泊沉积物总氮、可交换态氮与固定态铵的赋存特征,环境科学学报,2008,28(1):37-43.
    [36]Wang S R, Jin X C, Zhao H C, et al. Effects of organic matter on phosphorus release kinetics in different trophic lake sediments and application of transition state theory, Journal of Environmental Management,2008,88(4):845-852.
    [37]Xie L Q, Xie P, Li S X, et al. The low TN:TP ratio, a cause or a result of Microcystis blooms? Water Research,2003,37:2973-2080.
    [38]吴世凯,谢平,王松波,等.长江中下游地区浅水湖泊群中无机氮和TN/TP变化的模式和生物调控机制.中国科学D辑,2005,35(增刊Ⅱ):111-120.
    [39]谢丽强,谢平,唐汇娟.武汉东湖不同湖区底泥总磷含量及变化的研究,水生生物学报,2001,25:305-310.
    [40]Tang H J, Xie P. Budgets and dynamics of nitrogen and phosphorus in a shallow, hypereutrophic lake in China. Journal of Freshwater Ecology,2000,15:505-514.
    [41]张敏,谢平,徐军,等.大型浅水湖泊-巢湖内源磷负荷的时空变化特征及形成机制.中国科学D辑,2005,35(增刊Ⅱ):63-72.
    [42]Xie L Q, Xie P, Tang H J. Enhancement of dissolved phosphorus release from sediment to lake water by microcystis blooms-an enclosure experiment in a hyper-eutrophic, subtropical Chinese lake, Environmental Pollution,2003,122(3):391-399.
    [43]谢平.浅水湖泊内源磷负荷季节变化的生物驱动机制,中国科学D辑:地球科学,2005,35(增刊Ⅱ):11-23.
    [44]Xie L Q, Xie P. Long-term (1956-1999) changes of phosphorus in a shallow, subtropical Chinese lake with emphasis on the role of inner ecological process, Water Research,2002,36: 343-349.
    [45]张路,范成新,池俏俏,等.太湖及其主要入湖河流沉积磷形态分布研究,地球化学,2004,33(4):423-432.
    [46]张路,范成新,朱广伟,等.长江中下游湖泊沉积物生物可利用磷分布特征,湖泊科学,2006,1 8(1):36-42.
    [47]朱广伟,秦伯强,张路.长江中下游湖泊沉积物中磷的形态及藻类可利用量,中国科学D辑:地球科学,2005,35(增刊Ⅱ):24-32.
    [48]范成新,秦伯强,胡维平,等.太湖沉积物-水界面生源要素迁移机制及定量化-铵态氮释放速率的空间差异及源-汇通量,湖泊科学,2004,16(1):10-20.
    [49]秦伯强,朱广伟,张路,等.大型浅水湖泊沉积物内源营养盐释放模式及其估算方法-以太湖为例,中国科学D辑:地球科学,2005,35(增刊Ⅱ):33-44.
    [50]秦伯强,朱广伟.长江中下游地区湖泊水和沉积物中营养盐的赋存、循环及其交换特征,中国科学D辑:地球科学,2005,35(增刊Ⅱ):1-10.
    [51]张路,范成新,秦伯强,等.模拟扰动条件下太湖表层沉积物磷行为的研究,湖泊科学,2001,13(1):35-43.
    [52]Zhou A M, Wang D S, Tang H X. Phosphorus fractionation and bio-availability in taihu lake(China) sediments, Journal of Environmental Sciences-China,2005,17(3):384-388.
    [53]Zhou A M, Tang H X, Wang D S. Phosphorus adsorption on natural sediments:Modeling and effects of ph and sediment composition, Water Research,2005,39(7):1245-1254.
    [54]Tian J R, Zhou P J. Phosphorus fractions of floodplain sediments and phosphorus exchange on the sediment-water interface in the lower reaches of the Han River in China, Ecological Engineering,2007,30(3):264-270.
    [55]Sun S J, Huang S L, Sun X M, et al. Phosphorus fractions and its release in the sediments of Haihe River, China, Journal of Environmental Sciences,2009,21(3):291-295.
    [56]Li D P, Huang Y. Sedimentary phosphorus fractions and bioavailability as influenced by repeated sediment resuspension, Ecological Engineering,2010,36(7):958-962.
    [57]Lin C Y, Wang Z G, He M C, et al. Phosphorus sorption and fraction characteristics in the upper, middle and low reach sediments of the Daliao River systems, China, Journal of Hazardous Materials,2009,170(1):278-285.
    [58]An W C, Li X M. Phosphate adsorption characteristics at the sediment-water interface and phosphorus fractions in Nansi Lake, China, and its main inflow rivers, Environmental Monitoring and Assessment,2009,148(1-4):173-184.
    [59]Hu J, Liu Y D, Liu J T. The comparison of phosphorus pools from the sediment in two bays of lake Dianchi for cyanobacterial bloom assessment, Environmental Monitoring and Assessment,2006,121(1-3):1-14.
    [60]Hu J, Shen Q, Liu Y D, et al. Mobility of different phosphorus pools in the sediment of lake Dianchi during cyanobacterial blooms, Environmental Monitoring and Assessment,2007, 132(1-3):141-153.
    [61]Li H, Wang Y, Shi L Q, et al. Distribution and fractions of phosphorus and nitrogen in surface sediments from Dianchi Lake, China, International Journal of Environmental Research,2012, 6(1):195-208.
    [62]Li R Y, Yang H, Zhou Z G, et al. Fractionation of heavy metals in sediments from Dianchi Lake, china, Pedosphere,2007,17(2):265-272.
    [63]陈江麟,刘文新,刘书臻,等.渤海表层沉积物重金属污染评价,海洋科学,2004,28(12):16-21.
    [64]乔胜英,蒋敬业,向武,等.武汉地区湖泊沉积物重金属的分布及潜在生态效应评价,长江流域资源与环境,2005,14(3):353-357.
    [65]孙晓菲,韩宝平.京杭大运河(徐州段)沉积物重金属的分布与污染评价,苏州科技学院学报,2004,17(1):31-34.
    [66]Mondon J, Duda S, Nowak B. Immune response of greenback flounder Rhombosolea tapirina after exposure to contaminated marine sediment and diet. Mar Environ Res,2000,50: 443-450.
    [67]Hill N, King C, Perrett L, et al. Contaminated suspended sediments toxic to an Antarctic filter feeder:aqueous-and particulate-phase effects. Environ Toxicol Chem,2009,28:409-417.
    [68]Voie (?), Johnsen A, Rossland H. Why biota still accumulate high levels of PCB after removal of PCB contaminated sediments in a Norwegian fjord. Chemosphere,2002,46:1367-1372.
    [69]Gregg J, Fleeger J, Carman K. Effects of suspended, diesel-contaminated sediment on feeding rate in the darter goby, Gobionellus boleosoma(Teleostei:Gobiidae). Mar Pollut Bull, 1997,13:269-275.
    [70]Sundberg H, Hanson M, Liewenborg B, et al. Dredging associated effects:maternally transferred pollutants and DNA adducts in feral fish. Environ Sci Technol,2007,41: 2972-2977.
    [71]Roberts D A. Causes and ecological effects of Resuspended Contaminated Sediments (RCS) in marine environments, Environment International,2012,40:230-243.
    [72]Zhong J C, You B S, Fan C X, et al. Influence of sediment dredging on chemical forms and release of phosphorus, Pedosphere,2008,18(1):34-44.
    [73]孙博,曾思育,陈吉宁.富营养化湖泊底泥污染控制技术评估,环境污染治理技术与设备,2003,4(8):61-64.
    [74]钟继承,范成新.底泥疏挖效果及环境效应研究,湖泊科学,2007,19(1):1-10.
    [75]陈荷生,张永健.太湖重污染底泥的生态疏挖,水资源研究,2004,25(4):29-31.
    [76]郑金秀,春春华,彭祺,等.底泥生态疏挖研究概况,环境科学与技术,2007,30(4): 111-114.
    [77]Dunst R C. Sediment problems and lake restoration in Wisconsin, Environment International, 1982(7):87-92.
    [78]颜昌宇,范成新,杨建华,等.湖泊底泥环保疏挖技术研究展望,环境污染与防治,2004,26(3):1894.
    [79]吴芝瑛,虞左明,盛海燕,等.杭州西湖底泥疏挖工程的生态效应,湖泊科学,2008,20(3):277-284.
    [80]张景钰,方江华.关于太湖污染底泥生态疏挖工程的探讨,西部探矿工程,2005(2):213-215.
    [81]王艳艳.筼笃湖底泥疏挖及处置技术,厦门科技,2003(5):27-29.
    [82]冉光兴,曹卉,李巍.东钱湖底泥环境特征与疏挖方案,水利水电科技进展,2007,27(2):73-76.
    [83]和丽萍,陈异晖,赵祥华.杞麓湖“十五”期间污染底泥环境疏挖工程效益评估研究,环境科学导刊,2007,26(5):31-36.
    [84]王宁,张刚,王瑗.湖泊内源污染的环保疏挖及其效果,环境科学研究,2004,17(2):34-37.
    [85]李正最,宁迈进,李广源,等.洞庭湖环保疏挖生态系统恢复效益研究,水资源研究,2004,25(1):28-32.
    [86]云南省工程咨询公司,中国环境科学研究院.草海污染底泥疏挖一期工程后评估报告,昆明,2000.9.
    [87]安徽省环境科学研究院.巢湖污染底泥疏挖及处置二期环评报告书,巢湖,2004.
    [88]董海燕.巢湖水污染现状及防治对策,巢湖学院学报,2009,11(3):106-109.
    [89]张晴波.环保疏挖及其控制研究[硕士学位论文],南京,河海大学,2007.
    [90]金相灿,荆一凤,刘文生,等.湖泊污染底泥疏挖工程技术,环境科学研究,1999,12(5):9-12.
    [91]王小雨.底泥疏挖和引水工程对小型浅水城市富营养化湖泊的生态效应[博士学位论文],长春,东北师范大学,2008.
    [92]李正最,宁迈进,李广源,等.洞庭湖环保疏挖生态系统恢复效益研究,水资源研究,2004,25(1):28-32.
    [93]胡小贞,金相灿,刘倩,等.滇池污染底泥环保疏挖一期工程实施后环境效益评估,环境监控与预警,2010,2(4):46-49.
    [94]陆子川.湖泊底泥挖掘可能导致水体氮磷平衡破坏的研究,中国环境监测,2001,17(2):40-41.
    [95]郜会彩.湖网调水改善水环境研究[硕士学位论文].武汉,武汉大学,2005:4-5.
    [96]刘用凯.景观湖泊水体综合整治技术研究,海峡科学,2009(3):9-12.
    [97]Welch E B, Patmont C R. Lake restoration by dilution:Moses lake, Washington, Water Research,1980(14):1317-1325.
    [98]俞建军.引水对西湖水质改善作用的回顾,水资源保护,1998(2):50-55.
    [99]翟淑华,张红举,胡维平,等.引江济太调水效果评估,中国水利,2008(1):21-23.
    [100]周小平,翟淑华,袁粒.2007~2008年引江济太调水对太湖水质改善效果分析,水资源保护,2010,26(1):40-43.
    [101]姜宇,蔡晓钰.引江济太对太湖水源地水质改善效果分析,江苏水利,2011(2):36-37.
    [102]罗佳翠,马巍,禹雪中,等.滇池环境需水量及牛栏江引水效果预测,中国农村水利水电,2010(7):25-28.
    [103]缪钟灵.桂林引水入湖工程,桂林工学院学报,2000,20(4):371-374.
    [104]张丹宁.玄武湖引水工程的环境效益分析,江苏环境科技,1996(1):29-31.
    [105]周俊,王焰新,蔡鹤生.引江灌湖治理东湖污染工程方案初探,地质科技情报,2002,21(4):73-76.
    [106]何用,李义天,李荣,等.改善湖泊水环境的调水与生物修复结合途径探索,安全与环境学报,2005,5(1):56-60.
    [107]俞建军.引水对西湖水质改善作用的回顾,水资源保护,1998(2):50-55.
    [108]詹金星,支崇远,夏品华,等.水生植物净化污水的机理及研究进展,西南农业学报,2011,24(1):352-355.
    [109]夏晓方,钟成华,刘洁,等.水生植物修复污染水体的研究进展,重庆工商大学学报(自然科学版),2011,28(4):398-400.
    [110]张志勇,刘海琴,严少华,等.水葫芦去除不同富营养化水体中氮、磷能力的比较,江苏农业学报,2009,25(5):1039-1046.
    [111]杨立红.水生植物对富营养化水体净化能力的研究[硕士学位论文],哈尔滨,东北林业大学,2006.
    [112]葛莹,王晓月,常杰.不同程度富营养化水中植物净化能力比较研究,环境科学学报,1999,19(6):690-692.
    [113]金树权,周金波,朱晓丽,等.10种水生植物的氮磷吸收和水质净化比较研究,农业环境科学学报,2010,29(8):1571-1575.
    [114]张文明,王晓燕.水葫芦在水生态修复中的研究进展,江苏环境科技,2007,20(1):55-58.
    [115]高运强.水葫芦净化富营养化水体及其能源化利用[硕士学位论文],合肥,安徽农业大学,2008.
    [116]华常春,高桂枝.水葫芦治理瘦西湖污染可行性分析,现代农业科技,2010(5):265-266.
    [117]Immels Y, Kirzhner F, Malkovskaja A. Application of Eichhornia crassipes and Pistiastratiotes for treatment of urban sewage in Israel, Journal of Environmental Management. 2006,81:420-428.
    [118]胡长伟,孙占东,李建龙,等.凤眼莲在城市重污染河道修复中的应用,环境工程学报,2007,1(12):51-56.
    [119]Murphya T P, Lawsona A, Kumagaib M, et al. Review of emerging issues in sediment treatment, Aquatic Ecosystem Health & Management,1999,2(4):419-434.
    [120]Raymond A S, Linda M S, Kenneth I A, et al. Partial and full lift hypolimnetic aeration of medical lake, WA to improve water quality, Water Research,1994,28(11):2297-2308.
    [121]柳惠清,湖泊污染内源治理中的环保疏挖,水运工程,2000,11:21-27.
    [122]Welch E B, Dennis C G. Effectiveness and Longevity of Phosphorus Inactivation with Alum, Lake and Reservoir Management,1999,15(1):5-27.
    [123]Stephens S R, Alloway B J, Parkera A, et al. Changes in the leach ability of metals from dredged canal sediments during drying and oxidation, Environmental Pollution,2001,114(3): 407-413.
    [124]Anushree M. Environmental challenge vis a vis opportunity:The case of water hyacinth, Environment International,2007,33:122-138.
    [125]肖青,滇池水环境的现状、成因及对策,水利科技与经济,2005,11(1):152-154.
    [126]黄永泰,滇池污染状况及其环境治理,环境污染与防治,1998,21(4):143-145.
    [127]浦承松,谢波,梅伟.滇池补水工程开发方案研究,2009,12:34-40.
    [128]洱海、滇池水质保护与水污染防治专题研究,中国水利水电科学研究院,2005.(内部资料)
    [129]杨文寿,浦承松,杨树德.牛栏江-滇池补水方案研究,中国农村水利水电,2009,11:94-96.
    [130]罗佳翠,马巍,禹雪中,等.滇池环境需水量及牛栏江引水效果预测,中国农村水利水电,2010,7:18-23.
    [131]滇池流域水污染防治“十二五”规划,中国环境科学研究院,2010.(内部资料)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700