流感H3/H1亚型多表位核酸疫苗和重组腺病毒疫苗构建及实验免疫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流行性感冒(Influenza flu)是由流感病毒(Influenza Virus)引起的能够在人群中广泛传播的急性呼吸道传染病。按病毒内部核蛋白(NP)的抗原性差异分为A、B、C三型。根据病毒表面结构蛋白血凝素(Hemagglutinin, HA)和神经氨酸酶(Neuraminidase, NA)不同可分为不同的血清亚型,HA包括16个亚型,NA包括9个亚型,其中感染人类的以A型H1N1、H3N2、H2N2亚型和B型流感病毒为主,流感又分为季节性流感(Seasonal influenza)和大流行性流感(Pandemic influenza),大流行性流感病毒可以在全世界传播,造成的死亡率极高。感染禽类的主要包括A型H5/H7/H9等亚型,其中H5N1、H7N7等亚型开始频繁突破种间屏障感染人类并且引起死亡,有可能引发下一次的流感大流行。
     预防接种是控制流感病毒的有效手段,目前广泛采用的是传统流感灭活疫苗,但是传统疫苗存在生产周期长,生产工序多,高度依赖鸡胚,成本较高,而且只能针对特定几种亚型提供免疫保护的缺点。流感病毒多亚型共存,不同亚型之间交叉保护性不好,主要保护性抗原基因HA差异较大。研制一种可同时预防多种亚型流感病毒且制备工艺简单,无需鸡胚即可大量生产的新型疫苗显得日趋重要。目前新型流感疫苗主要集中在基因工程疫苗的研究,包括重组亚单位疫苗、病毒颗粒样疫苗、核酸疫苗、重组病毒载体疫苗等。其中核酸疫苗和重组腺病毒疫苗发展前景较好,核酸疫苗也称DNA疫苗,它具有制备过程相对简单,安全稳定,无载体免疫,可以重复多次免疫,能够刺激机体产生细胞免疫和体液免疫反应,疫苗可稳定长期保存等优点使其成为疫苗研究的热点。核酸疫苗在免疫原性上同亚单位疫苗、重组病毒载体疫苗等相比较弱,可以通过添加不同类型佐剂、辅助电穿孔免疫、基因枪等方法提高疫苗的免疫效果。腺病毒载体具有安全性好、宿主细胞广泛、感染病毒滴度高、细胞转导效率高、可容纳大片段外源基因、自身稳定等特点,可以刺激机体产生较强的细胞免疫和体液免疫反应。
     多表位(Multi-epitope)流感疫苗是通过对流感病毒不同亚型主要保护性抗原基因表位进行筛选,将多种不同抗原表位间连接特定的Linker以构成多表位表达盒,将其单独或者串联其他基因克隆入相应的表达载体构建的疫苗。
     本研究选用真核表达载体pVAX1和复制缺陷型人5型腺病毒载体,设计构建了以季节性流感H3亚型和大流行性流感H1亚型HA (HA1)基因为主,辅助以已经突破种间屏障感染人类的禽流感H5、H7、H9亚型HA抗原Th和B细胞表位盒(EHA)的多表位核酸疫苗和重组腺病毒疫苗,并分别构建了单表达对照组。通过RT-PCR、间接免疫荧光、Western Blot等方法检测各组分抗原的转录和抗原性,结果表明,构建的候选核酸疫苗和重组腺病毒疫苗均可以有效表达组分抗原,抗原性良好。
     选用辅助电穿孔免疫的方法对pV-H3-EHA-H1HA1 new, pV-H1HA new, pV-H1HA1 new, pV-H3HA, pV-EHA等候选核酸疫苗进行了小鼠免疫实验,分别对各免疫组进行细胞免疫和体液免疫水平检测。体液免疫结果表明,在特异性抗原刺激下,辅助电穿孔的多表位免疫组与单表达组水平相当(P>0.05),但显著高于未使用电穿孔组(P<0.05)。多表位免疫组在表位相关的H5/H7/H9亚型特异性多肽抗原刺激时产生的IgG抗体水平较未添加表位免疫组大约提高两倍。IL-2和IL-4细胞因子水平检测结果表明,多表位辅助电穿孔免疫组显著高于未使用电穿孔组和单表达辅助电穿孔免疫组(P<0.05)。选用10 LD50 H5亚型流感病毒对各免疫组小鼠进行攻毒保护实验,多表位辅助电穿孔免疫组能够产生较好的免疫保护(90%),显著高于单表达组和未使用辅助电穿孔的免疫组(P<0.05)。
     利用小鼠动物模型免疫候选流感重组腺病毒疫苗pacAd5-H3HA、pacAd5-H1HA1、pacAd5-H1HA1 new、pacAd5-H3-H1HA1和pacAd5-H3-EHA-H1HA1 new,结果显示,免疫组小鼠均可以产生特异性的体液免疫和细胞免疫反应,其中以多表位重组腺病毒组免疫应答水平最高。单表达H3HA的重组腺病毒设计单次免疫组和两次免疫组作为对照,结果表明,单次免疫组诱生了与两次免疫组相当的体液和细胞免疫水平(P>0.05)。加强免疫后14d,选用100 LD50 H3亚型流感病毒对各免疫组小鼠进行攻毒保护实验,结果多表位重组腺病毒组与共表达H3-H1HA1组、单表达H3HA组小鼠可以完全保护小鼠(100%),显著高于H1亚型单表达组和对照组(P<0.05),且多表位重组腺病毒组在小鼠攻毒后体重变化率较小并能够迅速恢复。
     根据Prime-Boost免疫策略对构建的候选核酸疫苗和重组腺病毒疫苗进行了联合免疫研究,利用核酸疫苗首免,重组腺病毒疫苗加强免疫,结果表明,多表位联合免疫组和单表达联合免疫组在抗原相关的特异性IgG抗体水平上差异不显著(P>0.05),但是联合免疫组均显著高于核酸疫苗和重组腺病毒疫苗单独免疫组(P<0.05);同时,多表位联合免疫组可以产生强烈的细胞免疫应答反应,显著高于单表达联合免疫组和单独免疫组(P<0.05)。选用H3/H5/H1亚型流感病毒攻毒保护实验结果表明,多表位联合免疫组对三种亚型病毒保护率均为最高,不但可以完全保护主要抗原成分H3亚型及表位相关抗原H5亚型致死剂量的流感病毒的攻击,对异源季节性H1N1亚型流感病毒攻击也产生了较强的交叉免疫保护(90%),显著高于单表达联合免疫组和单独免疫组(P<0.05)。
     综合分析,候选多表位核酸疫苗和重组腺病毒疫苗展示了较强的激发小鼠体液免疫和细胞免疫的能力,通过H5/H7/H9亚型表位盒的添加,增强了对禽流感亚型病毒跨种感染的免疫保护,且多表位疫苗联合免疫能够对异源亚型攻毒提供较好保护。多表位核酸疫苗和重组腺病毒疫苗在流感通用疫苗研究中展示了良好的应用前景。
The influenza virus, the causative agent of flu and other acute respiratory infections, can spread in human populations. Based on the viral internal nucleoprotein (NP) structure, influenza viruses are divided into three different antigenic types, designated as A, B, and C. They are further divided into different subtypes based on two virus surface proteins called hemagglutinin (HA) and neuraminidase (NA). There are 16 HA subtypes and 9 NA subtypes. Three subtypes of influenza A, namely H1N1, H3N2, and H2N2, as well as influenza B mainly infect humans. Influenza may also be categorized as seasonal influenza and pandemic influenza. Pandemic influenza strain can spread worldwide and has a very high mortality rate. Avian influenza viruses mainly include subtypes H5, H7, and H9, of which H5N1, H7N7, and other avian influenza virus subtypes have crossed the species barrier, causing human infections and several deaths. This phenomenon could trigger the next influenza pandemic.
     Vaccination is an effective method for controlling the influenza virus. At present, the traditional influenza vaccine is widely used, but it has several limitations, including a long production period, a complicated production processes, high dependence on embryonated eggs, costly, and limited strain-specific protection. Multiple subtypes of influenza virus coexist but the vaccines provide weak cross-protection. Furthermore, sequences of the major protective antigen, HA, are quite different from each other. The development of a new influenza vaccine that can protect against different influenza virus subtypes and can be simply mass-produced independent of embryonated eggs is increasingly important. Currently, vaccine research mainly focuses on genetic engineering of new influenza vaccines, including recombinant subunit vaccines, virus-like particle vaccines, DNA vaccines, and recombinant viral vector vaccines.
     DNA vaccine and adenovirus vaccine offer good prospects for developing new influenza vaccine. Nucleic acid vaccines, also known as DNA vaccines, are relatively easy to prepare, safe, and stable. It also has long-term storage stability and provides non-carrier immunity and repeated immunity. DNA vaccines stimulate cellular and humoral immune responses. These advantages made DNA vaccines the focus of research. Compared with subunit vaccines and recombinant viral vector vaccines, DNA vaccines elicit a weaker immunogenic response. Vaccine efficacy can be enhanced by adding different types of adjuvants, electroporation-assisted vaccination, gene gun, and other methods. Adenoviruses have an excellent safety profile, a wide range of host cells, high viral titers, and high cell transduction efficiency, which can accommodate large segments of foreign genes. Furthermore, it is stable and can stimulate the body to produce strong cellular and humoral immune responses.
     A multi-epitope influenza vaccine against different influenza virus subtypes was prepared by screening the epitopes of major protective antigen genes. Different specific epitopes are connected by a linker to form the multi-epitope expression cassette, which is inserted alone or combined with other genes into the corresponding expression vector.
     In this study, the eukaryotic expression vector pVAX1 and the replication-defective human adenovirus type 5 vector constructs were used to design a multi-epitope DNA vaccine and adenovirus vaccine specifically against seasonal influenza H3 subtype and pandemic influenza H1 subtype HA (HA1). The genes of these subtypes were combine with the HA antigen Th and B cell epitopes cassette (EHA) of avian influenza subtypes such as H5, H7. and H9, which have crossed species barrier to infect humans, and single expression control groups were constructed. The components of antigen transcription and antigenicity were determined by reverse transcription polymerase chain reaction, indirect immunofluorescence, and western blot method. The results show that the constructed potential DNA vaccines and recombinant adenovirus vaccines effectively expressed components of antigen, thus, these are good vaccines.
     Potential DNA vaccines, which include pV-H3-EHA-H1HA1 new, pV-H1HA new, pV-H1HA1 new, pV-H3HA, and pV-EHA, were used to immunize mice through electroporation-assisted immunization. The levels of cellular and humoral immunity of each immunized group were determined. The results show that upon specific antigen stimulation, the group treated with the multiple epitope vaccine through electroporation-assisted immunization, had the same levels of humoral immunity as the single-expression immunized group, and had significantly higher levels than that of the group without electroporation-assisted immunization (P<0.05). In addition, the IgG antibody levels of the multi-epitope immunized group were approximately twice than that of the single-expression group upon antigen stimulation with the H5/H7/H9 epitope peptides (P<0.05). Moreover, groups treated with the multiple epitope vaccine through electroporation-assisted immunization had significantly higher IL-2 and IL-4 levels than that of the single-expression group and the non-electroporation groups (P<0.05). The multi-epitope immunization with electroporation also induced better immune protection (90%), which was significantly higher than that of the single-expression and the non-electroporation groups (P<0.05) based on the lethal dose challenge (10 LD50) with the H5 subtype influenza virus on immunized mice.
     Mice were immunized using potential recombinant influenza adenovirus vaccine: pacAd5-H3HA, pacAd5-H1HA1, pacAd5-H1HA1 new, pacAd5-H3-H1HA1, and pacAd5-H3-EHA-H1HA1 new. The results show that all immunized mice produced specific humoral and cellular immune response, in which the multi-epitope recombinant group had the highest level of immune response. Single and double immunization with the expressed H3HA recombinant adenovirus was used as the control. Based on the results, the single-immunized group induced considerable levels of immunity compared with the twice-immunized group. Immunized mice were challenged with a lethal dose of the H3 subtype of influenza virus 14 days after the booster immunization. The results show that the mice in the multi-epitope recombinant adenovirus group, the co-expressed H3-H1HA1 group, and the single expression group acquired complete protection, which were significantly higher than that produced in the H1 subtype single expression group and the control group (P<0.05). The body weight changes were relatively mild and quickly recovered among the mice in the multi-epitope recombinant adenovirus-immunized group.
     Combined immunity was achieved using DNA vaccine and recombinant vaccine based on the Prime-Boost Immunization Strategy. Prime immunization with the DNA vaccine and boost immunization with recombinant adenovirus vaccine were performed. The results show that the level of antibodies induced in the multi-epitope combined immunization group and the single combined immune-related group was not significantly different (P>0.05), but both were significantly higher than that of the single immunized with DNA vaccine and adenovirus vaccine (P<0.05). Furthermore, the multi-epitope combined immunized group exhibited a strong immune response, which was significantly higher than that of the single combined immunization group and the single-expression immunized group (P<0.05). Based on the H3/H5/H1 subtype influenza virus challenge experiment, the multi-epitope combined immunization group had the highest immune protection rates. The group was not only fully protected against the major antigenic components associated with the epitopes of the H3 and H5 subtypes, but also elicited strong cross-protective immunity against heterologous subtypes of seasonal H1N1 influenza viruses (90%) that were significantly higher than that in the combined immunization group and the single-expression immunized groups (P<0.05).
     In summary, the potential multi-epitope DNA vaccine and the recombinant adenovirus vaccine conferred strong humoral and cellular immunity in mice. The epitopes of the H5/H7/H9 subtypes provided enhanced immune protection against avian influenza virus subtypes that can cause cross-species infection. Combined immunization with multi-epitope vaccines effectively protects mice against heterologous subtype virus challenge. Multi-epitope DNA vaccine and adenovirus vaccine show good prospects in the study of universal influenza vaccine.
引文
[1]GIRARD MP, CHERIAN T, PERVIKOV Y, et al. A review of vaccine research and development:human acute respiratory infections[J].Vaccine,2005,23:5708-5724.
    [2]THOMPSON WW, SHAY DK, WEINTRAUB E, et al. Influenza-associated hospitalizations in the United States[J].JAMA,2004,292:1333-1340.
    [3]TAUBENBERGER JKM DM.1918 Influenza:the mother of all pandemics[J].Emerg Infect Dis,2006,12(1):15-22.
    [4]SMITH W, ANDREWES CL P. A virus obtained from influenza patients.[J].Lancet,1933,2:66-68.
    [5]COX NJS K. Influenza[J]. Lancet,1999,354:1277-1282.
    [6]NICHOL KLT JJ. Vaccines for seasonal and pandemic influenza.[J]. J Infect Dis, 2006,194:S111-S118.
    [7]FIORE AE, UYEKI TMB K. Prevention and control of influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP).[J].MMWR Recomm Rep,2010,59:1-62.
    [8]COUCH RB, WINOKUR PB R. Safety and immunogenicity of a high dosage trivalent influenza vaccine among elderly subjects.[J].Vaccine,2007,25:7656-7663.
    [9]KILBOURNE ED, SCHULMAN JL, SCHILDGC, et al. Related studies of a recombinant influenzavirus vaccine. I. Derivation and characterization of virus and vaccine.[J].J Infect Dis,1971,124:449-462.
    [10]HOFFMANN E, NEUMANN G, KAWAOKA Y, et al. A DNA transfection system for generation of influenza A virus from eight plasmids. [J].Proc Natl Acad Sci USA,2000,97:6108-6113.
    [11]CHEN Z, WANG WZ H. Generation of live attenuated novel influenza virus A/California/7/09 (H1N1) vaccines with high yield in embryonated chicken eggs.[J]. J Virol,2010,84:44-51.
    [12]KATZ JM, WANG MW RG. Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus[J].J Virol,1990,64:1808-1811.
    [13]SCHILD GC, OXFORD JS, DE JONG JC, et al. Evidence for host-cell selection of influenza virus antigenic variants[J].Nature,1983,303:706-709.
    [14]SMITH KA, COLVIN CJ, WEBER PS, et al. High titer growth of human and avian influenza viruses in an immortalized chick embryo cell line without the need for exogenous proteases. [J].Vaccine,2008,26:3778-3782.
    [15]LOHR V, RATH A, GENZEL Y, et al. New avian suspension cell lines provide production of influenza virus and MVA in serum-free media:studies on growth, metabolism and virus propagation[J].Vaccine,2009,27:4975-4982.
    [16]MERTEN OW, MANUGUERRA JC, HANNOUN C, et al. Production of influenza virus in serum-free mammalian cell cultures[J].Dev Biol Stand,1999,98:23-37.
    [17]FENG SZ, JIAO PR, QI WB, et al. Development and strategies of cell-culture technology for influenza vaccine[J].Appl Microbiol Biotechnol,2011,89(4):893-902.
    [18]GABRIEL G, GARN H, WEGMANN M, et al. The potential of a protease activation mutant of a highly pathogenic avian influenza virus for a pandemic live vaccine[J].Vaccine,2008,26(7):956-965.
    [19]STEEL J, LOWEN AC, PENA L, et al. Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza[J].J Virol,2009,83(4):1742-1753.
    [20]SUGUITAN AL JR, MCAULIFFE J, MILLS KL, et al. Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets[J].PLoS Med,2006,3(9):e360.
    [21]TALON J, SALVATORE M, NEILL RE, et al. Influenza A and B viruses expressing altered NS1 proteins:a vaccine approach[J].Proc Natl Acad Sci USA,2000, 97:4309-4314.
    [22]FERKO B, STASAKOVA J, ROMANOVA J, et al. Immunogenicity and protection efficacy of replication-deficient influenza A viruses with altered NS1 genes[J].J Virol,2004,78:13037-13045.
    [23]TALON J, SALVATORE M, NEILL RE, et al. Influenza A and B viruses expressing altered NS1 proteins:A vaccine approach[J].Proc Natl Acad Sci USA,2000, 97(8):4309-4314.
    [24]VINCENT AL, MA W, LAGER KM, et al. Efficacy of intranasal administration of a truncated NS1 modified live influenza virus vaccine in swine[J].Vaccine,2007, 25(47):7999-8009.
    [25]WACHECK V, EGOROV A, GROISS F, et al. A novel type of influenza vaccine: safety and immunogenicity of replication-deficient influenza virus created by deletion of the interferon antagonist NS1[J].J Infect Dis,2010,201:354-362.
    [26]TREANOR JJ, SCHIFF GM, COUCH RB, et al. Dose-related safety and immunogenicity of a trivalent baculovirus-expressed influenza-virus hemagglutinin vaccine in elderly adults[J].J Infect Dis,2006,193:1223-1228.
    [27]TREANOR JJ, SCHIFF GM, HAYDEN FG, et al. Safety and immunogenicity of a baculovirus expressed hemagglutinin influenza vaccine:a randomized controlled trial[J].JAMA,2007,297:1577-1582.
    [28]KANG SM, PUSHKO P, BRIGHT RA, et al. Influenza virus-like particles as pandemic vaccines[J].Curr Top Microbiol Immunol,2009,333:269-289.
    [29]BABIUK LAT SK. Adenoviruses as vectors for delivering vaccines to mucosal surfaces[J].J Biotechnol,2000,83(1-2):105-113.
    [30]BAROUCH DHN GJ. Adenovirus vector-based vaccines for human immunodeficiency virus type 1[J].Hum Gene Ther,2005,16(2):149-156.
    [31]SOUZA AP, HAUT L, REYES-SANDOVAL A, et al. Recombinant viruses as vaccines against viral diseases[J].Braz J Med Biol Res,2005,38(4):509-522.
    [32]DH B. Rational design of gene-based vaccines.[J].J Pathol,2006,208(2): 283-289.
    [33]LI S, LOCKE E, BRUDER J, et al. Viral vectors for malaria vaccine development[J].Vaccine,2007,25(14):2567-2574.
    [34]NAKAYA T, CROS J, PARK MS, et al. Recombinant Newcastle disease virus as a vaccine vector[J].J Virol,2001,75(23):11868-11873.
    [35]RUSSELL PHE GO. The Hitchner B1 strain of Newcastle disease virus induces high levels of IgA, IgG and IgM in newly hatched chicks[J].Vaccine,1995,13(1):61-66.
    [36]PARK MS SJ, GARCIA-SASTRE A, SWAYNE D, et al. Engineered viral vaccine constructs with dual specificity:avian influenza and Newcastle disease.[J]. Proc Natl Acad Sci USA,2006,103(21):8203-8208.
    [37]VEITS J, WIESNER D, FUCHS W, et al. Newcastle disease virus expressing H5 hemagglutinin gene protects chickens against Newcastle disease and avian influenza.[J].Proc Natl Acad Sci USA,2006,103(21):8197-8202.
    [38]GE J, DENG G, WEN Z, et al. Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses[J].J Virol,2007,81(1):150-158.
    [39]GAO W, SOLOFF AC, LU X, et al. Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization[J].J Virol,2006, 80(4):1959-1964.
    [40]PANICALI D, DAVIS SW, WEINBERG RL, et al. Construction of live vaccines by using genetically engineered poxviruses:biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin.[J].Proc Natl Acad Sci USA,1983,80(17): 5364-5368.
    [41]GHERARDI MME M. Recombinant poxviruses as mucosal vaccine vectors[J].J Gen Virol,2005,86(Pt 11):2925-2936.
    [42]JOHNSON JE, NASAR F, COLEMAN JW, et al. Neurovirulence properties of recombinant vesicular stomatitis virus vectors in non-human primates. [J].Virology, 2007,360(1):36-49.
    [43]BUBLOT M, PRITCHARD N, SWAYNE DE, et al. Development and use of fowlpox vectored vaccines for avian influenza[J].Ann N Y Acad Sci,2006,1081: 193-201.
    [44]ZHANG X, CASSIS-GHAVAMI F, ELLER M, et al. Direct comparison of antigen production and induction of apoptosis by canarypox virus-and modified vaccinia virus Ankara-human immunodeficiency virus vaccine vectors.[J]. J Virol,2007,81(13): 7022-7033.
    [45]RUSSELL ND, GRAHAM BS, KEEFER MC, et al. Phase 2 study of an HIV-1 canarypox vaccine (vCP1452) alone and in combination with rgp120:negative results fail to trigger a phase 3 correlates trial.[J].J Acquir Immune Defic Syndr,2007,44(2):203-212.
    [46]KRETZSCHMAR E, BUONOCORE L, SCHNELL MJ, et al. High-efficiency incorporation of functional influenza virus glycoproteins into recombinant vesicular stomatitis viruses. [J].J Virol,1997,71(8):5982-5989.
    [47]ROBERTS A, KRETZSCHMAR E, PERKINS AS, et al. Vaccination with a recombinant vesicular stomatitis virus expressing an influenza virus hemagglutinin provides complete protection from influenza virus challenge[J].J Virol,1998,72(6):4704-4711.
    [48]SCHWARTZ JA, BUONOCORE L, ROBERTS A, et al. Vesicular stomatitis virus vectors expressing avian influenza H5 HA induce cross-neutralizing antibodies and long-term protection[J]. Virology,2007,366(1):166-173.
    [49]HUANG Z, ELANKUMARAN S, YUNUS AS, et al. A recombinant Newcastle disease virus (NDV) expressing VP2 protein of infectious bursal disease virus (IBDV) protects against NDV and IBDV[J].J Virol,2004,78(18):10054-10063.
    [50]ROLLMAN, E., J. HINKULA, et al. Multi-subtype gp 160 DNA immunization induces broadly neutralizing anti-HIV antibodies[J].Gene Ther,2004,11:1146-1154.
    [51]KIM JHJ J. DNA vaccines against influenza viruses[J].Curr Top Microbiol Immunol,2009,333:197-210.
    [52]LADDY DJ, YAN J, KUTZLER M, et al. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic consensus DNA antigens[J].PLoS One,2008,3(6):e2517.
    [53]SPIES, B., H. HOCHREIN, et al. Vaccination with plasmid DNA activates dendritic cells via Tolllike receptor 9 (TLR9) but functions in TLR9-deficient mice[J].J Immunol,2003,171:5908-5912.
    [54]DONNELLY, J. J., J. B. ULMER, et al. DNA vaccines[J].Annu Rev Immunol, 1997,15:617-648.
    [55]DRAPE RJ, MACKLIN MD, BARR LJ, et al. Epidermal DNA vaccine for influenza is immunogenic in humans[J].Vaccine,2006,24:4475-4481.
    [56]JONES S, EVANS K, MCELWAINE-JOHNN H, et al. DNA vaccination protects against an influenza challenge in a double-blind randomised placebo-controlled phase 1b clinical trial [J]. Vaccine,2009,27:2506-2512.
    [57]SMITH LR, WLOCH MK, YE M, et al. Phase 1 clinical trials of the safety and immunogenicity of adjuvanted plasmid DNA vaccines encoding influenza A virus H5 hemagglutinin[J].Vaccine,2010,28:2565-2572.
    [58]CRYZ SJ, QUE JUG R. A virosome vaccine antigen delivery system does not stimulate an antiphospholipid antibody response in humans[J].Vaccine,1996,14: 1381-1383.
    [59]ANSALDI F, ZANCOLLI M, DURANDOP, et al. Antibody response against heterogeneous circulating influenza virus strains elicited by MF59- and non-adjuvanted vaccines during seasons with good or partial matching between vaccine strain and clinical isolates[J].Vaccine,2010,28:4123-4129.
    [60]JOHANSEN K, NICOLL A, CIANCIO BC, et al. Pandemic influenza A(HIN1) 2009 vaccines in the European Union[J].Euro Surveill,2009,14:19361.
    [61]WICHMANN O, STOCKER P, POGGENSEE G, et al. Pandemic influenza A(H1N1) 2009 breakthrough infections and estimates of vaccine effectiveness in Germany 2009-2010[J].Euro Surveill,2010,15:19561.
    [62]LEROUX-ROELS I, BORKOWSKI A, VANWOLLEGHEM T, et al. Antigen sparing and cross-reactive immunity with an adjuvanted rH5N1 prototype pandemic influenza vaccine:a randomised controlled trial[J].Lancet,2007,370:580-589.
    [63]VOGEL FR, CAILLET C, KUSTERS IC, et al. Emulsion-based adjuvants for influenza vaccines[J].Expert Rev Vaccines,2009,8:483-492.
    [64]ATMAR RL, KEITEL WA, PATEL SM, et al. Safety and immunogenicity of nonadjuvanted and MF59-adjuvanted influenza A/H9N2 vaccine preparations[J].Clin Infect Dis,2006,43:1135-1142.
    [65]NICHOLSON KG, COLEGATE AE, PODDA A, et al. Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine:a randomised trial of two potential vaccines against H5N1 influenza[J].Lancet,2001,357: 1937-1943.
    [66]BALDRIDGE JR, MCGOWAN P, EVANS JT, et al. Taking a Toll on human disease:Toll-like receptor 4 agonists as vaccine adjuvants and monotherapeutic agents[J].Expert Opin Biol Ther,2004,4:1129-1138.
    [67]STEPHENSON I, ZAMBON MC, RUDIN A, et al. Phase I evaluation of intranasal trivalent inactivated influenza vaccine with nontoxigenic Escherichia coli enterotoxin and novel biovector as mucosal adjuvants,using adult volunteers[J].J Virol, 2006,80:4962-4970.
    [68]COUCH RB, ATMAR RL, CATE TR, et al. Contrasting effects of type I interferon as a mucosal adjuvant for influenza vaccine in mice and humans[J].Vaccine, 2009,27:5344-5348.
    [69]KAYAMURO H, ABE Y, YOSHIOKA Y, et al. The use of a mutant TNF-alpha as a vaccine adjuvant for the induction of mucosal immune responses[J].Biomaterials, 2009,30:5869-5876.
    [70]WACK A, BAUDNER BC, HILBERT AK, et al. Combination adjuvants for the induction of potent, long-lasting antibody and T-cell responses to influenza vaccine in mice[J].Vaccine,2008,26:552-561.
    [71]SCHEERLINCK JP, KARLIS J, TJELLE TE, et al. In vivo electroporation improves immune responses to DNA vaccination in sheep[J].Vaccine,2004,22(13-14): 1820-1825.
    [72]OTTEN G, SCHAEFER M, DOE B, et al. Enhancement of DNA vaccine potency in rhesus macaques by electroporation [J]. Vaccine,2004,22(19):2489-2493.
    [73]BABIUK S, BACA-ESTRADA ME, FOLDVARI M, et al. Increased gene expression and inflammatory cell infihration caused by electroporation are both important for improving the efficacy of DNA vaccine[J].J Biotechnol,2004,110(1):1-10.
    [74]ULMER JB, WAHREN BL MA. Gene-based vaccines:recent technical and clinical advances[J].Trends Mol Med,2006,12(5):216-222.
    [75]TJELLE TE, SALTE R, MATHIESEN I, et al. A novel electroporation device for gene delivery in large animals and humans[J].Vaccine,2006,24(21):4667-4670.
    [76]DU L, ZHOU YJ S. Research and development of universal influenza vaccines[J].Microbes Infect,2010,12:280-286.
    [77]SUI J, HWANG WC, PEREZ S, et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses[J].Nat Struct Mol Biol,2009,16:265-273.
    [78]STEEL J, LOWEN AC, WANG T, et al. An influenza virus vaccine based on the conserved hemagglutinin stalk domain[J].MBio,2010,1(1):e00018.
    [79]SCHOTSAERT M, DE FILETTE M, FIERS W, et al. Universal M2 ectodomain-based influenza A vaccines:preclinical and clinical developments[J].Expert Rev Vaccines,2009,8:499-508.
    [80]WEI CJ, BOYINGTON JC, MCTAMNEY PM, et al. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination[J].Science,2010,329:1060-1064.
    [81]PRICE GE, SOBOLESKI MR, LO CY, et al. Vaccination focusing immunity on conserved antigens protects mice and ferrets against virulent H1N1 and H5N1 influenza A viruses[J].Vaccine,2009,27:6512-6521.
    [82]BUI H, PETERS B, ASSARSSON E, et al.Ab and T cell epitopes of influenza A virus, knowledge and opportunities[J].Proc Natl Acad Sci USA,2007,104(1):246-251.
    [83]ERNST WA, KIM HJ, TUMPEY TM, et al. Protection against HI, H5, H6 and H9 influenza A infection with liposomal matrix 2 epitope vaccines[J].Vaccine,2006, 24(24):5158-5168.
    [84]JAMESON J, CRUZ JE FA. Human cytotoxic T-lymphocyte repertoire to influenza A viruses.[J].J Virol,1998,72(11):8682-8689.
    [85]BEN-YEDIDIA T, ABEL L, ARNON R, et al. Efficacy of anti-influenza peptide vaccine in aged mice[J].Mech Ageing Dev,1998,104:11-23.
    [86]LUBIN I, SEGALL H, MARCUS H, et al. Engraftment of human peripheral blood lymphocytes in normal strains of mice. [J].Blood,1994,83(8):2368-2381.
    [87]B CHER WO, MARCUS H, SHAKARCHY R, et al. Antigen-specific B and T cells in human/mouse radiation chimera following immunization in vivo.[J].Immunology, 1999,96(4):634-641
    [88]SEGALL H, LUBIN I, MARCUS H, et al. Generation of primary antigen-specific human cytotoxic T lymphocytes in human/mouse radiation chimera[J].1996, Blood,88: 721-730.
    [89]BEN-YEDIDIA T, MARCUS H, REISNER Y, et al. Intranasal administration of peptide vaccine protects human/mouse radiation chimera from influenza infection[J]. Int Immunol,1999,11:1043-1051.
    [90]CARMON L, BOBILEV-PRIEL I, BRENNER B, et al. Characterization of novel breast carcinoma-associated BA46-derived peptides in HLA-A2.1/D(b)-β 2m transgenic mice[J].J Clin Invest,2002,110:453-462.
    [91]GALLEZ-HAWKINS G, VILLACRES M, LI X, et al. Use of transgenic HLA A*0201/Kb and HHD II mice to evaluate frequency of cytomegalovirus IE1-derived peptide usage in eliciting human CD8 cytokine response[J].J Virol,2003,77:4457-4462.
    [92]SCHREURS M, KUETER E, SCHOLTEN K, et al. A single amino acid substitution improves the in vivo immunogenicity of the HPV16 oncoprotein E7(11-20) cytotoxic T lymphocyte epitope[J]. Vaccine,2005,23:4005-4010.
    [93]SNYDER J, BELYAKOV I, DZUTSEV A, et al. Protection against lethal vaccinia virus challenge in HLA-A2 transgenic mice by immunization with a single CD8+T-cell peptide epitope of vaccinia and variola viruses[J].J Virol,2004,78:7052-7060
    [94]GAO W, SOLOFF AC, LU X, et al. Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization.[J].J Virol,2006, 80(4):1959-1964.
    [95]EISENBERGER A, ELLIOTT BMK HL. Viral vaccines for cancer immunotherapy[J].Hematol Oncol Clin North Am,2006,20(3):661-687.
    [96]FOOKS AR, SCHADECK E, LIEBERT UG, et al. High-level expression of the measles virus nucleocapsid protein by using a replication-deficient adenovirus vector: induction of an MHC-1-restricted CTL response and protection in a murine model[J].Virology,1995,210(2):456-465.
    [97]HASHIMOTO M, BOYER JL, HACKETT NR, et al. Induction of protective immunity to anthrax lethal toxin with a nonhuman primate adenovirus-based vaccine in the presence of preexisting anti-human adenovirus immunity.[J].Infect Immun,2005, 73(10):6885-6891.
    [98]LUBECK MD, NATUK RJ, CHENGALVALA M, et al. Immunogenicity of recombinant adenovirus-human immunodeficiency virus vaccines in chimpanzees following intranasal administration[J].AIDS Res Hum Retroviruses,1994,10(11):1443-1449.
    [99]CHENGALVALA M, LUBECK MD, DAVIS AR, et al. Evaluation of adenovirus type 4 and type 7 recombinant hepatitis B vaccines in dogs[J].Vaccine,1991,9(7): 485-490.
    [100]SAITO I, OYA Y, YAMAMOTO K, et al. Construction of nondefective adenovirus type 5 bearing a 2.8-kilobase hepatitis B virus DNA near the right end of its genome.[J].J Virol,1985,54(3):711-719.
    [101]BETT AJ, HADDARA W, PREVEC L, et al. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3.[J].Proc Natl Acad Sci U S A,1994,91(19):8802-8806.
    [102]LUO J, DENG ZL, LUO X, et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system[J].Nat Protoc,2007,2(5):1236-1247.
    [103]CHARTIER C, DEGRYSE E, GANTZER M, et al. Efficient generation of recombinant adenovirus vectors by homologous recombination in Escherichia coli.[J].J Virol,1996,70(7):4805-4810.
    [104]KETNER G, SPENCER F, TUGENDREICH S, et al. Efficient manipulation of the human adenovirus genome as an infectious yeast artificial chromosome clone[J].Proc Natl Acad Sci U S A,1994,91(13):6186-6190.
    [105]HARDY S, KITAMURA M, HARRIS-STANSIL T, et al. Construction of adenovirus vectors through Cre-lox recombination[J].J Virol,1997,71(3):1842-1849.
    [106]NG P, EVELEGH C, CUMMINGS D, et al. Cre levels limit packaging signal excision efficiency in the Cre/loxP helper-dependent adenoviral vector system[J].J Virol, 2002,76(9):4181-4189.
    [107]NG P, PARKS RJ, CUMMINGS DT, et al. An enhanced system for construction of adenoviral vectors by the two-plasmid rescue method.[J].Hum Gene Ther,2000, 11(5):693-699.
    [108]LUSKY M. Good manufacturing practice production of adenoviral vectors for clinical trials[J].Hum Gene Ther,2005,16:281-291.
    [109]CROYLE MA, ANDERSON DJ, ROESSLER BJ, et al. Development of a highly efficient purification process for recombinant adenoviral vectors for oral gene delivery.[J].Pharm Dev Technol,1998,3:365-372.
    [110]IYER P, OSTROVE JMV D. Comparison of manufacturing techniques for adenovirus production.[J].Cytotechnology,1999,30:169-172.
    [111]TSAO YS, CONDON R, SCHAEFER E, et al. Development and improvement of a serum-free suspension process for the production of recombinant adenoviral vectors using HEK293 cells[J].Cytotechnology,2001,37(3):189-198.
    [112]XIE L, PILBROUGH W, METALLO C, et al. Serum-free suspension cultivation of PER.C6(R) cells and recombinant adenovirus production under different pH conditions[J].Biotechnol Bioeng,2002,80(5):569-579.
    [113]XIE L, METALLO C, WARREN J, et al. Large-scale propagation of a replication-defective adenovirus vector in stirred-tank bioreactor PER.C6 cell culture under sparging conditions[J].Biotechnol Bioeng,2003,83(1):45-52.
    [114]ALTARAS NE, AUNINS JG, EVANS RK, et al. Production and formulation of adenovirus vectors[J].Adv Biochem Eng Biotechnol,2005,99:193-260.
    [115]O'NEIL PFB ES. Virus harvesting and affinity-based liquid chromatography. A method for virus concentration and purification.[J].Biotechnology (NY),1993,11: 173-178.
    [116]SHABRAM PW, GIROUX DD, GOUDREAU AM, et al. Analytical anion-exchange HPLC of recombinant type-5 adenoviral particles.[J].Hum Gene Ther, 1997,8(4):453-465.
    [117]GREEN AP, HUANG JJ, SCOTT MO, et al. A new scalable method for the purification of recombinant adenovirus vectors[J].Hum Gene Ther,2002,13(16): 1921-1934.
    [118]PEIXOTO C, FERREIRA TB, SOUSA MF, et al. Towards purification of adenoviral vectors based on membrane technology[J].Biotechnol Prog,2008,24(6): 1290-1296.
    [119]MORENWEISER R. Downstream processing of viral vectors and vaccines. [J].Gene Ther,2005,12(Suppl 1):S103-110.
    [120]MURUVE DA, BARNES MJ, STILLMAN IE, et al. Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. [J].Hum Gene Ther,1999,10:965-976.
    [121]COTTER MJM DA. The induction of inflammation by adenovirus vectors used for gene therapy.[J].Front Biosci,2005,10:1098-1105.
    [122]MURUVE D. The innate immune response to adenovirus vectors.[J].Hum Gene Ther,2004,15:1157-1166.
    [123]BOWEN GP, BORGLAND SL, LAM M, et al. Adenovirus vector-induced inflammation:capsid-dependent induction of the C-C chemokine RANTES requires NF-kappa B[J].Hum Gene Ther,2002,13(3):367-379.
    [124]BORGLAND SL, BOWEN GP, WONG NC, et al. Adenovirus vector-induced expression of the C-X-C chemokine IP-10 is mediated through capsid-dependent activation of NF-kappaB[J].J Virol,2000,74(9):3941-3947.
    [125]TIBBLES LA, SPURRELL JC, BOWEN GP, et al. Activation of p38 and ERK signaling during adenovirus vector cell entry lead to expression of the C-X-C chemokine IP-10[J].J Virol,2002,76(4):1559-1568.
    [126]FLAHERTY DM, HINDE SL, MONICK MM, et al. Adenovirus vectors activate survival pathways in lung epithelial cells[J].Am J Physiol Lung Cell Mol Physiol,2004, 287(2):L393-401.
    [127]SHARMA A, BANGARI DS, TANDON M, et al. Comparative analysis of vector biodistribution, persistence and gene expression following intravenous delivery of bovine, porcine and human adenoviral vectors in a mouse model[J].Virology,2009, 386(1):44-54.
    [128]ZHU J, HUANG XY Y. Innate immune response to adenoviral vectors is mediated by both Toll-like receptor-dependent and-independent path ways. [J].J Virol, 2007,81:3170-3180.
    [129]APPLEDORN DM, PATIAL S, MCBRIDE A, et al. Adenovirus vector-induced innate inflammatory mediators, MAPK signaling, as well as adaptive immune responses are dependent upon both TLR2 and TLR9 in vivo[J].J Immunol,2008,181(3):2134-2144.
    [130]YAMAGUCHI T, KAWABATA K, KOIZUMI N, et al. Role of MyD88 and TLR9 in the innate immune response elicited by serotype 5 adenoviral vectors.[J].Hum Gene Ther,2007,18(8):753-762.
    [131]NOCIARI M, OCHERETINA O, SCHOGGINS JW, et al. Sensing infection by adenovirus:Toll-like receptor-independent viral DNA recognition signals activation of the interferon regulatory factor 3 master regulator[J].J Virol,2007,81:4145-4157.
    [132]SCHNELL MA, ZHANG Y, TAZELAAR J, et al. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors[J].Mol Ther,2001,5:708-722.
    [133]LIU QM DA. Molecular basis of the inflammatory response to adenovirus vectors. [J].Gene Ther,2003,10:935-940.
    [134]YANG Y, JOOSS KU, SU Q, et al. Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo[J].Gene Ther,1996,3(2):137-144.
    [135]YANG YW JM. Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4+ CTLs in vivo.[J].J Immunol,1995,155:2564-2570.
    [136]YANG Y, LI Q, ERTL HC, et al. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses[J].J Virol,1995,69(4):2004-2015.
    [137]MORRAL N, O'NEAL W, RICE K, et al. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons[J].Proc Natl Acad Sci U S A,1999,96(22): 12816-12821.
    [138]MORRAL N, PARKS RJ, ZHOU H, et al. High doses of a helper-dependent adenoviral vector yield supraphysiological levels of alpha 1-antitrypsin with negligible toxicity[J].Hum Gene Ther,1998,9(18):2709-2716.
    [139]NWANEGBO E, VARDAS E, GAO W, et al. Prevalence of neutralizing antibodies to adenoviral serotypes 5 and 35 in the adult populations of The Gambia, South Africa, and the United States[J].Clin Diagn Lab Immunol,2004,11(2):351-357.
    [140]ROY S, KOBINGER GP, LIN J, et al. Partial protection against H5N1 influenza in mice with a single dose of a chimpanzee adenovirus vector expressing nucleoprotein[J].Vaccine,2007,25(39-40):6845-6851.
    [141]SHARMA A, TANDON M, AHI YS, et al. Evaluation of cross-reactive cell-mediated immune responses among human, bovine and porcine adenoviruses[J].Gene Ther,2010,17(5):634-642.
    [142]BANGARI DSM SK. Current strategies and future directions for eluding adenoviral vector immunity.[J].Curr Gene Ther,2006,6:215-226.
    [143]SUMIDA SM, TRUITT DM, LEMCKERT AA, et al. Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein[J].J Immunol,2005,174(11):7179-7185.
    [144]MITTAL SK, BETT AJ, PREVEC L, et al. Foreign gene expression by human adenovirus type 5-based vectors studied using firefly luciferase and bacterial beta-galactosidase genes as reporters[J].Virology,1995,210:226-230.
    [145]THORNER AR, VOGELS R, KASPERS J, et al. Age dependence of adenovirus-specific neutralizing antibody titers in individuals from sub-Saharan Africa[J]J Clin Microbiol,2006,44(10):3781-3783.
    [146]SHIVER JW, FU TM, CHEN L, et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity.[J].Nature,2002, 415(6869):331-335.
    [147]SULLIVAN NJ, GEISBERT TW, GEISBERT JB, et al. Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates[J].Nature,2003,424(6949): 681-684.
    [148]ROLLIER C, VERSCHOOR EJ, PARANHOS-BACCALA G, et al. Modulation of vaccine-induced immune responses to hepatitis C virus in rhesus macaques by altering priming before adenovirus boosting[J].J Infect Dis,2005,192(5):920-929.
    [149]PERKINS SD, O'BRIEN LMP RJ. Boosting with an adenovirus-based vaccine improves protective efficacy against Venezuelan equine encephalitis virus following DNA vaccination.[J].Vaccine,2006,24:3440-3445.
    [150]MCCONNELL MJ, HANNA PCI MJ. Adenovirus-based prime-boost immunization for rapid vaccination against anthrax.[J]. Mol Ther,2007,15:203-210.
    [151]WEI CJ, BOYINGTON JC, MCTAMNEY PM, et al. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination[J].Science,2010,329(5995): 1060-1064.
    [152]LEMIALE F, KONG WP, AKY REK LM, et al. Enhanced mucosal immunoglobulin A response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system[J].J Virol,2003,77(18): 10078-10087.
    [153]CROYLE MA, PATEL A, TRAN KN, et al. Nasal delivery of an adenovirus-based vaccine bypasses pre-existing immunity to the vaccine carrier and improves the immune response in mice[J].PLoS One,2008,3(10):e3548.
    [154]SANTOSUOSSO M, MCCORMICK SX Z. Adenoviral vectors for mucosal vaccination against infectious diseases.[J].Viral Immunol,2005,18:283-291.
    [155]SAILAJA G, HOGENESCH H, NORTH A, et al. Encapsulation of recombinant adenovirus into alginate microspheres circumvents vector-specific immune response[J].Gene Ther,2002,9(24):1722-1729.
    [156]MITTAL SK, AGGARWAL N, SAILAJA G, et al. Immunization with DNA, adenovirus or both in biodegradable alginate microspheres:effect of route of inoculation on immune response[J].Vaccine,2000,19(2-3):253-263.
    [157]O'RIORDAN CR, LACHAPELLE A, DELGADO C, et al. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo[J].Hum Gene Ther,1999,10(8):1349-1358.
    [158]JOOSS K, YANG YW JM. Cyclophosphamide diminishes inflammation and prolongs transgene expression following delivery of adenoviral vectors to mouse liver and lung.[J].Hum Gene Ther,1996,7:1555-1566.
    [159]GALL JG, CRYSTAL RGF-P E. Construction and characterization of hexon-chimeric adenoviruses:specification of adenovirus serotype[J].J Virol,1998,72: 10260-10264.
    [160]ZAKHARTCHOUK AN, REDDY PS, BAXI M, et al. Construction and characterization of E3-deleted bovine adenovirus type 3 expressing full-length and truncated form of bovine herpesvirus type 1 glycoprotein gD[J].Virology,1998,250(1):220-229.
    [161]REDDY PS, IDAMAKANTI N, ZAKHARTCHOUK AN, et al. Nucleotide sequence, genome organization, and transcription map of bovine adenovirus type 3[J].J Virol,1998,72(2):1394-1402.
    [162]MITTAL SK, PREVEC L, GRAHAM FL, et al. Development of a bovine adenovirus type 3-based expression vector[J].J Gen Virol,1995,76:93-102.
    [163]REDDY PS, IDAMAKANTI N, HYUN BH, et al. Development of porcine adenovirus-3 as an expression vector[J].J Gen Virol,1999,80:563-570.
    [164]BANGARI DSM SK. Porcine adenoviral vectors evade preexisting humoral immunity to adenoviruses and efficiently infect both human and murine cells in culture[J].Virus Res,2004,105:127-136.
    [165]L SER P, HOFMANN C, BOTH GW, et al. Construction, rescue, and characterization of vectors derived from ovine atadenovirus[J].J Virol,2003,77(22): 11941-11951.
    [166]L SER P, H SERA, HILLGENBERG M, et al. Advances in the development of non-human viral DNA-vectors for gene delivery[J].Curr Gene Ther,2002,2(2):161-171.
    [167]MEULEMANS G, COUVREUR B, DECAESSTECKER M, et al. Phylogenetic analysis of fowl adenoviruses[J]. Avian Pathol,2004,33(2):164-170.
    [168]OJKIC DN E. The complete nucleotide sequence of fowl adenovirus type 8[J]. J Gen Virol,2000,81:1833-1837.
    [169]FARINA SF, GAO GP, XIANG ZQ, et al. Replication-defective vector based on a chimpanzee adenovirus[J].J Virol,2001,75(23):11603-11613.
    [170]STONE D, NI S, LI ZY, et al. Development and assessment of human adenovirus type 11 as a gene transfer vector[J].J Virol,2005,79(8):5090-5104.
    [171]GAO W, ROBBINS PDG A. Human adenovirus type 35:nucleotide sequence and vector development.[J].Gene Ther,2003,10:1941-1949.
    [172]HOLTERMAN L, VOGELS R, VAN DER VLUGT R, et al. Novel replication-incompetent vector derived from adenovirus type 11 (Ad11) for vaccination and gene therapy:low seroprevalence and non-cross-reactivity with Ad5[J].J Virol,2004, 78(23):13207-13215.
    [173]SAKURAI F, KAWABATA KM H. Adenovirus vectors composed of subgroup B adenoviruses[J].Curr Gene Ther,2007,7:229-238.
    [174]SESHIDHAR REDDY P, GANESH S, LIMBACH MP, et al. Development of adenovirus serotype 35 as a gene transfer vector[J].Virology,2003,311(2):384-393.
    [175]BAROUCH DH, PAU MG, CUSTERS JH, et al. Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity[J].J Immunol,2004,172(10):6290-6297.
    [176]SHIVER JWE EA. Recent advances in the development of HIV-1 vaccines using replication-incompetent adenovirus vectors[J].Annu Rev Med,2004,55:355-372.
    [177]LEMCKERT AA, SUMIDA SM, HOLTERMAN L, et al. Immunogenicity of heterologous prime-boost regimens involving recombinant adenovirus serotype 11 (Ad11) and Ad35 vaccine vectors in the presence of anti-ad5 immunity[J].J Virol,2005,79(15): 9694-9701.
    [178]NANDA A, LYNCH DM, GOUDSMIT J, et al. Immunogenicity of recombinant fiber-chimeric adenovirus serotype 35 vector-based vaccines in mice and rhesus monkeys[J].J Virol,2005,79(22):14161-14168.
    [179]HOELSCHER MA, GARG S, BANGARI DS, et al. Development of adenoviral-vector-based pandemic influenza vaccine against antigenically distinct human H5N1 strains in mice[J].Lancet,2006,367:475-481.
    [180]CATANZARO AT, ROEDERER M, KOUP RA, et al. Phase I clinical evaluation of a six-plasmid multiclade HIV-1 DNA candidate vaccine[J].Vaccine,2007,25(20): 4085-4092.
    [181]CATANZARO AT, KOUP RA, ROEDERER M, et al. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 candidate vaccine delivered by a replication-defective recombinant adenovirus vector[J].J Infect Dis,2006,194(12): 1638-1649.
    [182]SEKALY R. The failed HIV Merck vaccine study:a step back or a launching point for future vaccine development?[J].J Exp Med,2008,205(1):7-12.
    [183]VAN KAMPEN KR, SHI Z, GAO P, et al. Safety and immunogenicity of adenovirus-vectored nasal and epicutaneous influenza vaccines in humans[J].Vaccine, 2005,23(8):1029-1036.
    [184]TANG M, HARP JAW RD. Recombinant adenovirus encoding the HA gene from swine H3N2 influenza virus partially protects mice from challenge with heterologous virus: A/HK/1/68(H3N2)[J].Arch Virol,2002,147:2125-2141.
    [185]YEWDELL JW, BENNINK JR, SMITH GL, et al. Influenza A virus nucleoprotein is a major target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes[J].Proc Natl Acad Sci USA,1985,82:1785-1789.
    [186]WRAITH DC, VESSEY AEA BA. Purified influenza virus nucleoprotein protects mice from lethal infection[J].J Gen Virol,1987,68:433-440.
    [187]WRAITH DCA BA. Induction of influenza A virus cross-reactive cytotoxic T cells by a nucleoprotein/haemagglutinin preparation[J].J Gen Virol,1985,66:1327-1331.
    [188]TOMPKINS SM, ZHAO ZS, LO CY, et al. Matrix protein 2 vaccination and protection against influenza viruses, including subtype H5N1[J].Emerg Infect Dis,2007, 13(3):426-435.
    [189]HACKETT NR, KAMINSKY SM, SONDHI D, et al. Antivector and antitransgene host responses in gene therapy[J].Curr Opin Mol Ther,2000,2:376-382.
    [190]WORGALL S, KRAUSE A, RIVARA M, et al. Protection against P. aeruginosa with an adenovirus vector containing an OprF epitope in the capsid[J].J Clin Invest, 2005,115(5):1281-1289.
    [191]KRAUSE A, JOH JH, HACKETT NR, et al. Epitopes expressed in different adenovirus capsid proteins induce different levels of epitope-specific immunity[J].J Virol, 2006,80(11):5523-5530.
    [192]FOUCHIER RA, SCHNEEBERGER PM, ROZENDAAL FW, et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome.[J].Proc Natl Acad Sci U S A,2004,101:1356-1361.
    [193]PEIRIS JS, YU WC, LEUNG CW, et al. Re-emergence of fatal human influenza A subtype H5N1 disease.[J].Lancet,2004,363:617-619.
    [194]BEN-YEDIDIA TA R. Design of peptide and polypeptide vaccines[J].Curr Opin Biotechnol,1997,8(4):442-448.
    [195]KASHALA O, AMADOR R, VALERO MV, et al. Safety, tolerability and immunogenicity of new formulations of the Plasmodium falciparum malaria peptide vaccine SPf66 combined with the immunological adjuvant QS-21 [J].Vaccine,2002,20(17-18): 2263-2277.
    [196]NARDIN EH, OLIVEIRA GA, CALVO-CALLE JM, et al. Synthetic malaria peptide vaccine elicits high levels of antibodies in vaccinees of defined HLA genotypes[J].J Infect Dis,2000,182(5):1486-1496.
    [197]ENGLER OB, DAI WJ, SETTE A, et al. Peptide vaccines against hepatitis B virus:from animal model to human studies[J].Mol Immunol,2001,38(6):457-465.
    [198]PINTO LA, BERZOFSKY JA, FOWKE KR, et al. HIV-specific immunity following immunization with HIV synthetic envelope peptides in asymptomatic HIV-infected patients[J].AIDS,1999,13(15):2003-2012.
    [199]南文龙.流感病毒表位筛选与复合多表位核酸疫苗设计及免疫研究[D].长春:吉林大学,2009.
    [200]J萨姆布鲁克,DW拉赛尔.分子克隆实验指南[M].北京:科学出版社,2002.
    [201]SABINE NEIRYNCK, TOM DEROO, XAVIER SAELENS, et al. A universal influenza A vaccine based on the extracellular domain of the M2 protein [J].NATURE MEDICINE,1999,5:1157-1163.
    [202]DONGMING ZHOU, TE-LANG WU, MARCIO O LASARO, et al. A Universal Influenza A Vaccine Based on Adenovirus Expressing Matrix-2 Ectodomain and Nucleoprotein Protects Mice From Lethal Challenge[J].Gene & Cell Therapy,2010,18: 2182-2189
    [203]贾雷立.禽流感病毒分离、复合多表位重组体构建及实验免疫研究[D].长春:吉林大学,2006.
    [204]CHANG H, HUANG C, WUJ, et al. A single dose of DNA vaccine based on conserved H5N1 subtype proteins provides protection against lethal H5N1 challenge in mice pre-exposed to H1N1 influenza virus.[J].Virol J,2010,7:197.
    [205]SHUAIBU MN, KIKUCHI M, CHERIF MS, et al. Selection and identification of malaria vaccine target molecule using bioinformatics and DNA vaccination[J].Vaccine, 2010,28(42):6868-6875.
    [206]ZHOU C, PENG G, JIN X, et al. Vaccination with a fusion DNA vaccine encoding hepatitis B surface antigen fused to the extracellular domain of CTLA4 enhances HBV-specific immune responses in mice:implication of its potential use as a therapeutic vaccine.[J].Clin Immunol,2010,137(2):190-198.
    [207]GIRI M, UGEN KEW DB. DNA vaccines against human immunodeficiency virus type 1 in the past decade[J].Clin Microbiol Rev,2004,17(2):370-389.
    [208]KODIHALLI S, KOBASA DLW RG. Strategies for inducing protection against avian influenza A virus subtypes with DNA vaccines[J].Vaccine,2000,18(23): 2592-2599.
    [209]KODIHALLI S, GOTO H, KOBASA DL, et al. DNA vaccine encoding hemagglutinin provides protective immunity against H5N1 influenza virus infection in mice[J].J Virol,1999,73(3):2094-2098.
    [210]LJUNGBERG K, WAHREN B, ALMQVIST J, et al. Effective construction of DNA vaccines against variable influenza genes by homologous recombination [J].Virology, 2000,268(2):244-250.
    [211]LJUNGBERG K, KOLMSKOG C, WAHREN B, et al. DNA vaccination of ferrets with chimeric influenza A virus hemagglutinin (H3) genes[J].Vaccine,2002, 20(16):2045-2052.
    [212]YANG DAI, YINCHANG ZHU, DONALD A. HARN, et al. DNA Vaccination by Electroporation and Boosting with Recombinant Proteins Enhances the Efficacy of DNA Vaccines for Schistosomiasis Japonica[J].Clin Vaccine Immunol,2009,16(12): 1796-1803.
    [213]AHMAD S, CASEY G, SWEENEY P, et al. Optimised electroporation mediated DNA vaccination for treatment of prostate cancer[J].Genet Vaccines Ther,2010,8(1):1.
    [214]SHAN S, JIANG Y, ET BU Z, et al. Strategies for improving the efficacy of a H6 subtype avian influenza DNA vaccine in chickens[J].J Virol Methods,2011, [Epub ahead of print].
    [215]ZHANG L, WIDERA GR D. Enhancement of the effectiveness of electroporation-augmented cutaneous DNA vaccination by a particulate adjuvant[J].Bioelectrochemistry,2004,63(1-2):369-373.
    [216]LIU KH, ASCENZI MA, BELLEZZA CA, et al. Enhanced immunogenicity in woodchucks of a DNA vaccine expressing woodchuck hepatitis virus surface antigen using electroporation[J].J Virol,2011, Epub ahead of print.
    [217]ZHENG L, WANG F, YANG Z, et al. A single immunization with HA DNA vaccine by electroporation induces early protection against H5N1 avian influenza virus challenge in mice[J].BMC Infect Dis,2009,9:17.
    [218]REED LJH MUENCH. A simple method of estimating fifty percent endpoints[J].AM J TROP MED HYG,1938,27:493-497.
    [219]殷震,刘景华.动物病毒学[M].北京:科学出版社,2002.
    [220]TONEGAWA K, NOBUSAWA E, NAKAJIMA K, et al. Analysis of epitope recognition of antibodies induced by DNA immunization against hemagglutinin protein of influenza A virus[J]. Vaccine,2003,21(23):3118-3125.
    [221]COLZIO M, TEISSIE JR MP.Direct visualization at the single-cell level of electrically mediated gene delivery.[J].Proc Natl Acad Sci USA,2002,99(3):1292-1297.
    [222]BERTRAND A, NG-MULLER V, HENTZEN D, et al. Muscle electrotransfer as a tool for studying muscle fiberspecific and nerve-dependent activity of promoters.[J].Am J Physiol Cell Physiol,2003,285(5):C1071-C1081.
    [223]HELLER L, MERKLER K, WESTOVER J, et al. Evaluation of toxicity following electrically mediated interleukin-12 gene delivery in a B16 mouse melanoma model.[J].Clin Cancer Res,2006,12(10):3177-3183.
    [224]MANAM S, LEDWITH BJ, BARNUM AB, et al. Plasmid DNA vaccines:tissue distribution and effects of DNA sequence, adjuvants and delivery method on integration into host DNA[J].Intervirology,2000,43(4-6):273-281.
    [225]SELBY M, GOLDBECK C, PERTILE T, et al. Enhancement of DNA vaccine potency by electroporation in vivo. [J].J Biotechnol,2000,83(1-2):147-152.
    [226]DEAN D. Nonviral gene transfer to skeletal, smooth, and cardiac muscle in living animals.[J].Am J Physiol Cell Physiol,2005,289(2):C233-C245.
    [227]OTTEN G, SCHAEFER M, DOE B, et al. Enhancement of DNA vaccine potency in rhesus macaques by electroporation.[J].Vaccine,2004,22(19):2489-2493.
    [228]WELLS D. Gene therapy progress and prospects: electroporation and other physical methods.[J].Gene Ther,2004,11(18):1363-1369.
    [229]BABIUK S, BACA-ESTRADA ME, FOLDVARI M, et al. Electroporation improves the efficacy of DNA vaccines in large animals[J].Vaccine,2002,20(27-28): 3399-3408.
    [230]ROOS AK, MORENO S, LEDER C, et al. Enhancement of cellular immune response to a prostate cancer DNA vaccine by intradermal electroporation[J].Mol Ther, 2006,13(2):320-327.
    [231]TOLLEFSEN S, TJELLE T, SCHNEIDER J, et al. Improved cellular and humoral immune responses against Mycobacterium tuberculosis antigens after intramuscular DNA immunisation combined with muscle electroporation[J].Vaccine,2002,20(27-28): 3370-3378.
    [232]SCHEERLINCK JP, KARLIS J, TJELLE TE, et al. In vivo electroporation improves immune responses to DNA vaccination in sheep[J].Vaccine,2004,22(13-14): 1820-1825.
    [233]OTTEN G, SCHAEFER M, DOE B, et al. Enhancement of DNA vaccine potency in rhesus macaques by electroporation [J]. Vaccine,2004,22(19):2489-2493.
    [234]BABIUK S, BACA-ESTRADA ME, FOLDVARI M, et al. Increased gene expression and inflammatory cell infihration caused by electroporation are both important for improving the efficacy of DNA vaccine[J].J Biotechnol,2004,110(1):1-10.
    [235]ULMER JB, WAHREN BL MA. Gene-based vaccines:recent technical and clinical advances[J].Trends Mol Med,2006,12(5):216-222.
    [236]TORO H, TANG DC, SUAREZ DL, et al. Protection of chickens against avian influenza with non-replicating adenovirus-vectored vaccine[J].Vaccine,2008,26(21): 2640-2646.
    [237]WESLEY RDL KM. Evaluation of a recombinant human adenovirus-5 vaccine administered via needle-free device and intramuscular injection for vaccination of pigs against swine influenza virus[J].Am J Vet Res,2005,66(11):1943-1947.
    [238]JINYAN LIU, KARA L.O'BRIEN, DIANA M. LYNCH, et al. Immune Control of an SIV Challenge by a T Cell-Based Vaccine in Rhesus Monkeys[J].Nature,2009, 457(7225):87-91.
    [239]TANG M, HARP JAW RD. Recombinant adenovirus encoding the HA gene from swine H3N2 influenza virus partially protects mice from challenge with heterologous virus: A/HK/1/68 (H3N2).[J].Arch Virol,2002,147(11):2125-2141.
    [240]GUO JQ, YAO LH, CHEN AJ, et al. Construction of recombinant adenovirus co-expressing M1 and HA genes of influenza virus type A[J].Bing Du Xue Bao,2009, 25(2):107-112.
    [241]STEITZ J, BARLOW PG, HOSSAIN J, et al. A Candidate H1N1 Pandemic Influenza Vaccine Elicits Protective Immunity in Mice[J].PLoS ONE,2010,5(5):e10492.
    [242]LUDVIK PREVEC, JAMES B. CAMPBELL, BRIAN S. CHRISTIE, et al. A Recombinant Human Adenovirus Vaccine against Rabies[J].J Infect Dis,1990,161 (1): 27-30.
    [243]STEFANIA CAPONE, ANNALISA MEOLA, BRUNO BRUNI ERCOLE, et al. A Novel Adenovirus Type 6 (Ad6)-Based Hepatitis C Virus Vector That Overcomes Preexisting Anti-Ad5 Immunity and Induces Potent and Broad Cellular Immune Responses in Rhesus Macaques[J].J Virol,2006,80(4):1688-1699.
    [244]SCHADECK EB, PARTIDOS CD, FOOKS AR, et al. CTL epitopes identified with a defective recombinant adenovirus expressing measles virus nucleoprotein and evaluation of their protective capacity in mice[J]. Virus Res,1999,65(1):75-86.
    [245]SHANLEY JDW CA. Intranasal immunization with a replication-deficient adenovirus vector expressing glycoprotein H of murine cytomegalovirus induces mucosal and systemic immunity.[J].Vaccine,2005,23(8):996-1003.
    [246]HL R. New hope for an AIDS vaccine.[J].Nat Rev Immunol,2002,2(4): 239-250.
    [247]DAN H. BAROUCH, MARIA G.PAU, JEROME H. H. V. CUSTERS, et al. Immunogenicity of Recombinant Adenovirus Serotype 35 Vaccine in the Presence of Pre-Existing Anti-Ad5 Immunity[J]. The Journal of Immunology,2004,172:6290-6297.
    [248]EPSTEIN SL, KONG WP, MISPLON JA, et al. Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein[J].Vaccine, 2005,23(46-47):5404-5410.
    [249]LO CY, WU Z, MISPLON JA, et al. Comparison of vaccines for induction of heterosubtypic immunity to influenza A virus:cold-adapted vaccine versus DNA prime-adenovirus boost strategies[J].Vaccine,2008,26(17):2062-2072.
    [250]RAO SS, KONG WP, WEI CJ, et al. Comparative efficacy of hemagglutinin, nucleoprotein, and matrix 2 protein gene-based vaccination against H5N1 influenza in mouse and ferret[J].PLoS One,2010,5(3):e9812.
    [251]DONGMING ZHOU, TE-LANG WU, MARCIO O LASARO, et al. A Universal Influenza A Vaccine Based on Adenovirus Expressing Matrix-2 Ectodomain and Nucleoprotein Protects Mice From Lethal Challenge[J].Mol Ther,2010,18(12): 2182-2189.
    [252]HOLMAN DH, WANG D, RAJANU, et al. Multi-antigen vaccines based on complex adenovirus vectors induce protective immune responses against H5N1 avian influenza viruses[J].Vaccine,2008,26(21):2627-2639.
    [253]PURKAYASTHA A, SU J, CARLISLE S, et al. Genomic and bioinformatics analysis of HAdV-7, a human adenovirus of species B1 that causes acute respiratory disease: implications for vector development in human gene therapy.[J].Virology,2005,332(1): 114-129.
    [254]PURKAYASTHA A, DITTY SE, SU J, et al. Genomic and bioinformatics analysis of HAdV-4, a human adenovirus causing acute respiratory disease:implications for gene therapy and vaccine vector development[J].J Virol,2005,79(4):2559-2572.
    [255]SIN JI, KIM JJ, ARNOLD RL, et al. IL-12 gene as a DNA vaccine adjuvant in a herpes mouse model:IL-12 enhances Thl-type CD4+ T cell-mediated protective immunity against herpes simplex virus-2 challenge.[J].J Immunol,1999,162(5):2912-2921.
    [256]KLINMAN D. Expert Rev Vaccines,2003,2(2):305-315.
    [257]KIM JJ, YANG JS, VANCOTT TC, et al. Modulation of antigen-specific humoral responses in rhesus macaques by using cytokine cDNAs as DNA vaccine adjuvants.[J].J Virol,2000,74(7):3427-3429.
    [258]SU C, DUAN X, WANG X, et al. Heterologous expression of FMDV immunodominant epitopes and HSP70 in P. pastoris and the subsequent immune response in mice[J].Vet Microbiol,2007,124(3-4):256-263.
    [259]LUCI C, HERVOUET C, ROUSSEAU D, et al. Dendritic cell-mediated induction of mucosal cytotoxic responses following intravaginal immunization with the nontoxic B subunit of cholera toxin[J].J Immunol,2006,176(5):2749-2757.
    [260]RAMSHAW IAR AJ. The prime-boost strategy:exciting prospects for improved vaccination.[J].Immunol Today,2000,21(4):163-165.
    [261]LU S. Heterologous prime-boost vaccination[J].Curr Opin Immunol,2009, 21(3):346-351.
    [262]ROBINSON. H. Prime boost vaccines power up in people[J].Nat Med,2003, 9(6):642-643.
    [263]WEI CJ, BOYINGTON JC, MCTAMNEY PM, et al. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination[J].Science,2010,329(5995): 1060-1064.
    [264]CARSON C, ANTONIOU M, RUIZ-ARG ELLO MB, et al. A prime/boost DNA/Modified vaccinia virus Ankara vaccine expressing recombinant Leishmania DNA encoding TRYP is safe and immunogenic in outbred dogs, the reservoir of zoonotic visceral leishmaniasis[J].Vaccine,2009,27(7):1080-1086.
    [265]YU S, FENG X, SHU T, et al. Potent specific immune responses induced by prime-boost-boost strategies based on DNA, adenovirus, and Sendai virus vectors expressing gag gene of Chinese HIV-1 subtype B[J].Vaccine,2008,26(48):6124-6131.
    [266]SONG Y, ZHANG LS, WANG H, et al. Immune responses of mice to prime-boost vaccination with the recombinant DNA and Fowlpox virus both expressing HIV-2 Gag-gp105[J].Acta Virol,2010,54(4):293-296.
    [267]TAN L, LU H, ZHANG D, et al. Efficacy of seasonal pandemic influenza hemagglutinin DNA vaccines delivered by electroporation against a seasonal H1N1 virus challenge in mice.[J].Sci China Life Sci,2011,54(4):293-299.
    [268]WEI CJ, BOYINGTON JC, MCTAMNEY PM, et al. Induction of broadly neutralizing HIN 1 influenza antibodies by vaccination.[J].Science,2010,329:1060-1064.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700