基于多种方法的地下水补给研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水的补给量反映了含水层的可更新能力,是地下水资源管理与合理开发利用的关键参数之一。在干旱和半干旱地区,地下水的补给量较小,定量估算地下水的补给量尤为困难。鄂尔多斯高原地处西北地区东部,区内蕴藏着丰富的能源和矿产资源,是国家级的能源基地。但由于区内降水稀少,蒸发强烈,地表水资源缺乏,地下水是最重要的供水水源。随着地区经济的发展,特别是近年来能源基地的建设,地下水开发程度不断提高,迫切需要对区域地下水资源进行有效管理。因此,研究含水层的补给,对实现鄂尔多斯地区地下水资源的合理开发利用具有重要的理论和实际意义。
     每种地下水补给量的估算方法都具有一定的局限性,只有综合使用多种方法进行地下水补给量的估算,才能提高估算结果的可靠性。因为每一种方法都需要大量的数据支撑才能完成,因此数据不足是限制利用多种方法估算地下水补给量的主要因素。鄂尔多斯地区经过10多年的水文地质勘查,积累了大量的野外数据,使得综合利用多种方法计算地下水的补给量成为可能。本次研究在前人工作的基础上,以多方法、多视角和多尺度为技术路线开展地下水的补给量研究,即综合使用了八种方法,从地表水、包气带水和地下水的视角,从局部和区域尺度对鄂尔多斯高原地区地下水的补给进行研究。本文首先利用大气降水和地下水的氢氧稳定同位素分析了地下水的补给源和补给机理;然后利用七种方法估算了地下水的多年平均补给量,包括氯元素守恒法、地下水水位动态法、基于饱和带和包气带的达西定律法、基于遥感的水均衡方法、经验法和基流分割法;最后依据全球地下水补给的研究实例,在前人已完成的9种方法总结的基础上,对另外8种常用的地下水补给量估算方法从时/空尺度和精度方面进行了总结,从四个方面提出了选取地下水补给量方法的基本原则。
     大气降水和地下水的氢氧稳定同位素表明,地下水沿当地雨水线分布,表明鄂尔多斯高原的地下水起源于大气降水;地下水的入渗机理有两种,分别是活塞式入渗和优先通道式入渗,以活塞式入渗为主。利用七种方法估算出的地下水的补给量具有一定的差异,一般来说最大值来自基于包气带的达西方法,最小值来自氯元素守恒法。造成这种差别的原因是不同的方法估算不同时空尺度的地下水补给量和不同的方法估算不同类型的地下水补给。对于研究区的九大地下水系统来讲,位于东部的地下水系统地下水的补给量比较大,位于西部的地下水系统补给量较小。根据以上各个系统地下水补给量的变化范围,估算出鄂尔多斯高原地下水的补给量为35.3亿方/年~65.2亿方/年。相对应的,地下水的补给量占降水量的14%~26%,同世界上其他类似地区的补给量具有可比性。
     最后本次研究从地下水补给的研究目的、地下水补给类型/机理、可利用/可获取的数据和时间/费用方面提出了地下水补给量估算方法的选取原则。对16种常用的地下水补给量估算方法,从地下水补给类型、时间尺度、空间尺度、精度、计算复杂程度、获取所需数据的难易程度和费用七个方面进行了综合评价,为选取地下水补给方法提供了参考依据。总体上来讲,基于地表水和地下水的补给量估算方法具有较长的时/空尺度,可用于区域地下水资源管理;而基于包气带的方法具有较小的时/空尺度,适用于以地下水污染调查为目的的补给量估算。
Groundwater recharge represents the renewable rate of aquifers and is one the key parameters for the management and rational development of groundwater resources. In arid and semi-arid regions, quantitiative estimates of groundwater recharge are remely difficute as the rate is very low. The Ordos Plateau is located in the east part of NW China and abundant natural resources are stored in the study area that makes it the largest energe base in China. Due to the sparce precipitation, strong evaporation, and undeveloped surface water sources, groundwater is the most important source of water supply. With development of local economy and the construction of the energy base, groundwater mining will increase gradually that requires effective management of groundwater resources. Therefore, groundwater recharge estimation is ndded to proper management of groundwater and has a pratical and theoretical siganificance.
     Due to uncertainties associated with each method for estimating recharge, the use of many different approaches is recommended to constrain the recharge estimates. Based on previous studies, eight methods were used to quantify groundwater recharge in the Ordos Plateau. Firstly, isotopic data of precipitation and groundwater were used to identify source and mechanism of groundwater recharge. Secondly, seven methods were used to estimate groundwater recharge based on surface water, soil water and groundwater, including the chloride mass balance method, the water table fluctuation method, darcian method for saturated and unsaturated zones, the water balance method based on remote sensing, the empirical method and the baseflow separation method. Finally, based on cases in the world, the spatial and temperal features of 16 commonly used methods were summarized.
     The isotopic data of precipitation and groundwater show that groundwater scaters around the local meteoric water line, indicating groundwater is of meteoric orgion. There are two mechanisms of groundwater recharge, the piston type and the preferential type. The dominant mechanism is the piston type. There is great difference among results from different methods. Generally speaking, The largest recharge was usually estimated from the Darcian method for saturated zones and the smallest estimates were usually from the chloride mass balance (CMB) method. The difference is caused by two reasons. The first reason is that each method has its space/time scale. The second reason is the distinctions among the various terms used to refer to groundwater recharge. Generally, groundwater recharge rates are higher in the eastern part where the land surface is covered by permeable sand that is favorable to infiltration. The total recharge rate in the Ordos Plateau varies between 3.35 billon m~3/yr and 7.43 m~3/yr. The average values of recharge in this study as a whole ranges from 14 to 30 % of precipitation, which is acceptable for arid and semi-arid regions.
     The guidelines for selecting groundwater recharge methods were proposed with respect to study goals, groundwater recharge type/mechanism, available data, and time/fund. A comprehensive summarization was made for 16 methods in terms of recharge type, spatial scale, temperal scale, accuracy, computation complexity, data aqucisition and fund. Generally, methods based on surface water and groundwater have large spatial and temperal scale, suitable for groundwater resources management, while methods based on unsaturated zones have smaller spatial and temperal scale, suitable for contamination studies.
引文
Allison GB Barnes JB, Hughes MW, Leaney FWJ Effect of climate and vegetation on oxygen-18 and deuterium profiles in soils. In: Isotope Hydrology 1983,IAEA Symposium 270, Deptember 1983, Vienna: 105-123
    Allison GB, Gee GW, Tyler SW. Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions[J]. Soil Sci. Am. J. 1994,58: 6-14
    Arnold JG, Muttiah RS, Srinivasan R, Allen PM . Regional estimation of base flow and groundwater recharge in the Upper Mississippi River Basin[J]. Hydrol ,2000,227:21–40
    Belan R.A., Matlock W.G. Groundwater recharge from a portion of the Santa Catalina Mountains [A]. In: Proc Meeting Hydrology and Water Resoruces in Arizona and the Southwest, Arizona Section, American Water Resources Association, and the Hydrology Section, Arizona Academy of Science, 1973,Tucson, Arizona, Rep 3, pp 33-40
    Bohling GC, Anderson MP, and Bentley CR . Use of groundwater penetrating radar to define recharge ares in the central sand plain[J], Wisconsin Water Resources Center Report WIS WRC ,1989,89-01, University of Wisconsin-Madison:Madison.
    Brutsaert W. Aspects of bulk atmospheric boundary layer similarity under free-convective conditions [J]. Review of Geophysics, 1999, 37: 439-451
    Burner.Using remote sensing to regionalize local precipitation recharge rates obtained from the Chloride Method. Journal of Hydrology ,2004,294 :241–250
    Cook P.G., Bohlke J.K. Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge[J]. Water resources Res, 1994, 30: 3253-3264
    Cook PG, Walker GR, Buselli G, Potts, I, Dodd AR. The application of electromagnetic techniques to groundwater recharge investigations[J].Hydrol ,1992,130: 201-229
    Coplen T.B., Herczeg A.H., and Barnes C. Isotope engineering-using stable isotopes of the water molecule to solve practical problems [A]. In Environmental tracers in sub surface hydrology, Ed. P.G. Cook and A.L. Herczeg [C]. Norwell, Massachusetts: Kluwer Academic Publishers.
    Coplen TB. Reporting of stable hydrogen, carbon and oxygen isotopic abundances [J]. Pure Appl. Chem.1994, 66: 273-276
    Daily, W.; Ramirez, A.; LaBrecque, D.; Nitao, J. Electrical resistivity tomography of vadose water movement[J]. Water Resour. Res. 1992, 28 (No. 5), 1429–1442.
    De Vries J.J., Simmers I. Groundwater recharge: an overview of precess and challenges. Hydrogeol[J],2002,10:5-17
    Epstein S0 .Mayeda TKVariations of the 18O/16O ratio in natural water[J]. Geochimica et Cosmochimica Acta 4,1953, 213-220
    Eriksson E., Khunakasem V. Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in the Israel Coastal Plain [J]. J Hydrol, 1969, 7: 178-197
    Flint AL, Flint LE, Kwicklis EM et al . Estimating recharge at Yucca Mountain, Nevada, USA[J]: comparison of methods. Hydrogeol J. 2002,10(1): 180-204
    Friedman I. Deuterium content of natural waters and other substances[J]. Geochimica et Cosmochimica Acta 4,1953, N.1-2, 83-103
    Friedman I. Deuterium content of natural waters and other substances[J]. Geochimica etCosmochimica Acta 4, 1953,N.1-2, 83-103
    Gat JR . Role of the zone of aeration in the recharge and establishment of the chemical character of desert groundwaters. P . 487-498. In P. Udluft (ed.) Recent investigations of the zone of aeration. Proc. Symp., Munich. Vol. 2. Tech Univ., Munich, Germany.1984
    Gee GW, Hillel D .Groundwater recharge in arid regions: review and critique of estimation methods[J]. Hydrological Process,1988, 2: 255-266
    Haeni FP . Application of seismic-refraction techniques to hydrologic studies. Open File Report ,1986,84-746, U.S. Geological Survey.
    Halford K.J., Mayer G.C. Problems associated with estimateing ground water discharge and recharge from stream discharge records [J]. Groud Water, 2000, 38: 331-342
    Harbaugh AW. MODFLOW-2005, The U.S. Geological Survey Modular Ground-water Model:the ground-water flow process[J]. US Geol Surv Tech Methods. 6-A 16, chap. 16, book 6,2005
    Healy R.W., and Cook P.G. Using groundwater levels to estimate recharge [J]. Hydrogeology Journal, 2002, 10: 91-109
    Healy R.W., Gray J.R., De Vries M.P., Mills P.C. Water balance at a low-level radioactive disposal site [J]. Water Resour Bull 25: 381-390
    Healy RW, Cook PG Using groundwater levels to estimate recharge [J]. Hydrogeol J,2002,10(1):91-109
    Heppner CS, Nimmo JR, Folmar G.J, Gburek WJ, and Risser DW. Multiple-methods investigation of recharge at a humid-region fractured rock site, Pennsylvania, USA[J]. Hydrogeol J .2007,15:915-927
    Hopper R.P., Christophersen N., Peters N.E. Modelling of streamwater chemistry as a mixture of soilwater endmembers- an application to the Panola Mountain catchment, Georgia, USA [J]. J Hydrol, 1990, 116: 321-343
    Howard KWF, Lloyd JW .The sensitivity of parameters in the Penman evaporation equations and direct recharge balance[J]. Hydrol,1979, 41: 329-344 Johnston C.D. Preferred water flow and localized recharge in a variable regolith[J]. J Hydrol 94: 129-142
    Kinzelbach W., Aeschbach W., Alberich C., GoniI.B., Beyerle U., Brunner P., Chiang W.-H., Rueedi J., and Zoellmann K. A Survey of Methods for Groundwater Recharge in Arid and Semi-arid regions[J]. Early Warning and Assessment Report Series, UNEP/DEWA/RS.02-2. United Nations Environment Programme, Nairobi, Kenya. ISBN 92-80702131-3,2002
    Leerner D.N.,Issar A.S., Simmers I. Groundwater recharge, a guide to understanding and estimating natural recharge [M]. International Association of Hydroeologists: Kenilworth
    Lerner DN .Groundwater recharge. In: Saether OM, de Caritat P (eds) Geochemical process, weathering and groundwater recharge in catchments[J]. AA Balkema, Rotterdam, 1997,PP 109-150
    Levin M., Gat J.R., and Issar A. Precipitation, flood and groudwaters of the Negev Highlands: An isotopic study of desert hydrology [A]. In Aird-zone Hydrology : Investigations with Isotope Techniqeus [C]. 1980, Vienna: IAEA
    Mathieu, R., and T. Bariac, A numerical model for the simulation of stable isotopes profiles in drying soils[J]. Geophys. Res.,1996, 101, 12685-12696
    Meinzer O.E. The occurrence of groundwater in the United States with a discussion of principles. U.S. Geol Surv Water-Supply Pap 483 [R], 1923.
    Meinzer O.E., Steans N.D. A study of groundwater in the pomperaug Basin, Coon. With special reference to intake and discharge [R]. US Geol Surv Water-Supply Pap, 1929, 597B: 73-146
    Menenti M., Choudhury B.J. Parametrization of land surface evapotranspiration using a location-dependent potential evapotranspiration and surface temperature range [A]. In: H. J. Bolle (Eds.). Exchange Processes at the Land Surface for a Range of Space and Time Scales [C]. Oxfordshire: IAHS Publ. 1993, 212: 561-568
    Misstear BDR, Brown L, Johnston PM Estimation of groundwater recharge in a major sand and gravel aquifer in Ireland using multiple approaches[J]. Hydrogeol J,2009,17:693-706
    Nimmo JR, Akstin KC, Mello KA . Improved apparatus for measuring hydraulic conductivity at low water content[J]. Soil Sci Soc Am J ,1992,56:1758-1761
    Nimmo JR, Healy RW, Stonestrom DA. Aquifer recharge [A]. In: Anderson MG, Bear J (eds) Encyclopedia of hydrological science, vol 4 [C]. Wiley, Chichester, 2005.
    Onodera S, Kitaoka K, Hayashi M, Shindo S, Kusakabe M Evaluation of the groundwater recharge process in a semiarid region of Tanzania, usingδ18O andδD[J]. IAHS Publ.1995, No. 232.
    Phillips FM .Environmental tracers for water movement in desert soils of the American Southwest[J]. Soil Sci Soc Am J ,1994,58:14–24
    Pool DR, Schmidt W . Measurement of groundwater storage change and specific yield using the temporal gravity method near Rillito Creek, Tucson, Arizona, Water Resources Investigation Report ,1997,97-4125, U.S. Geological Survey.
    Richards L.A., Gardner W.R., Ogata G. Physical processes determining water loss from soil [J]. Soil Sci Soc Am Proc, 1956, 20: 310-314
    Risser DW, Gburek WJ, Folmar GJ. Comparison of recharge estimates at a small watershed in east-central Pennsylvania, USA[J]. Hydrogeol J ,2009,17:287-298
    Rutledge A.T. Model-estimated groundwater recharge and hydrograph of groundwater discharge to a stream [R]. US Geol Sruv Water Resour Invest Rep 97-4253: 29
    Salama RB, Bartle G, Farrington P, Wilson V .Basin geomorphological controls on the mechanism of recharge and discharge and its effect on salt storage and mobilization—comparative study using geophysical surveys[J]. Hydro ,1994,155:1-26
    Sammis T.W., Evans D.D., Warrick A.W. Comparison of methods to estimate deep percolation rates [J]. Water Res Bull Am Water Res Assoc, 1982, 18: 465-470
    Scanlon B.R., Healy R.W., Cook P.G. Choosing appropriate techniques for quantifying groundwater recharge [J]. Hydrogeol J, 2002, 10(1):18-39
    Scanlon BR, Goldsmith RS. Field study of spatial variability in unsaturated flow beneath and adjacent to playas[J]. Water Resour. 1997, Res 33: 2239-2252
    Scanlon BR, Langford RP, Goldsmith RS . Relationship between geomorphic settings and unsaturated flow in an arid setting[J]. Water Resour Res ,1999,35(4):983-999
    Selaolo ET . Tracer studies and groundwater recharge assessment in the eastern fringe of the Botswana Kalahari. Phd Thesis, Vrije University, Amsterdam, 1998,229.
    Sharma ML, Bari M, Byrne J .Dynamics of seasonal recharge beneath a semiarid vegetation on the Gnangara Mound, Western Australia[J]. Hydrol Proc ,1991,5:383-398
    Shaw RD and Prepas EE. Anomalous, short-term influx of water into seepage meters[J]. Limnol. Oceanogr. 1989,34(7): 1343-1351
    Sibanda T., Nonner J.C., Uhlenbrook S. Comparison of groundwater recharge estimation methodsfor the semi-arid Nyamandhlovu area, Zimbabwe[J]. Hydrogeology Journal, 2009,17: 1427-1441
    Singh V.P. Computer models of watershed hydrology [R]. Water Resources Publications, 1995, Highlands Ranch, Colorado
    Sloto R.A. and Crouse M.Y. HYSEP- a computer program for streaflow hydrograph sepeartion and analysis [R]. Water Resources Investigations Report, 1996-4040. U.S. Geologial Survey.
    Sloto, R.A., and Crouse, M.Y., HYSEP: A computer program for streamflow hydrograph separation and analysis[J]: U.S. Geological Survey Water-Resources Investigations Report 96-4040, 1996,46 p
    Sophocleous M . Combined the soilwater balance and water-level fluctuation methods to estimate natural groundwater recharge: practical aspects[J].Hydrol,1991, 124: 229-241
    Su Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes [J]. Hydrology and Earth System Sciences, 2002, 6(1): 85-99
    Su Z., Jacobs C. Advanced Earth Observation - Land Surface Climate [R]. Report USP-2, 01-02, Publications of the National Remote Sensing Board (BCRS), the Netherlands, 2001: 184
    Su Z., Pelgrum H., Menenti M. Aggregation effects of surface heterogeneity in land surface processes [J]. Hydrological Earth System Science, 1999, 3(4): 549-563
    Verhagen B.T. Detailed geohydrology with environmental isotopes: A case study at Serowe, Botswana. In Isotope Techniques in Water Resources Development 1991. 1992, Vienna : IAEA.
    Wahl, K. L., and Wahl, T. L. Determining the Flow of Comal Springs at New Braunfels[J], Texas, Texas Water '95, American Society of Civil Engineers, August 16-17, 1995, San Antonio, Texas, 1995,pp. 77-86.
    Ward A.J., Gee G.W. Performance of a field-scale surface barrier [J]. J Environ Qual 26: 694-705 Ward AL, Gee GW .Performance of a field-scale surface barrier[J]. Environ Quan 1997,26:694-705
    Woessner WW, Sullivan KE . Results of seepage meter and mini-piezometer study, Lake Mead, Nevada[J]. Ground water,1984, 22(5):561-568
    Wood W. W., Sanford W. E. Chemical and isotopic methods for quantifying ground water recharge in a regional, semiarid environment [J]. Ground Water, 1995,33(3):458-468
    Wood, W.W., Use and misuse of the chloride-mass balance method in estimating ground water recharge [J].Ground Water, 1999, 32(1):2-3.
    Yin LH , Hou GC, Tao ZP and Li Y. Origin and recharge estimates of groundwater in the Ordos Plateau, P.R. China[J]. Environ Earth Sci,2009, DOI 10.1007/s12665-009-0310-3
    Zimmerman U., Ehhalt D., and Munnich K.O. Soil-water movement and evapotranspiration: Changes in the isotopic composition of the water [A]. In Proceddings of the symposium on Isotopes in Hydrology [C]. 1967, Vienna: IAEA
    侯光才等.鄂尔多斯盆地地下水勘查研究[M].北京:地质出版社,2008
    李文鹏,郝爱兵.中国西北内陆干旱盆地地下水形成演化模式及其意义[J].水文地质工程地质,1999, 26(4):28-32
    马金珠等.干旱区地下水补给与气候变化的包气带地球化学记录—以巴丹吉林沙漠为例[J]. 地球学报,2003,24:190-195
    马金珠等.石羊河流域水化学演化与地下水初给特征[J].资源科学,2005, 27(3P):117-122
    孙建平,魏玉梅,吴宏涛,张福存,李爱军.西北内陆盆地山前带典型地下水赋存模式探讨[J].水文地质工程地质,2007, 34(4):66-69
    王大纯等.水文地质学基础[M].北京:地质出版社,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700