应用细菌表面展示技术快速筛选抗原表位及研制应急疫苗
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细菌表面展示技术作为噬菌体表面展示技术的有益补充,已被广泛用于生命科学各个领域。而构建基因工程减毒活疫苗是研究细菌展示系统的最初动因,也是这一系统最活跃的研究方向。但以往研究多是将已知抗原片段或表位展示于细菌表面用作实验性活菌苗。本研究提出了从细菌展示随机肽库筛选获得的抗原表位直接用作应急疫苗的新思路。
     本研究首先以针对HBV pres的单克隆抗体为模型,生物淘洗商品化细菌鞭毛展示随机十二肽库,获得该抗体抗原模拟表位,核心序列为R-RG-Y,与HBV preS蛋白的135-140氨基酸同源;将展示模拟表位的菌体克隆直接免疫小鼠,可获得针对HBV preS蛋白的高滴度、高特异性抗体,表明从细菌展示随机肽库中筛选获得的抗原表位直接用于应急疫苗研制是可行的。
     为克服常规生物淘洗在多抗表位筛选中的不足,以HBV preS单抗为靶分子利用FACS对模拟文库以及随机肽库FliTrx~(TM)进行筛选,在此基础上建立消减FACS分选HBV preS免疫血清多克隆抗体抗原表位的方法,为今后从病人血清样品中进行抗原表位的筛选奠定了基础。
     为更好地获得不同形式抗体的抗原表位,以细菌IgA蛋白酶β结构域为骨架构建一个库容量为5×10~6的线性化随机肽库,经分析库容量与多样性均符合抗原表位筛选要求。该随机肽库是对现有细菌展示系统的有益补充。
     总之,本研究以针对HBV-preS蛋白的单克隆抗体和多克隆抗体为模型,建立从细菌表面展示随机肽库中快速获得抗原表位技术,并探讨这些携带模拟表位的细菌克隆直接应用作实验性活菌苗的可行性,探索一条将筛选到的抗原表位直接用于疫苗研制的技术路线,为在发生突发性的或未知类型的生物袭击时,研制应急防护疫苗进行了有益尝试。
Bacterial surface display systems, as an alternative system of phage display, have wide range of biotechnological and industrial applications, in which live bacterial vaccine development is the most promising and attractive. To date, a diverse variety of well-known vaccine candidates (an immunogenic peptide or protein) or mimotopes screened from phage displayed peptide library have been successfully displayed on bacterial surface and have induced higher antibody response to the native antigen. Nevertheless, numerous studies have demonstrated that the insertion of heterologous epitopes into loops of bacterial proteins would potentially change the environment of epitopes and inevitably disturb its structure integrity, which usually leads to the failure of Abs response against the native antigen. Since epitope mapping has also been accomplished by bacterial peptide library, bacteria displayed mimotopes screened from random library should be directly used as recombinant live vaccines.
    Firstly, a monoclonal antibody against the HBV preS protein and a commercially available bacterial peptide library were involved as a model system to practice this process. After five successive rounds of biopanning, bacterial clones interacting with the monoclonal antibody 3B9 were greatly enriched. The R-RG-Y motif was identified as mimotopes of HBV preS protein at 135-140 residues from sequence analysis. Strong responses against HBV preS protein were obtained after mice were immunized by i.p injection of live bacteria without any adjuvant. These results imply that bacterially-displayed mimotopes screened from peptide library could be directly used as live vaccine in case of emergency infectious diseases.
    To overcome the limitation of conventional biopanning, FACS was subsequently introduced to epitope screening from FliTrx?peptide library. Epitopes of the
    
    
    monoclonal antibody were successfully identified from the constructed model library or FliTrx?peptide library. Due to more complexity of polyclonal antibody over monoclonal antibody, a subtractive FACS strategy was established, which constitute the foundation for epitope screening from patient serum in the further study.
    To complement the existing constrained libraries, a novel bacterial random peptide library, with 5x10 primary bacterial colonies, was constructed using the ?-domain of IgA protease as an anchoring motif. The DNA sequence analysis showed that the library had sufficient complexity and diversity. This non-constrained system provides an alternative tool for further epitope screening.
    In conclusion, bacterially-displayed mimotopes screened from bacterial peptide library could be directly used as live vaccines, which proved to be a less expensive, yet more effective and rapid route for vaccine development than the conventional methods. By this strategy, we could also obtain mimotopes for the unrecognized or previously unknown antigens from patient serum. In this context, it is of great significance to develop the effective vaccines for such emerging infectious diseases whose pathogen is still unknown.
引文
1. Liljeqvist S, Stahl S. Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J Biotechnol 1999,73(1) :1-33.
    2. Hilleman MR. Vaccines in historic evolution and perspective: a narrative of vaccine discoveries. Vaccine 2000,18( 15) : 1436-47
    3. Rota PA, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science .1 May 2003.
    4. Marra MA, et al, The genome sequence of the SARS-associated coronavirus.Science.l May 2003.
    5. 董洁,薛沿宁,柳川 等.模拟表位的发现及其在疫苗研究中的应用.细胞与分子免疫学杂 志 2003,19(3) :S4-S6
    6. 沈倍奋 主编.分子文库.第一版.北京:科学出版社, 2001
    7. Georgiou G, Stathopoulos C, Daugherty PS, et al. Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol 1997,15:29-34.
    8. Francisco JA, Campbell R, Iverson BL, et al. Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc Natl Acad Sci U S A 1993,90(22) :10444-8.
    9. Irving MB, Pan O, Scott JK. Random-peptide libraries and antigen-fragment libraries for epitope mapping and the development of vaccines and diagnostics. Curr Opin Chem Biol. 2001,5:314-24
    10. Yao ZJ, Chan MC, Kao MC, et al. Linear epitopes of sperm whale myoglobin identified by polyclonal antibody screening of random peptide library. Int J Peptide Protein Res 1996,48:477-485
    11. Folgori A, Tafi R, Meola A, et al. A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera.. EMBO J 1994,13:2236-43.
    12. Lunard C, Bason C, Navone R,et al. Systemic sclerosis immunoglobulin G autoantibodies bind the human cytomegalovirus late protein UL94 and induce apoptosis in human endothelial cell. Nat Medicine 2000,6(10) :1183-1186
    13. Dybwad A, Forre O, Natvig JB, et al.Structural characterization of peptides that bind synovial fluid antibodies from RA patients: a novel strategy for identification of disease-related epitopes using a random peptide library. Clin Immunol Immunopathol 1995,75(1) :45-50
    14. Ikuno N, Scealy M, Davies JM, et al. A comparative study of antibody expressions in primary biliary cirrhosis and autoimmune cholangitis using phage display.Hepatology 2001,34(3) :478-86
    15. Zhang WY, Wan Y, Li DG, et al. A mimotopes of preS2 region of surface antigen of viral hepatitis B screened by phage display. Cell Res 2001,11(3) :203-208
    16. Bartoli F, Nuzzo M, Urbanelli L, et al. DNA-based selection and screening of peptide ligands. Nat Biotechnol 1998,16(11) :1068-73.
    17. de La Cruz VF, Lal AA, McCutchan TF. Immunogenicity and epitope mapping of foreign
    
    sequences via genetically engineered filamentous phage. J Biol Chem 1988,263:4318-22.
    18. Greenwood J, Willis AE, Perham RN. Multiple display of foreign peptides on a filamentous bacteriophage. Peptides from Plasmodium falciparum circumsporozoite protein as antigens. J Mol Biol 1991,220:821-7.
    19. Delmastro P, Meola A, Monaci P, et al. Immunogenicity of filamentous phage displaying peptide mimotopes after oral administration. Vaccine 1997,15:1276-85.
    20. Begum N, Horiuchi S, Tanaka Y, et al. New approach for generation of neutralizing antibody against human T-cell leukaemia virus type-I (HTLV-I) using phage clones. Vaccine 2002,20:1281-9.
    21. Stover BK, Bansal GP, Hanson MS, et al. Protective immunity elicited by recombinant Bacille Calmette-Guerin (BCG) expressing outer surface protein A (OspA) lipoprotein: a candidate lyme disease vaccine. J Exp Med 1993,178:197-209
    22. Newton SM, Jacob CO, Stocker BA. Immune response to cholera toxin epitope inserted in Salmonella flagellin. Science 1989,244:70-2.
    23. Klauser T, Pohlner J and Meyer TF. Extracellular transport of cholera toxin B subunit using Neisseria IgA protease beta-domain: conformation-dependent outer membrane translocation. EMBO J 1990,9: 1991-9
    24. Stentebjerg-Olesen B, Pallesen L, Jensen LB, et al. Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae: effects of insert position and host background. Microbiology 1997, 143 (Pt6) : 2027-38.
    25. Kwak YD, Yoo SK and Kim EJ. Cell surface display of human immunodeficiency virus type 1 gp120 on Escherichia coli by using ice nucleation protein. Clin Diagn Lab Immunol 1999, 6:499-503.
    26. Newton SM, Joys TM, Anderson SA, et al. Expression and immunogenicity of an 18-residue epitope of HIV1 gp41 inserted in the flagellar protein of a Salmonella live vaccine. Res Microbiol. 1995,146:203-16
    27. Charbit A, Sobczak E, Michel ML, et al. Presentation of two epitopes of the preS2 region of hepatitis B virus on live recombinant bacteria. J Immunol 1987,139:1658-64
    28. Leclerc C, Charbit A, Martineau P, et al. The cellular location of a foreign B cell epitope expressed by recombinant bacteria determines its T cell-independent or T cell-dependent characteristics. J Immunol 1991,147:3545-52
    29. Pallesen L, Poulsen LK, Christiansen G, et al. Chimeric FimH adhesin of type 1 fimbriae: a bacterial surface display system for heterologous sequences. Microbiology 1995,141:2839-48.
    30. Wang J, Michel V, Leclerc C, et al. Immunogenicity of viral B-cell epitopes inserted into two surface loops of the Escherichia coli K12 LamB protein and expressed in an attenuated aroA strain of Salmonella typhimurium. Vaccine 1999,17:1-12.
    31. Dybwad A, Forre O, Natvig JB, et al. Structural characterization of peptides that bind synovial fluid antibodies from RA patients: a novel strategy for identification of disease-related epitopes using a random peptide library. Clin Immunol Immunopathol 1995,75(1) :45-50
    32. J.萨姆布鲁克,E.F.弗离奇,T.曼尼阿蒂斯 著.金冬雁 黎孟枫 译.分子克隆实验指南.第二版.北京:科学出版社.1992.
    33. 卢圣栋 主编.现代分子生物学实验技术.第二版.北京:中国协和医科大学出版社, 2001
    
    
    34.甘人宝,储美瑾,沈绿萍,等.克隆的adr亚型乙型肝炎病毒(pADR-1)DNA的全顺序[J].中国科学(B辑)1986,(1):55-66
    35.琦祖和,阎捃,祝庆麟.乙型肝炎病毒DNA的结构研究[J].中国科学(B辑)1989,(1):57-67
    36.王淼,杜广希,金永丰,等.人乙型肝炎病毒前表面抗原preS基因的克隆与序列分析.中国病毒学2001,16(3):224-228
    37. Nunez E, Wei X, Delgado C, et al. Cloning, expression, and purification of histidine-tagged preS domains of hepatitis B virus. Protein Expr Purif 2001,21:183-91.
    38. Kuttner G, Kramer A, Schmidtke G, et al. Characterization of neutralizing anti-pre-SI and anti-pre-S2 (HBV) monoclonal antibodies and their fragments. Mol Immunol 1999,36:669-83
    39. Meisel H, Sominskaya I, Pumpens P, et al. Fine mapping and functional characterization of two immuno-dominant regions from the preS2 sequence of hepatitis B virus. Intervirology 1994,37:330-9
    40. Sobotta D, Sominskaya I, Jansons J, et al. Mapping of immunodominant B-cell epitopes and the human serum albumin-binding site in natural hepatitis B virus surface antigen of defined genosubtype. J Gen Virol 2000,81:369-78.
    41. Lu Z, Murray KS, Van Cleave V, et al. Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to fiagellin: a system designed for exploring protein-protein interactions. Biotechnology 1995,13:366-72.
    42. Zhao S, Lee EY. A protein phosphatase-1-binding motif identified by the panning of a random peptide display library. J Bio. Chem 1997,272:28368-72.
    43. Sthl S, Uhlen M. Bacterial surface display: trends and progress. Trends Biotechnol. 1997,15:185-92.
    44. Wu JY, Newton S, Judd A, et al. Expression of immunogenic epitopes of hepatitis B surface antigen with hybrid fiagellin proteins by a vaccine strain of Salmonella. Proc Natl Acad Sci USA 1989,86:4726-4730
    45.杜勇,周建军,王海涛.应用细菌鞭毛递呈的随机肽库研究丙型肝炎病毒核心蛋白B细胞抗原表位.病毒学报1998,14(4):307-314
    46. Tripp BC, Lu Z, Bourque K, et al. Investigation of the 'switch-epitope' concept with random peptide libraries displayed as thioredoxin loop fusions. Protein Eng 2001, 14:367-77.
    47. Herrmann A, Pieper M, Schrader J. Selection of cell specific peptides in a rat carotid injury model using a random peptide-presenting bacterial library. Biochim Biophys Acta 1999,1472:529-36.
    48. Brown CK, Modzelewski RA, Johnson CS, et al. A novel approach for the identification of unique tumor vasculature binding peptides using an E. coli peptide display library. Ann Surg Oncol. 2000, 7:743-9.
    49. D'Mello F, Howard CR. An improved selection procedure for the screening of phage display peptide libraries. J Immunol Methods 2001,247:191-203.
    50. Nakajima H, Shimbara N, Shimonishi Y, et al. Expression of random peptide fused to invasin on bacterial cell surface for selection of cell-targeting peptides. Gene 2000,260:121-131
    51.李梦东 主编.实用传染病学.第二版.北京:人民卫生出版社.1998,104-106
    52.闻玉梅 主编.现代医学微生物学.第一版.上海:上海医科大学出版社,1999,971-991
    53.陈尔佳,林凌,周冬霞等.HBsAg分子生物学与HBV疫苗研究进展.微生物学免疫学进
    
    展 1999,27(2) :81-85
    54. Milich DR, McLachlan A, Chisari FV, et al. Two distinct but overlapping antibody binding sites in the pre-S(2) region of HBsAg localized within 11 continuous residues. J Immunol 1986,137:2703-10.
    55. Westerlund-Wikstrom B. Peptide display on bacterial flagella: principles and applications.Int. J Med Microbiol 2000,290: 223-30.
    56. Samuelson P, Gunneriusson E, Nygren PA, et al . Display of proteins on bacteria. J Biotechnol. 2002,96:129-54.
    57. 李成文 主编.现代免疫化学技术.上海:上海科学技术出版社 1992,132-135
    58. Daugherty PS, Iverson BL, Georgiou G Flow cytometric screening of cell-based libraries.J Immunol Methods 2000,243(1-2) :211 Daugherty PS, Iverson BL, Georgiou G Flow cytometric screening of cell-based libraries. J Immunol Methods 2000,243(1-2) :211
    59. Winson MK, Davey HM. Flow cytometric analysis of microorganisms.Methods 2000,21:231-240
    60. Daugherty PS, Chen G Olsen MJ,et al. Antibody affinity maturation using bacterial surface display. Protein Eng 1998,11(9) :825-32.
    61. Daugherty PS, Olsen MJ, Iverson BL, et al. Development of an optimized expression system for the screening of antibody libraries displayed on the Escherichia coli surface. Protein Eng 1999,12(7) :613-21
    62. Christmann A, Walter K, Wentzel A, et al. The cystine knot of a squash-type protease inhibitor as a structural scaffold for Escherichia coli cell surface display of conformationally constrained peptides. Protein Eng. 1999,12(9) :797-806
    63. Wentzel A, Christmann A, Kratzner R, et al. Sequence requirements of the GPNG beta-turn of the Ecballium elaterium trypsin inhibitor II explored by combinatorial library screening. J Biol Chem 1999,274(30) :21037-43
    64. Wittrup KD. Protein engineering by cell-surface display. Curr Opin Biotechnol 2001,12(4) :395-9
    65. Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 1997,15(6) :553-7
    66. Kieke MC, Cho BK, Boder ET, et al. Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng 1997,10(11) : 1303-10
    67. Kieke MC, Shusta EV, Boder ET, et al. Selection of functional T cell receptor mutants from a yeast surface-display library. Proc Natl Acad Sci USA 1999,96(10) :5651-6
    68. Kieke MC, Sundberg E.Shusta EV,et al. High affinity T cell receptors from yeast display libraries block T cell activation by superantigens. J Mol Biol 2001,307(5) :1305-15
    69. Christmann A, Wentzel A, Meyer C, et al. Epitope mapping and affinity purification of monospecific antibodies by Escherichia coli cell surface display of gene-derived random peptide libraries.J Immunol Methods 2001,257(1-2) :163-73
    70. Ernst W, Grabherr R, Wegner D, et al. Baculovirus surface display: construction and screening of a eukaryotic epitope library. Nucleic Acids Res 1998,26(7) :1718-23
    71. He X, Liu S, Perry K. Identification of epitopes in cucumber mosaic virus using a phage-displayed random peptide library. J Gen Virol 1998,79:3145-3153
    
    
    72. Enshell-Seijffers D,Smelyanski L,Vardinon N, et al. Dissection of the humoral immune response toward an immunodominant epitope of HIV: a model for the analysis of antibody diversity in HIV+ inviduals. FASEB J 2001,15:2112-2120
    73. Paran N, Geiger B, Shaul Y. HBV infection of cell culture: evidence for multivalent and cooperative attachment. EMBO J 2001,20(16) :4441
    74. Germaschewski V, Murray K. Screening a monoclonal antibody with a fusion-phage display library shows a discontinuity in a linear epitope within PreSl of hepatitis B virus. J Med Virol 1995,45(3) :300-5
    75. Brown S. Metal-recognition by repeating polypeptides.Nat Biotechnol.1997,15(3) :269-72.
    76. Kjaergaard K, Sorensen JK, Schembri MA, Klemm P. Sequestration of zinc oxide by fimbrial designer chelators. Appl Environ Microbiol 2000,66(1) : 10-4
    77. Schembri MA, Klemm P. Heterobinary adhesins based on the Escherichia coli FimH fimbrial protein. Appl Environ Microbiol 1998,64(5) :1628-33.
    78. 奥斯伯.F,金斯顿 RE,塞德曼 JG 等.精编分子生物学实验指南.北京:科学出版 社,1998. 23-24
    79. Lee SY Choi JH, Xu Z. Microbial cell-surface display. Trends Biotech 2003,21(1) :45-52
    80. Kim YS,Jung HC, Pan JG Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Appl Environ Microbiol 2000,66(2) :788-793
    81. Klemm P, Schembri MA. Fimbrial surface display systems in bacteria:from vaccines to random libraries.Microbiology 2000,146:3025-3032
    82. Smothers JF, Henikoff S. Predicting In Vivo protein-peptide interactions with random phage display. Comb Chem High Throughput Screen 2001,4:585-591
    83. Veiga E, de Lorenzo V, Fernandez LA. Probing secretion and translocation of a beta-autotransporter using a reporter single-chain Fv as a cognate passenger domain. Mol Microbiol 1999,33(6) :1232-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700