滇池柱状沉积物中氮赋存形态及其分布特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪80年代以来,滇池逐渐成为我国污染最为严重的湖泊之一,严重的内源污染导致滇池自净能力丧失是滇池治理难点所在。沉积物是湖泊生态环境演变历史的记录器,研究滇池柱状沉积物中氮污染物赋存形态及分布特征,是估算滇池沉积物中氮污染负荷和预测沉积物-水界面氮污染物迁移行为的基础,对了解湖泊的历史污染状况、污染物来源追溯、沉积环境的演变与推测等都有着重要意义。
     本研究测定了滇池外海11根柱状沉积物(0-50cm)中氮的总量以及不同赋存形态。结果表明,与其他湖泊相比,滇池沉积物中氮含量相对较高,平均含量达到了2319.20±387.27mg/kg。其中,Trans-N是TN的主要组成部分,平均含量为1230±148.52mg/kg; SOEF-N是Trans-N的主要组成部分,四种可转化态氮的含量大小顺序依次为SOEF-N>WAEF-N> SAEF-N>IEF-N; WAEF-N是TN中对富营养化贡献最大的形态。
     在平面分布上,本文按照污染物含量水平将滇池划分为北部、中部和南部三个区域。从TN含量来看,分布特征是南部>北部>中部;而按照Trans-N含量来看,则是北部>南部≈中部,综合推断可以得出,三个区域氮污染程度依次是北部>南部>中部。
     在纵向分布上,TN分布特征为在0-5cm沉积物中TN含量相对较小,5-15cm沉积层的TN含量相较于其他沉积层明显偏高;15-35cmTN含量有些波动,但幅度较小;而35-50cm沉积层TN含量变化很小;IEF-N的含量一直处于较低水平,随深度变化不大;WAEF-N含量在0-5cm沉积层较高,5-15cm沉积层相较0-5cm则有了明显降低,15cm以下WAEF-N含量随深度基本上变化不大;SAEF-N含量在0-5cm沉积层较低,5-15cm沉积层出现明显上升,15-50cm沉积层SAEF-N含量则相对稳定;SOEF-N的分布特征是在0-10cm沉积层含量很低,10-20cm沉积层开始显著上升,20-50cm沉积层则变化不大。
     在上述研究基础上,本文估算了滇池氮污染负荷及其生物可利用性:滇池外海0-15cm沉积层中TN负荷达到45353.6吨,其中IEF-N为4125.3吨,WAEF-N为6680.5吨,SAEF-N为3623.9吨,SOEF-N为9926.3吨;可转化态氮为24356吨,不可转化态氮为20997.6吨;生物可利用性氮含量约为14429.7吨,约占TN含量的31.8%。而不同沉积层估算结果显示,10-15cm沉积层TN负荷最高,表明对应的沉积年代(约为1972-1988年)是滇池污染物大量输入的时期,这较好地揭示了滇池的污染历史。本文还结合牛栏江补水工程有关数据,预测了实施补水工程对滇池沉积物-水界面氮污染物的迁移行为及其对水质的影响。
Dianchi Lake has been one of the most eutrophic lakes in China since1980s. It's a hard problem for the control of Dianchi Lake eutrophication that the lake was totally deprived of self-purification under the severely internal pollution for a long time. The form and distribution of nitrogen in sediment are the basis for estimation of internal nitrogen load and prediction on the transfer behavior of nitrogen at the sediment-water interface, it's very important for learn about the pollution situation, trace the pollutant source, and predict the trend of deposition evolution, because the sediment is a recorder of the evolution of lake's ecological environment.
     The content of total nitrogen and various nitrogen form in eleven sediment cores(0-50cm) sampled in the Waihai section of Dianchi Lake were measured in the research. It was shown that the content of TN was relative higher than the other domestic and foreign lakes'. The average content of TN in all the samples was2319.20±387.27mg/kg. Trans-N was the main part of TN and the SOEF-N was the main form of Trans-N, the average content of Trans-N was1230±148.52mg/kg. The order of the content of four transferrable nitrogen form in the sediment was SOEF-N>WAEF-N>SAEF-N>IEF-N; and the WAEF-N made the most contribution to lake eutrophication than the other nitrogen forms'.
     Dianchi Lake was divided into three part by the content of TN to study the nitrogen's horizontal distribution:northern lake, central lake and southern lake. The order of the content of TN in this three part was southern>northern>central. However, the order of Trans-N's content was northern> southern≈central, and the nitrogen pollution level was northern> southern> central in order from on a whole.
     The vertical profiles of TN and various nitrogen form are as follows:the content of TN was relative lower at0-5cm, and increased to the highest level at5-15cm in the most of sediment cores, and then changed little with the depth. The contents of IEF-N at different depositions were always low; the content of WAEF-N was relative high at0-5cm, and decreased significantly at5-15cm, then changed a little with the depth; the content of SAEF-N was relative low at0-5cm and increased sharply at5-15cm, then remained stable below; the content of SOEF-N was very low at0-5cm and increased sharply at10-20cm, the changed a little below.
     The internal nitrogen load and its bio-availability were estimated in the study. The weight of TN in the0-15cm deposition of Dianchi Lake was45353.6t, and IEF-N's was4125.3t, WAEF-N's was6680.5t, SAEF-N's was3623.9t, SOEF-N's was9926.3t; the Trans-N's was24356t, FN's was20997.6t. The weight of bio-available nitrogen was about14429.7t, accounted to TN31.8%averagely. The results were showed that the weight of TN at10-15cm, which was deposited in1972-1988approximately, was highest than the other depositions', it was agreed with the contamination history of Dianchi Lake. In addition, the transfer behaviors of nitrogen at the sediment-water interface and the effect to the water caused by implementing the Diversion Project from Niulanjiang River to Dianchi Lake was predicted and analyzed.
引文
[1]马红波,宋金明,吕晓霞等,渤海沉积物中氮的形态及其在循环中的作用,地球化学,2003,32(1):48-54.
    [2]王圣瑞,金相灿,焦立新,不同污染程度湖泊沉积物中不同粒级可转化态氮分布,环境科学研究,2007,20(3):52-57.
    [3]国家环境保护总局,水和废水监测分析方法(第四版).北京:中国环境科学出版社,2002.
    [4]朱兆良,邢光熹,氮循环-维系地球生命生生不息的一个自然过程.北京:清华大学出版社,2002
    [5]朱海虹,陈应台,濮培民等,云南断陷湖泊环境与沉积.北京:科学出版社,1989.
    [6]张路,范成新,秦伯强等,模拟扰动条件下太湖表层沉积物磷行为的研究,湖泊科学,2001,13(1):35-43.
    [7]Montgomery, S., M. Lucotte, and L. Cournoyer, The use of stable carbon isotopes to evaluate the importance of fine suspended particulate matter in the transfer of methylmercury to biota in boreal flooded environments. Science of The Total Environment,2000,261(1-3):33-41.
    [8]秦伯强,胡维平,陈伟民等,太湖梅梁湖水动力及相关过程的研究,湖泊科学,2000,12(4):325-334.
    [9]陈伟民,陈宇炜,秦伯强等,模拟水动力对湖泊生物群落演替的实验,湖泊科学,2000,12(4):342-351.
    [10].Malmaeus, J., L. Hakanson, A dynamic model to predict suspended particulate matter in lakes, Ecological modelling,2003,167(3):247-262.
    [11]Chengxin, F., Z. Lu, and Q. Wenchuan, Lake sediment resuspension and caused phosphate release-a simulation study, Journal of Environmental Sciences,2001,13(4):406-410.
    [12]Hakanson, L., A. Parparov, and K. Hambright, Modelling the impact of water level fluctuations on water quality (suspended particulate matter) in lake kinneret, israel, Ecological modelling,2000,128(2):101-125.
    [13]Tengberg, A., E. Almroth, P. Hall, Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments:In situ measurements using new experimental technology, Journal of Experimental Marine Biology and Ecology,2003,285:119-142.
    [14]李剑超,褚君达,丰华丽,河流底泥冲刷悬浮对水质影响途径的实验研究,长江流域资 源与环境,2002,11(2):137-140.
    [15]Martino, M., A. Turner, M. Nimmo, et al., Resuspension, reactivity and recycling of trace metals in the mersey estuary, uk, Marine Chemistry,2002,77(2-3):171-186.
    [16]王文强,温琰茂,柴士伟,养殖水体沉积物中氮的形态、分布及环境效应,水产科学,2004,23(1):29-33.
    [17]金相灿,屠清瑛,湖泊富营养化调查规范(第二版).北京:中国环境科学出版社,1990.
    [18]吕晓霞,黄海沉积物中氮的粒度结构及在生物地球化学循环中的作用[博士学位论文],青岛,中国科学院海洋研究所,2005.
    [19]王圣瑞,焦立新,金相灿,等,长江中下游浅水湖泊沉积物总氮、可交换态氮与固定态铵的赋存特征,环境科学学报,2008,28(1):37-43.
    [20]Research&Design, Banana lake sediment inactivation project.2008.
    [21]Delange, G.J., Distribution of exchangeable, fixed, organic and total nitrogen in interbedded turbiditic pelagic sediments of the madeira abyssal-plain, eastern north-atlantic, Marine Geology,1992,109(1-2):95-114.
    [22]吴丰昌,湖泊沉积物-水界面营养元素的生物地球化学作用和环境效应:界面氮循环及其环境效应,矿物学报,1996,16(4):403-409.
    [23]吕晓霞,宋金明,李学刚,等,北黄海沉积物中氮的地球化学特征及其早期成岩作用,地质学报,2005,79(1):114-123.
    [24]戴纪翠,宋金明,郑国侠,等,胶州湾沉积物氮的环境生物地球化学意义,环境科学,2007,28(9):1924-1928.
    [25]何桐,谢健,余汉生等,大亚湾表层沉积物中氮的形态分布特征,热带海洋学报,2009,28(02):86-91.
    [26]郑国侠,宋金明,孙云明等,南海深海盆表层沉积物氮的地球化学特征与生态学功能,海洋学报(中文版),2006,28(6):44-52.
    [27]钟立香,王书航,姜霞等,连续分级提取法研究春季巢湖沉积物中不同结合态氮的赋存特征,农业环境科学学报,2009,28(10):2132-2137.
    [28]Song, J.M., H.B. Ma, and X.X. Lu, Nitrogen forms and decomposition of organic carbon in the southern bohai sea core sediments, Acta Oceanologica Sinica,2002,21(1):125-133.
    [29]Ruttenberg, K.C., Development of a sequential extraction method for different forms of phosphorus in marine-sediments, Limnology and Oceanography,1992,37(7):1460-1482.
    [30]李辉,潘学军,史丽琼等,湖泊内源氮磷污染分析方法及特征研究进展,环境化学, 2011,30(1):281-292.
    [31]Vera Raicevic, M.B., Zeljka Rudic, Blazo Lalevic, Dragan Kikovic, The evolution of the eutrophication of the palic lake(serbia), African Journal of Biotechnology,2011,10(10): 1736-1744.
    [32]Kemp ALW, A.M., Distribution and forms of nitrogen in a lake Ontario sediment core, Limnol Oceanogr,1972,17(6):855-867.
    [33]王雨春,万国江,尹澄清等,红枫湖、百花湖沉积物全氮、可交换态氮和固定铵的赋存特征,湖泊科学,2002,14(4):301-309.
    [34]吕晓霞,宋金明,袁华茂等,南黄海表层不同粒级沉积物中氮的地球化学特征,海洋学报,2005,27(1):64-69.
    [35]朱元荣,张润宇,吴丰昌,滇池沉积物生物有效性氮和磷的分布及相互关系,环境科学研究,2010,23(27):993-998.
    [36]Li Hui, Wang Ying, Shi Liqiong, Mi Juan, Song Di, Pan Xuejun, Distribution and fractions of phosphorus and nitrogen in surface sediments from dianchi lake, china, International Journal of Environmental Research,2012,6(1):195-208.
    [37]Hu, J., Y.D. Liu, and J.T. Liu, The comparison of phosphorus pools from the sediment in two bays of lake dianchi for cyanobacterial bloom assessment, Environmental Monitoring and Assessment,2006,121(1-3):1-14.
    [38]Hu, J., Q. Shen, Y.D. Liu, et al., Mobility of different phosphorus pools in the sediment of lake dianchi during cyanobacterial blooms, Environmental Monitoring and Assessment,2007, 132(1-3):141-153.
    [39]潘学军,李辉,展巨宏等,滇池污染底泥疏挖及处置二期工程后评价报告.2012,昆明理工大学.
    [40]冯峰,王辉,方涛等,东湖沉积物中微生物量与碳、氮、磷的相关性,中国环境科学,2006,26(3):342-345.
    [41]Arshad Ali, K.R.R., W. F. DeBusk, Seasonal changes in sediment and water chemistry of a subtropical shallow eutrophic lake, Hydrobiologia,1988(159):159-167.
    [42]于银亭,李培泉,吴润等,昆明滇池沉积物速率的测定,海洋与湖沼,1996,27(1):41-45.
    [43]薛传东,刘星,亓春英等,滇池近代沉积物的元素地球化学特征及其环境意义,岩石矿物学杂志,2007,26(6):582-590.
    [44]张燕,邓西海,陈捷等,滇池沉积物磷负荷估算,中国环境科学,2005,25(3):329-333.
    [45]Higgins, S.F., M.S. Coyne, S.A. Shearer, et al., Determining nitrogen fractions in swine slurry, Bioresource Technology,2005,96(9):1081-1088.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700