我国艾滋病病毒B'、B/C亚型流行株的表型分析、全基因组克隆及gp41主要抗原表位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
艾滋病病毒(Human Immunodeficiency Virus,HIV)是导致人获得性免疫缺陷综合征(Acquired Immunodeficiency Syndrome,AIDS)的病原体。截止至2002年年底,全球存活的HIV感染者已经达到4200万人。我国HIV/AIDS流行呈快速上升趋势,估计HIV感染者已经达到100万人。HIV分为HIV-1和HIV-2型,HIV-1的M群至少包含11个亚型,其中B’和B/C重组亚型是我国的主要流行株。对我国的HIV流行株进行系统的表型分析、基因组研究和表位鉴定是研究我国HIV疫苗、诊断方法和致病机理的基础,我国至今对B’和B/C重组亚型毒株缺乏这样系统的研究。本文对我国HIV-1B’和B/C亚型毒株进行了表型分析、全基因组克隆及及序列测定。对B’亚型毒株gp41的主要抗原表位进行了研究。
     1.我国艾滋病病毒B’、B/C亚型流行株的表型分析
     HIV为单股正链RNA病毒,具有高度变异性,其突变频率比DNA病毒高100万倍。高突变性导致HIV复杂的表型特征,HIV-1表型决定感染宿主细胞时使用辅助受体的类型,分为M嗜性、T嗜性和双嗜性。HIV-1感染的早期多为M嗜性,晚期转变成T嗜性或双嗜性,而决定病毒细胞嗜性的区域位于HIV-1gp120,其中V3环起主要作用。我们从来自河南的一份有偿献血者血液中成功分离到一株HIV-1B’亚型毒株(CNHN24),对病毒基因突变与细胞嗜性的关系进行了研究,主要结果如下:
     A.将HIV-1感染者的PBMC与健康人PBMC混合共培养,分离出HIV-1 CNHN24株,证明这是一株嗜巨噬细胞,呈快/高型复制的病毒,分析了V3环基因序列突变与细胞嗜性变化的关系;
     B.将感染HIV-1 CNHN24株的PBMC与MT4细胞共培养,使毒株由嗜巨噬细胞,使用CCR5辅助受体转变为嗜T细胞,使用CXCR4辅助受体;
     C.HIV-1 CNHN24株已经在人传代T淋巴细胞株MT4细胞中稳定传16代,TCID_(50)维持在10~8的高滴度;
    
    博士学位论文
    中文摘要
    D.序列分析表明,在细胞嗜性改变的同时,H工v一1 CNHN24株的V3环序列发生
     了明显的变化,核普酸序列的突变率达到17%;
    E.经PBMC和MT4细胞培养后,培养上清中的病毒基因与细胞基因组中前病毒
     DNA的V3环序列完全一致;
    F.分析了病毒由M嗜性转变为T嗜性的V3环氨基酸突变特征,突变率为9%。
     突变位点位于V3环的第4、11、13、14、24、27、32位,其中第11、14、
     27和32位氨基酸电荷变化明显。
    2.我国艾滋病病毒B’、B/C亚型流行株全基因组克隆
     我国H工V流行株全基因组序列的报道较少,尚未见在国内实验室完成Hlv
    全基因组克隆的报道。我们利用RACE法确定了病毒mRNA的3’端和5’端序列,
    设计了两条特异性引物,以CNHN24病毒感染细胞的前病毒基因组为PCR扩增的
    模板,主要完成了以下工作:
    A.建立了扩增H工v一1全基因组技术平台;
    B.首次在国内实验室构建了H工V一IB’亚型CNHN24株的全基因组克隆;
    C.全基因组克隆测序提交GenBank,登录号为:AY180905;
    D.通过V3环序列分析确定CNHN24克隆为H工V一IB’亚型,氨基酸序列比对发
     现在九个位点发生氨基酸替换;
    E.Gag、Pol、Vpr和Vsf基因与RL42株的一致率达到95.42%~97.08%,但gpzZo
     的氨基酸一致率只有64.6%;
    F,进化分析显示CNHN24株与国内RL42株的遗传距离最近。
     扩增低拷贝基因的长片段链是长链PCR技术面临的一个难点,融合PCR方
    法是解决这一困难的重要手段之一。根据我国HIV一IB/C亚型序列的保守区设
    计引物,首先将02CNHN01株病毒全长基因分成6段相互部分重叠的片段进行PCR
    扩增,然后再以融合PCR方法依次将相邻两个片段融合在一起。主要结果如下:
    A.建立了H脚一IB/C亚型全长基因组DNA分子的融合PCR方法;
    B.利用融合PCR方法成功克隆了H工V一IB/C亚型(OZCNHN01株)全基因组;
    C.CZ一V3区序列与H工V一IC亚型国际参考株一致率为97.14%,与国内HIV一1
     B/C亚型株的一致率为95.41%~96.33%;
    
    D.系统发育分析显示,该毒株的序列与国内 HIVl 北亚型98CN009株聚在一
     起,而98CN009株序列则与93IN101株聚在一起。
    E.序列分析发现部分位点有HIV-IB亚型重组,确定 02CNHN01株为mV-IB/C
     重组型。
    3.我国艾滋病病毒B’亚型流行株PP41主要抗原表位研究
     噬菌体展示技术已被证明为研究蛋白质与其配体相互关系很有效的工具。
    本实验中,我们通过人抗HIV-IB’亚型PP41多克隆抗体,筛选噬菌体展示随
    机12肽库,将得到的表位及两个表位的串联体与噬菌体厂*蛋白的I~11结
    构域在PoE30载体中表达,用纯化的表达蛋白检测HIV感染者血清中的特异性
    抗体,证实了表位抗原和串联表位抗原用于* 抗体检测的可行性。主要结果
    如下:
    A.制备了N工*1**1表达抗原亲和层析柱:
    B.从我国HIV+’亚型感染者血清中纯化了抗PP41多克隆抗体;
    C.从噬菌体展示随机12肽库中筛选到位于gP41免疫优势区588~597aa的3
     个表位 ph32PI、ph33PI和 Dh39PI;
    D.将Ph39PI与文献报道的一个HIV-lgP41表位串联连接;
    E.将 4个表位分别插入到噬菌体厂 11蛋白的 I~11结构域中,在 PQE30载体
     中实现表达;
    F.纯化的表达蛋白可用于检测HIV-1感染者血清中的抗体
Human Immunodeficiency Virus (HIV) was the pathogen of Acquired Immunodeficiency Syndrome (AIDS). Up to the end 2002, survival HlV-infected individuals have amounted to 42 millions. According to the specialist estimates, the number of HIV-infected individuals and/or AIDS patients is increasing rapidly, it has been one million in China. HIV can be divided into HIV-1 and HIV-2, at least 11 subtypes in HIV-1 main group, of which HIV-1 B' and B/C are prevalent subtypes in China. Systemic phenotype analysis, study on the genome characterization and identify in HIV-1 epitopes may be the basis for the development of candidate vaccines and diagnosis methods, design of anti-HIV agents based on HIV-1 prevalent subtypes in China. Up to now, there have not been a systemic study for HIV-1 B' and B/C strains in China. IN this study, we reported the phenotypic analysis, full-length molecular cloning and major gp41 antigen epitope application of HIV-1 B' and B/C subtype strains in China.
    Part I. Phenotypic analysis of HIV-1 prevalent Subtypes B' and B/C strains in China
    As the single plus stranded RNA virus, HIV is of great variability. The mutation rate is one million times to DNA viruses. It resulted in difference in virus phenotypes. HIV phenotype determines its coreceptor utilization. While HIV entrying into cells, virus isolates are classified into three groups, M-tropic,T-tropic and dualtropic. Early infection with HIV-1 is dominated by M-tropic viruses,the evolution of CXCR4-tropic viruses later in the infection. As to viral factors involved in HIV-1 cell tropism, a specific region of gp!20 protein, the V3 loop, was demonstrated to be a major determinant of coreceptor usage. In this part, one HIV-1 strain was isolated from a HIV-1 infected paid blood donor in Henan province, whose viruses were identified as B' genotype. The cell tropism of the virus was identified. Major results are showed following:
    A. HIV-1 CNHN24 strain was isolated by PBMC coculturing from a HIV-infected person with phytohemaggluting-stimulated donor PBMC. The phenotype was M-tropic, SI and rapid/high replication. The relationship between cell tropism change and V3 loop mutation was analyzed.
    B. By coculture of PBMC and MT4 cell, HIV-1 CNHN24 strain turnovered T-tropic, CXCR4-utilization from M-tropic, CCR5-utilization.
    C. HIV-1 CNHN24 isolate could infect MT4 cell successively, which had been passed 16 generations with high titer of 108 TCID50.
    
    
    
    D. HIV-1 CNHN24 infected PBMC were cocultured with donor PBMC and/or MT4 cell, HIV-1 RNA and proviral DNA were extracted from the supernatant and PBMC and/or MT4 cell, respectively. V3 loop sequences were absolutely identities for HIV-1 RNA and proviral DNA.
    E. When HIV-1 CNHN24 turnover its cell tropism, the significant changes have taken place in V3 loop sequence of HIV-1 CNHN24 strain, the mutation rate of nucleic acid sequence was 17%.
    F. The mutation of V3 loop ammo acid was analyzed on T-tropic turnover from M-tropic, the mutation rate was 9%, showing amino acid mutant at positions 4,11,13,14,24,27,32, of which the changes of amino acid charge were obviously at positions 11,14,27,32.
    Part II. Full-length genome cloning of subtype HIV-1 B' and B/C in China
    Up to now, only a few HIV-1 full-length genome sequences of prevalent HIV-1 strains were reported, and no any reports on HIV-1 full-length genome cloning in China. We have developed 3' end and 5' end sequencing of mRMA by RACE technical, designed and synthesized two specific primers according to the sequence for amplify full-length HIV-1 genome. The PCR reaction was performed by using HIV-1 CNHN24 proviral DNA as the template.
    A. With the optimization of the components of reaction, Long fragment PCR for HIV-1 full-length genome was finally set up.
    B. The cloning and characterization of a virtually full-length HIV-1 B' subtype was completed first time in Chinese lab.
    C. The full sequence of the cloned primary isolate CNHN24 has been submitted to GenBank database, search number is AY180905.
    D. HIV-1 CNHN
引文
1. Zhu T, Korber BT, Nahmias AJ, et al. An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature. 1998 Feb 5;391(6667) :594-7.
    2. Zeng Y, Fan J, Zhang O, et al. Detection of antibody to LAV/HTLV-Ⅲ in sera from hemophiliacs in China. AIDS Res. 1986; 2(Suppl 1) :S147-S149.
    3. Zheng X, Tian C, Choi KH, et al. Injecting drug use and HIV infection in southwest China. AIDS. 1994; 8:1141-1147.
    4. 郑锡文,王哲,徐杰,等.我国某县有偿献血员艾滋病病毒感染流行病学研究.中华流 行病学杂志.2000;21(4) :253-255.
    5. 卫生部疾病控制司,卫生部艾滋病预防与控制中心,全国艾滋病哨点检测协作组:中 国1995-1998年艾滋病哨点检测报告.中华流行病杂志.2000;21(1) :7-9.
    6. Ricchetti M, Buc H. Reverse transcriptases and genomic variability: the accuracy of DNA replication is enzyme specific and sequence dependent. EMBO J. 1990 May;9(5) :1583-93.
    7. Steinhauer DA, Holland JJ. Rapid evolution of RNA viruses.Annu Rev Microbiol 1987;41:409-33.
    8. Shioda T, Levy JA, Cheng-Mayer C. Small amino acid changes in the V3 hypervariable region of gp120 can affect the T-cell-line and macrophage tropism of human immunodeficiency virus type 1. Proc Natl Acad Sci USA. 1992 Oct 15;89(20) :9434-8.
    9. Onafuwa A, An W, Robson ND, Telesnitsky A. Human immunodeficiency virus type 1 genetic recombination is more frequent than that of Moloney murine leukemia virus despite similar template switching rates. J Virol 2003 Apr;77(8) :4577-87
    10. Clavel F, Hoggan MD, Willey RL, et al. Genetic recombination of human immunodeficiency virus.J Virol. 1989 Mar;63(3) :1455-9.
    11. Wong-Staal F, Shaw GM, Hahn BH, et al.Genomic diversity of human T-lymphotropic virus type Ⅲ (HTLV-Ⅲ).Science. 1985 Aug 23;229(4715) :759-62.
    12. LaRosa GJ, Davide JP, Weinhold K, et al. Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant.Science. 1990 Aug 24;249(4971) :932-5.
    13. Chandrasekhar K, Profy AT, Dyson HJ. Solution conformational preferences of immunogenic peptides derived from the principal neutralizing determinant of the HIV-1 envelope glycoprotein gp120. Biochemistry. 1991 Sep 24;30(38) :9187-94.
    14. Su, L., Graf, M., Zhang, Y., et al.. Characterization of a Virtually Full-Length Human Immunodeficiency Virus Type 1 Genome of a Prevalent Intersubtype (C/B') Recombinant Strain in China. J. Virol. 2000,74: 11367-11376.
    15. Graf, M., Y. Shao, Q. Zhao,et al. 1998. Cloning and Characterization of a virtually full-length HIV type 1 genome from a subtype B'-Thai strain representing the most prevalent B-clade isolate in China. AIDS Res. Hum. Retroviruses 14:285-288.
    16. Robertson DL,Sharp PM, McCutchan FE, et al.Recombination in HIV-1. Nature.l995,374(6518) :124-126.
    17. Robertson DL,Hahn BH, Sharp PM. Recombination in AIDS viruses. Journal of Molecular Evolution. 1995,40(3) :249-259.
    18. Carr JK, Salminen MO, Koch C, et al. Full-length sequence and mosaic structure of a human immunodeficiency virus type 1 isolate from Thailand.J Virol. 1996 Sep;70(9) :5935-43.
    19. Gao F, Robertson DL, Morrison SG, et al. The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin.J Virol. 1996 Oct;70(10) :7013-29.
    
    
    20. 邵一鸣,赵全壁,王斌,等.我国云南德宏地区HIV感染者HIV毒株膜蛋白的序列测 定和分析.病毒学报,1994,10(4) :291~299.
    21. Fenyo EM, Morfeldt-Manson L, Chiodi F, et al. Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates.J Virol. 1988 Nov;62(11) :4414-9.
    22. De Wolf F, Hogervorst E, Goudsmit J,et al. Syncytium-inducing and non-syncytium-inducing capacity of human immunodeficiency virus type 1 subtypes other than B: phenotypic and genotypic characteristics. WHO Network for HIV Isolation and Characterization. AIDS Res Hum Retroviruses. 1994 Nov;10(11) :1387-400.
    23. Feng Y, Broder CC, Kennedy PE,et al. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996 May 10;272(5263) :872-7.
    24. Speck RF, Wehrly K, Platt EJ, et al. Selective employment of chemokine receptors as human immunodeficiency virus type 1 coreceptors determined by individual amino acids within the envelope V3 loop.J Virol. 1997 Sep;71(9) :7136-9.
    25. Alkhatib G, Combadiere C, Broder CC, et al. CC CKR5: a RANTES, MlP-lalpha, MlP-lbeta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science. 1996 Jun 28;272(5270) :1955-8.
    26. Takayuki Harada, Yasuko Tsunetsugu-Yokota, Yoshio Koyanagi, et al. Role of Nucleotide Sequences in the V3 Region in Efficient Replication of CCR5-Utilizing Human Immunodeficiency Virus Type 1 in Macrophages. Virology,2002, 299: 192-203.
    27. De Jong JJ, De Ronde A, Keulen W, et al. Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syncytium-inducing phenotype: analysis by single amino acid substitution. J Virol. 1992 Nov;66(11) :6777-80.
    28. Chanh T.C., G.R. Dreesman, P. Kanda, et al. Induction of anti-HIV neutralizing antibodies by synthetic peptides. J. EMBO. 1986; 5: 3065-3071.
    29. Scott J.K., Smith G.P. Searching for peptide ligands with an epitope library. Science. 1990; 249:386-390.
    30. Dizel H.J., Parren P.W., Binley J.M., et al. Mapping the protein surface of human immunodeficiency virus type 1 gp120 using human monoclonal antibodies from phage display libraries. J Mol. Biol. 1997; 267: 684-695.
    31. 杜勇,徐静,李敬云,等.HIV蛋白质优势B细胞抗原表位的筛选、重组表达与抗原 性鉴定.微生物学报.2000;40(3) :270-275.
    32. Berger, E. A., Murphy, P. M., and Farber, J. M.. Chemokine receptors as HIV-1 coreceptors: Roles in virai entry, tropism, and disease. Annu. Rev. Immunol. 1999,17: 657-700.
    33. Roda Husman, A.M. Adaptation topromiscuous usage of chemokine receptors is not a prerequisite for human immunodeficiency virustype 1 disease progression. J. Infect. Dis. 1999,180: 1106-1115.
    34. Graf M, Shao Y, Zhao Q, et al. Cloning and characterization of a virtually full-length HIV type 1 genome from a subtype B'-Thai strain representing the most prevalent B-Clade isolate in China. AIDS Research and human retroviruses.1998; 14(3) :285-288.
    35. Briggs DR, Tuttle DL, Sleasman JW,et al.Envelope V3 amino acid sequence predicts HIV-1 phenotype (co-receptor usage and tropism for macrophages). AIDS 2000 Dec 22;14(18) :2937-9
    36. Xiao L, Owen SM, Goldman I, et al. CCR5 coreceptor usage of non-syncytium-inducing primary HIV-1 is independent of phylogenetically distinct global HIV-1 isolates: delineation of consensus motif in the V3 domain that predicts CCR-5 usage. Virology. 1998; 240(1) :83-92.
    37. De Jong, J.J. Minimal requirements for the human immunodeficiency virus type 1 V3 domain to support the syncytium-inducing phenotype: analysis by single amino acid substitution. J. Virol. 1992, 66: 6777-6780.
    38. Ho, D.D. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature, 1995,373: 123-126.
    
    
    39. McCune, J.M. Factors influencing T-cell turnover in HIV-1-seropositive patients. J. Clin. Invest. 2000,105: R1-R8.
    40. Miles P.Davenport, John J. Cell turnover and cell tropism in HIV-1 infection. TRENDS in Microbiology.2002,10(6) :275-278.
    41. Valentin, A. et al. CXCR4 mediates entry and productive infection of syncytia-inducing (X4) HIV-1 strains in primary macrophages. Virology, 2000,269: 294-304.
    42. Freed, E. O., and Martin, M. A. HIVs and their replication. In "Fields Virology," 2001,4th ed.,pp. 1971-2041.
    43. Chowdhury IH, Potash MJ, Volsky DJ. Redefinition of tropism of common macrophage-tropic human immunodeficiency virus type l.AIDS Res Hum Retroviruses. 1995; 11(12) :1467-71.
    44. Collin M, Illei P, James W, et al. Definition of the range and distribution of human immunodeficiency virus macrophage tropism using PCR-based infectivity measurements.J Gen Virol. 1994; 75 ( Pt 7) :1597-603.
    45. Scarlatti G, Tresoldi E, Bjorndal A, In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression.Nat Med. 1997; 3(11) : 1259-65.
    46. Zhu, X., Borchers, C., Bienstock, R. J., et al. Mass spectrometric characterization of the glycosylation pattern of HIVgp120 expressed in CHO cells. Biochemistry 2000,39: 11194-11204.
    47. Polzer, S., Dittmar, M. T., Schmitz, H.,. Loss of N-linked glycans in the V3 loopregion of gp120 is correlated to an enhanced infectivity of HIV-1. Glycobiology.2001,1: 1-9.
    48. Polzer S, Dittmar MT, Schmitz H, et al.The N-linked glycan g15 within the V3 loop of the HIV-1 external glycoprotein gp120 affects coreceptor usage, cellular tropism, and neutralization. Virology 2002 Dec 5;304(1) :70-80.
    49. Svenja Polzer, Matthias T. Dittmar, Herbert Schmitz, et al. The N-linked Glycan g15 within the V3 Loop of the HIV-1 External Glycoprotein gp120Affects Coreceptor Usage, Cellular Tropism, and Neutralization.Virology, 2002,304: 70-80.
    50. Rizzuto C, Sodroski J. Fine definition of a conserved CCR5-binding region on the human immunodeficiency virus type 1 glycoprotein 120. AIDS Res Hum Retroviruses. 2000; 16(8) :741-9.
    51. Jagodzinski PP, Wustner J, Kmieciak D, Role of the V2, V3, and CD4-binding domains of GP120 in curdlan sulfate neutralization sensitivity of HIV-1 during infection of T lymphocytes.Virology. 1996; 226(2) :217-27.
    52. Kwong YL, Wong KF. Association of pure red cell aplasia with T large granular lymphocyte leukaemia. J Clin Pathol. 1998; 51(9) :672-5.
    53. Hung, C., Hevden, N. V., and Ratner, L. Analysis of the critical domain in the V3 loop of human immunodeficiency virus type 1 gp120 involved in CCR5 utilization. J. Virol.1999, 73:8216-8226.
    54. Hoffman, T. L., Stephens, E. B., Narayan, O.,et al. HIV type 1 envelope determinants for use of the CCR2b, CCR3, STRL33 and APJ coreceptors. Proc. Natl. Acad. Sci. USA, 1998, 95:11360-11365.
    55. Trujillo, J. R., Wang, W. K., Lee, T. H., et al. Identification of the envelope V3 loop as a determinant of a CD4-negative neuronal cell tropism for HIV-1. Virology,1996, 217: 613-617.
    56. Luciw PA, Pratt-Lowe E, Shaw KE, et al. Persistent infection of rhesus macaques with T-cell-line-tropic and macrophage-tropic clones of simian/human immunodeficiency viruses (SHIV).Proc Natl Acad Sci USA. 1995; 92(16) :7490-4.
    57. Chesebro, B., Wehrly, K., Nishio, J., et al. Mapping of independent V3 envelope determinants of human immunodeficiency virus type 1 macrophage tropism and syncytium formation in lymphocytes. J. Virol. 1996,70: 9055-9059.
    
    
    58. Hung, C., Pontow, S., and Ratner, L.. Relationshipbetween productive HIV-1 infection of macrophages and CCR5 utilization. Virology,1999, 264: 278-288.
    59. Kato, K., Sato, H., and Takebe, Y. Role of naturally occurring basie amino acid substitutions in the human immunodeficiency virus type 1 subtype E envelope V3 loop on virai coreceptor usage and cell tropism. J. Virol. 2000,73: 5520-5526.
    60. Speck, R. F., Wehrly, K., Platt, E. J., et al. Selective employment of chemokine receptors as human immunodeficiency virus type 1 coreceptors determined by individual amino acid within V3 loop. J. Virol. 1997,71: 7136-7139.
    61. Cheng-Mayer C, Seto D, Levy JA. Altered host range of HIV-1 after passage through various human cell types.Virology. 1991; 181(1) :288-94.
    62. Shioda T, Levy JA, Cheng-Mayer C. Small amino acid changes in the V3 hypervariable region of gp120 can affect the T-cell-line and macrophage tropism of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1992; 89(20) :9434-8.
    63. Meister S, Otto C, Papkalla A,et al.Basic amino acid residues in the V3 loop of simian immunodeficiency virus envelope alter virai coreceptor tropism and infectivity but do not allow efficient utilization of CXCR4 as entry cofactor. Virology 2001 Jun 5;284(2) :287-96
    64. Lee, B, Sharron, M., Montaner, L. J., et al. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc. Natl. Acad. Sci. USA ,1999,96: 5215-5220.
    65. Lapham, C. K., Zaitseva, M. B., Lee, S., Romanstseva, et al. Fusion of monocytes and macrophages with HIV-1 correlates with biochemical properities of CXCR4 and CCR5. Nat. Med. 1999,5: 303-308.
    66. Tokunaga, K., Greenberg, M. L., Morse, M. A., et al. Molecular basis for cell tropism of CXCR4-dependent human immunodeficiency virus type 1 isolates. J. Virol.2001,75: 6776-6785.
    67. Yi, Y., Isaacs, S. N., Williams, D. A.,et al. Role of CXCR4 in cell-cell fusion and infection of monocyte-derived macrophages by primary human immunodeficiency virus type 1 (HIV-1) strains: Two distinct mechanisms of HIV-1 dual tropism. J. Virol. 1999,73: 7117-7125.
    68. Schimidtmayerova, H., Alfano, M., Nuovo, G., et al. Human immunodeficiency virus type 1 T-lymphotropic strains enter macrophages via a CD4-and CXCR4-mediated pathway: Replication is restricted at a postentry level. J. Virol. 1998,72: 4633-4642.
    69. Arthos, J., Rubbert, A., Rabin, R. R.,et al. CCR5 signal transduction in macrophage by human immunodeficiency virus and simian immunodeficiency virus envelopes. J. Virol, 2000,74:6418-6424.
    70. Albini A, Barillari G, Benelli R, et al. Angiogenic properties of human immunodeficiency virus type 1 Tat protein.Proc Natl Acad Sci USA. 1995 May 23;92(11) :4838-42.
    71. Kundu SK, Merigan TC. Equivalent recognition of HIV proteins, Env, Gag and Pol, by CD4+ and CD8+ cytotoxic T-lymphocytes.AIDS. 1992 Jul;6(7) :643-9.
    72. McDonald RA, Chang G, Michael NL.Relationship between V3 genotype, biologic phenotype, tropism, and coreceptor use for primary isolates of human immunodeficiency virus type 1. J Hum Virol 2001 Jul-Aug;4(4) :179-87.
    73. Bachmann MH, Delwart EL, Shpaer EG, et al. Rapid genetic characterization of HIV type 1 strains from four World Health Organization-sponsored vaccine evaluation sites using a heteroduplex mobility assay. AIDS Res Hum Retroviruses. 1994; 10(11) : 1345-53.
    74. Rodenburg,C.M., Li,Y., Trask,S.A., et al. Near full-length clones and reference sequences for subtype C isolates of HIV type 1 from three different continents. AIDS Res. Hum. Retroviruses. 2001; 17 (2) , 161-168.
    
    
    75. Piyasirisilp,S., McCutchan,F.E., Carr,J.K., et al. A Recent Outbreak of Human Immunodeficiency Viras Type 1 Infection in Southern China Was Initiated by Two Highly Homogeneous, Geographically Separated Strains, Circulating Recombinant Form AE and a Novel BC Recombinant. J. Virol. 2000; 74 (23) : 11286-11295.
    76. Cynthia M.Rodenburg, Yingying Li, Stanley A.Trask, et al. Near full-length clones and reference seqences for subtype C isolates of HIV type 1 from three different continents. Aids research and human retroviruses. 2001,17(2) :161-168.
    77. Barnes WM. PCR amplification of up to 35-kb DNA with high fidelity and high yield from λ bacteriophage templates. Proc Natl Acad Sci. 1994; 91(6) : 2216-2220.
    78. Cheng S, Chang SY, Gravitt P, et al. Long PCR.Nature. 1994; 369(6482) :684-5.
    79. Salminen MO, Koch C, Eric SB, et al. Recovery of virtually full-length HIV-1 provirus of diverse subtypes from primary viras cultures using the polymerase Chain reaction. Virology. 1996; 213:80-86.
    80. Gritsun TS, Gould EA. Infectious transcripts of tick-borne encephalitis viras, generated in days by RT-PCR. Virology. 1995; 214(2) :611-8.
    81. 范宝昌,赵卫,胡志军,等.扩增我国登革2型病毒全长cDNA分子的融合PCR方法. 军事医学科学院院刊.2001,25(2) :137-139.
    82. Fang G, Weiser B, Visosky A,et al. PCR-mediated recombination: a general method applied to construct chimeric infectious molecular clones of plasma-derived HIV-1 RNA. Nat Med. 1999; 5(2) :239-42.
    83. McCutchan FE, Salminen MO, Carr JK, et al. HIV-1 genetic diversity. AIDS. 1996; 10 Suppl 3:S13-20.
    84. Hammer SM, Yeni P. Antiretroviral therapy: where are we? AIDS. 1998; 12 Suppl A.-S181-8.
    85. Balfe P. Concurrent evolution of human immunodeficiency virus type 1 in patients infected from the same source: rate of sequence change and low frequency of inactivating mutations. J. Virol. 1990,64:4221-4428.
    86. Lng Su, Marcus Graf, Yuanzhi Zhang, et al. Characterization of a virtually full-length Human Immunodeficiency Virus type 1 genome of a prevalent intersubtype(C/B') recombinant strain in China. J.Virology.2000,74(23) :11367-11376.
    87. Kavita S. Lole, Robert C.Bollinger, Ramesh S.Paranjape, et al. Full-length Human Immunodeficiency Virus type 1 genome from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J. virology. 1999,73(1) :152-160.
    88. Murphy E, Korber B, Georges-Courbot MC, et al. Diversity of V3 region sequences of human immunodeficiency viruses type 1 from the central African Republic.AIDS Res Hum Retroviruses. 1993; 9(10) :997-1006.
    89. Janssens W, Heyndrickx L, Fransen K, et al. Genetic and phylogenetic analysis of env subtypes G and H in central Africa. AIDS Res Hum Retroviruses. 1994; 10(7) :877-9.
    90 . Kishi M, Tokunaga K, Zheng YH, et al.Superinfection of a defective human immunodeficiency virus type 1 provirus-carrying T cell clone with vif or vpu mutants gives cytopathic virus particles by homologous recombination.AIDS Res Hum Retroviruses. 1995 Jan;11(1) :45-53.
    91. Kampinga GA, Simonon A, Van de Perre P, et al.Primary infections with HIV-1 of women and their offspring in Rwanda: findings of heterogeneity at seroconversion, coinfection, and recombinants of HIV-1 subtypes A and C.Virology. 1997 Jan 6;227(1) :63-76.
    92. urke DS. Recombination in HIV: an important virai evolutionary strategy.Emerg Infect Dis. 1997 Jul-Sep;3(3) :253-9.
    93. Cornelissen M, Kampinga G, Zorgdrager F,et.al. Human immunodeficiency virus type 1 subtypes defined by env show high frequency of recombinant gag genes. The UNAIDS Network for HIV Isolation and Characterization.J Virol. 1996 Nov;70(11) :8209-12.
    
    
    94. Zhu GW, Liu ZQ, Joag SV, et al.Pathogenesis of lymphocyte-tropic and macrophage-tropic SIVmac infection in the brain.J Neurovirol. 1995 Mar;1(1) :78-91.
    95. 陈舸,严延生,翁育伟,等.福建省HIV-1病毒亚型分布的研究.《中国公共卫生》.2001; 17(1) :31-32.
    96. Smith G P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985; 228:1315-1317.
    97. 杜勇,侯利华,李敬云,等.应用噬菌体随机肽库研究艾滋病病人血清中特异抗原表位.中 华实验和临床病毒学杂志.2000,14(4) :338-341.
    98. Cason J. Strategies for mapping and imitating virai B-cell epitopes. J Virol Methods. 1994 Sep;49(2) :209-19.
    99. Daniels DA, Lane DP. Phage Peptide Libraries Methods. 1996 Jun;9(3) :494-507.
    100. Folgori A, Tafi R, Meola A,et al. A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera. EMBO J. 1994 May 1;13(9) :2236-43.
    101. Geysen HM, Rodda SJ, Mason TJ. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol, 1986; 23:709-715.
    102. Wu S-C, Lin C-W. Neutralizing peptide ligands selected from phage-displayed libraries mimic the conformational epitope on domainⅢ of the Japanese encephalitis virus envelope protein. Virus Res, 2001; 76:59-69.
    103. Chen YC, Delbrook K, Dealwis C, et al. Discontinuous epitopes of hepatitis B surface antigen derived from a filamentous phage peptide library. Proc Natl Acad Sci USA, 1996; 93, 1997-2001.
    104. Smith GP, Petrenko VA. Phage Display. Chem Rev. 1997; 97:391-410.
    105. Smith GP, Petrenko VA. Phage Display. Chem Rev, 1997, 97:391-410.
    106. Xu JY, Gorny MK, Palker T,et al. Epitope mapping of two immunodominant domains of gp41, the transmembrane protein of human immunodeficiency virus type 1, using ten human monoclonal antibodies. J Virol. 1991 Sep;65(9) :4832-8.
    107. Wang JJ, Steel S, Wisniewolski R, et al. Detection of antibodies to human T-lymphotropic virus type Ⅲ by using a synthetic peptide of 21 amino acid residues corresponding to a highly antigenic segment of gp41 envelope protein. Proc Natl Acad Sci U S A. 1986 Aug;83(16) :6159-63.
    108. Krowka JF, Singh B, Stites DP, et al.Epitopes of human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins recognized by antibodies in the sera of HIV-1-infected individuals. Clin Immunol Immunopathol. 1991 Apr;59(1) :53-64.
    109. Palker TJ, Matthews TJ, Clark ME, et al. A conserved region at the COOH terminus of human immunodeficiency virus gp120 envelope protein contains an immunodominant epitope. Proc Natl Acad Sci U S A. 1987 Apr;84(8) :2479-83.
    110. Horal P, Svennerholm B, Jeansson S, et al. Continuous epitopes of the human immunodeficiency virus type 1 (HIV-1) transmembrane glycoprotein and reactivity of human sera to synthetic peptides representing various HIV-1 isolates. J Virol. 1991 May;65(5) :2718-23.
    111. Chong YH, Lee MJ. Effect of HIV-1 gp41 peptides on secretion of beta-amyloid precursor protein in human astroglial cell line, T98G. J Mol Neurosci. 1999 Apr; 12(2) : 147-56.
    112. Pantoliano MW, Bird RE, Johnson S, et al. Conformational stability, folding, and ligand-binding affinity of single-chain Fv immunoglobulin fragments expressed in Escherichia coli.Biochemistry. 1991 Oct 22;30(42) :10117-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700