IL-15对HIV疫苗免疫效应的影响及HIV感染者TCR Vδ1 CDR3肽及其识别的抗原表位肽的筛选与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从上个世纪80年代人类免疫缺陷病毒(human immunodeficiency virus, HIV)被发现以来,感染HIV所致的获得性免疫缺陷综合征,简称艾滋病(acquired immune deficiency syndrome, AIDS)在全球迅速传播,现已成为一种严重危害人类健康的疾病,对HIV/AIDS的预防、诊断、治疗也因此成为医学工作者的首要任务之一。研制安全有效的HIV疫苗是预防HIV感染的重要措施之一,研究者们一直致力于如何激发机体产生足够强度的细胞免疫和体液免疫并加强免疫记忆。本课题组前期研究显示,IL-15在抗肿瘤免疫中具有增强免疫反应的作用,且小鼠实验证实IL-15质粒能够增强HIV gag疫苗的免疫效应,同时能促进中枢记忆性T细胞分化及增强长期记忆性免疫应答。因此,本研究的第一部分将观察以痘苗病毒天坛株为载体的重组IL-15在小鼠体内对重组HIV gag痘苗病毒载体疫苗免疫效应的影响,以及在灵长类动物体内IL-15质粒对HIV疫苗免疫效应的影响,以进一步探索IL-15作为HIV疫苗佐剂的前景。
     在以痘苗病毒天坛株为载体的研究中,将IL-15基因编码片段插入至复制型痘苗病毒载体,体外检测了IL-15蛋白的表达及表达上清中IL-15的生物活性。将重组IL-15痘苗病毒与重组HIV gag痘苗病毒共同免疫小鼠后,酶联免疫斑点法(enzyme-linked immunospot assay, ELI SPOT)测定结果显示,在痘苗病毒的高剂量组和低剂量组,IL-15共免疫均未能增加小鼠体内抗HIV gag抗原特异性IFN-γ分泌的CD8+T淋巴细胞频率,反而使其降低;同时IL-15对HIV特异性体液免疫也无增强作用。
     在灵长类动物研究中,本研究以IL-15重组质粒与HIV多价的DNA疫苗共同免疫恒河猴,然后用重组HIV痘苗病毒疫苗进行加强免疫。结果显示,IL-15重组质粒与HIV DNA疫苗共同免疫后,恒河猴体内的HIV特异性的T细胞反应与HIV疫苗单独免疫无明显差异,体液免疫在两组间也无明显差异。在HIV痘苗病毒疫苗加强免疫后,IL-15重组质粒共免疫的恒河猴的HIV特异性T细胞反应比HIV疫苗单独免疫组稍强,而且前者的抗HIV env蛋白抗体滴度明显高于后者。流式细胞术检测显示,在几乎所有的检测时间点,IL-15重组质粒共免疫组的动物外周血中记忆性CD8+T细胞的比例明显高于HIV疫苗单独免疫组,提示IL-15能够诱导更多的效应性T细胞向记忆性T细胞转化。
     综上所述,重组IL-15天坛株痘苗病毒对HIV gag痘苗病毒疫苗无免疫增强作用,反而减弱其免疫效应,故IL-15可能不适合用于天坛株痘苗病毒载体疫苗体系;在灵长类动物实验中,IL-15能够增加恒河猴外周血中记忆性T细胞的比例,同时还可以增强长期的体液免疫反应,提示IL-15可以增强HIV疫苗的长期免疫反应。
     本文的第二部分为HIV感染者TCR Vδ1 CDR3肽及其识别的抗原表位肽的筛选与鉴定,研究的对象是HIV感染者体内的γδT细胞。γδT细胞作为连接固有性免疫和特异性免疫的桥梁,虽然其在外周血T细胞中所占的比例仅为1-10%,但是在抗感染过程中发挥着重要的作用。业已证明,在HIV感染者外周血中γδT细胞在绝对数量上有4-5倍的扩增,且主要是Vδ1亚型,而Vγ9/δ2γδT细胞却处于免疫无能状态。这种改变的具体机制目前仍不清楚。本实验室主要从事γδT细胞研究,证实了TCRδ链的CDR3区是γδT细胞与抗原结合的关键部位,本研究从以上理论出发,进行了如下实验:
     首先分离9例HIV感染者外周血单个核细胞,经反转录聚合酶链式反应(reverse transcription-polymerase chain reaction, RT-PCR)扩增γδTCR Vδ1区基因,将扩增片段重组到pGEM-T载体上进行测序,结果获得了两条优势的CDR3肽:CALGVTTALIQWGFVYTDKLIF (HP1)和CALGEPPIYFNWGIRVTDKPIF (HP2)。
     然后利用得到的两条优势的CDR3肽(HP1和HP2)为探针,筛选噬菌体随机十二肽库。通过非特异性洗脱和特异性洗脱两种方法,我们得到了3条优势十二肽:WHWQWTPWSIQP、WHWNAWNWSSQQ和WHWSWIQNAAPN,这3条十二肽的共有序列为WHW。合成以上3条十二肽,进行初步的生物学分析:通过酶联免疫吸附法(enzyme-linked immunosorbent assay, ELISA)和流式细胞术(flow cytometry, FCM),在分子和细胞水平验证十二肽与探针和γδTCR的结合;利用固相扩增的方法,通过流式细胞术和二甲基偶氮唑蓝(3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide, MTT)法验证合成的十二肽对γδT细胞群体的促增殖作用。
     以上结果显示,本研究得到了HIV感染者外周血中TCRδ1链的优势CDR3肽的序列,并利用优势的CDR3δ肽通过筛选噬菌体随机十二肽库得到了Vδ1 T细胞识别的候选抗原表位肽,为研究HIV病程中Vδ1 T细胞的作用提供了新思路。
Since human immunodeficiency virus (HIV) was identified as the pathogen of acquire immune deficiency syndrome (AIDS) in the 1980's, great efforts have been made to fight against this virus rampant on the earth. An effective vaccine is in urgent need for preventing or treating HIV infections worldwide. Throughout the research and development of HIV vaccines, researchers have focused on promoting cellular and humoral immune response, and maintaining the memory immune response. At our lab, IL-15 has been demonstrated to promote antitumor immune response by enhancing the CTL and NK cell activities. Then IL-15 plasmid was shown to enhance the HIV gag DNA vaccine induced cellular and humoral immune response, promote differentiation of memory CD8+T cells precursors into central memory T cells, and maintain the long-term memory immune response in mice. In this study, the effects of recombinant IL-15 for HIV vaccine both in vaccinia virus Tiantan strain vectors in mice, and the effects of plasmid IL-15 for multivalent HIV DNA vaccine in primates were further evaluated.
     In the study using vaccinia virus Tiantan strain as the vector, human IL-15 cDNA was inserted into the replicative vaccinia virus vector, and then the expression of IL-15 and the bioactivity of IL-15 in supernatant of in vitro culture were investigated. Mice were co-immunized with recombinant IL-15 vaccinia virus and recombinant HIV gag vaccinia virus, and the HIV gag specific cellular immune response was detected by IFN-y secreting ELISPOT analysis. The ELISPOT analysis indicated that IL-15 did not promote the frequency of HIV gag specific IFN-y secreting CD8+T cells in mice neither in high dose group nor in low dose group, but rather made the frequency of HIV specific CD8+T cells lower. Also, recombinant IL-15 vaccinia virus coadministration did not bring any benefit to the humoral immune response.
     In the study in primates, rhesus monkeys were co-immunized with IL-15 plasmid and HIV multivalent DNA vaccine; then recombinant HIV vaccinia virus vaccine was used for boosting immunization. After three times of DNA immunization, there was no significant difference between the group of co-immunized with IL-15/HIV DNA vaccine and the group immunized with HIV DNA vaccine alone in terms of HIV specific cellular and humoral immune response. After boosting with the recombinant HIV Tiantan strain vaccinia virus (rTV), the number of IFN-y spot forming cells per million PBMC was higher in IL-15 coadministrated monkeys than that of HIV vaccine immunized alone monkeys; furthermore, the titer of anti-HIV Env antibody was significantly higher in IL-15 co-immunized group than that in the group without IL-15. Also, flow cytometric analysis indicated that the percentage of CD8+memory T cells in peripheral blood was significantly higher in IL-15 co-immunization group than that in HIV vaccine immunized group at almost all the time points detected, which suggested that IL-15 could promote the turnover of effector T cells into memory T cells.
     Taken together, recombinant IL-15 Tiantan strain vaccinia virus did not augment the immune response induced by recombinant HIV gag vaccinia virus, but made it weaker, suggesting that IL-15 might not be an ideal adjuvant for the Tiantan strain vaccinia virus system. However, in rhesus monkeys, IL-15 plasmid coadministration increased the percentage of memory T cells in the peripheral blood, and augmented the long-lasting humoral immune response, which suggested that IL-15 could enhance the long-time immune response of HIV vaccine.
     The second part of the study is about screening and identification of the CDR3 of TCR V81 in HIV-infected patients along with corresponding antigen epitope peptides.γδT cells, only 1-10% of T lymphocytes in peripheral blood, are the linkage of the innate immunity and the adaptive immunity, and play an important role in anti-tumor and anti-infection immunity. It has been reported that the absolute number ofγδT cells in the peripheral blood of HIV infected patients were 4-5 fold higher than that in healthy controls, and most of theγδT cells in HIV patients were 81 in subtype, which is only 5-10% ofγδT cells in healthy people. On the contrary, Vy9/82γδT cells as the major subtype ofγδT cells in normal were decreased in number and generally anergic during anti-HIV immune response. The mechanism of these changes has not been clarified so far. Our lab focuses on the study ofγδT cells, and has proved that the CDR3 in the TCRδchain is the vital region during the antigen recognition ofγδTCR. Based on the above-mentioned studies, my study included:
     First, PBMCs from 9 HIV infected patients were collected and the cDNA of Vδ1γδTCR were amplified by RT-PCR, and then the cDNA of Vδ1 was connected into pGEM-T vector and sequenced. Two dominant sequences of CDR3δ, CALGVTTALIQ WGFVYTDKLIF(named HP1) and CALGEPPIYFNWGIRVTDKPIF(named HP2) were obtained.
     Secondly, two CDR38 peptides, HP1 and HP2, were used as probes to screen the Ph.D.-12TM Phage Display Peptide Library. Three dominant 12-mers peptides with a common motif of WHW:WHWQWTPWSIQP, WHWNAWNWSSQQ and WHWSWIQNAAPN, were obtained after non-specific elution and specific elution. Then the three 12-mers peptides were synthesized and their biological functions were observed in vitro. The binding of synthesized peptides andγδTCR was identified by ELISA (enzyme-linked immunosorbent assay) and flow cytometry at molecular and cellular levels. Furthermore, the synthesized peptides could stimulate the proliferation ofγδT cells in solid-phase expansion assay by flow cytometry and MTT anaylsis.
     In brief, two dominant CDR3 sequences of TCR81 in peripheral blood of HIV infected patients, and theγδ1 T cell recognized candidate epitope peptides by screening the Ph.D.-12TM Phage Display Peptide Library using the dominant CDR3δas probes were obtained, which support a new research model for the effect of Vδ1 T cells in HIV infections.
引文
1. Borrow P, Lewicki H, Hahn BH, Shaw GM, Oldstone MB.1994. Virus-specific CD8+cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection[J]. J. Virol.1994,68:6103-6110.
    2. Wilson JD, Ogg GS, Allen RL, Davis C, Shaunak S, Downie J, et al. Direct visualization of HIV-1-specific cytotoxic T lymphocytes during primary infection[J]. AIDS 2000,14:225-233.
    3. Musey L, Hughes J, Schacker T, Shea T, Corey L, McElrath MJ. Cytotoxic-T-cell responses, viral load, and disease progression in early human immunodeficiency virus type 1 infection[J]. N Engl J Med 1997,337:1267-1274.
    4. Ogg GS, Jin X, Bonhoeffer S, Dunbar PR, Nowak MA, Monard S, et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA[J]. Science 1998,279:2103-2106.
    5. Borrow P, Lewicki H, Hahn BH, Shaw GM, Oldstone MB. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection[J]. J Virol 1994,68:6103-6110.
    6. Pantaleo G, Demarest JF, Soudeyns H, Graziosi C, Denis F, Adelsberger JW, et al. Major expansion of CD8+T cells with a predominant V beta usage during the primary immune response to HIV[J]. Nature 1994,370:463-467.
    7. Learmont JC, Geczy AF, Mills J, Ashton LJ, Raynes-Greenow CH, Garsia RJ, et al. Immunologic and Virologic Status after 14 to 18 Years of Infection with an Attenuated Strain of HIV-1-A Report from the Sydney Blood Bank Cohort[J]. New Eng1.J.Med.1999,340:1715-1722.
    8. Pitisuttithum P, Berman PW, Phonrat B, Suntharasamai P, Raktham S, Srisuwanvilai LO, et al. Phasel/II study of a candidate vaccine designed against the B and E subtypes of HIV-1[J]. J. Acquir. Immune Defic. Syndr.2004 37:1160-1165.
    9. Desrosiers RC. Prospects for an AIDS vaccine[J]. Nat. Med.2004 10:221-223
    10. C Lekutis, JW Shiver, MA Liu, NL Letvin. HIV-1 env DNA vaccine administered to rhesus monkeys elicits MHC class II-restricted CD4+T helper cells that secrete IFN-gamma and TNF-alpha[J]. J. Immunol.1997,158:4471-4477.
    11. Kotsopoulou E, Kim VN, Kingsman AJ, Kingsman SM, Mitrophanous KA. A Rev-Independent Human Immunodeficiency Virus Type 1 (HIV-1)-Based Vector That Exploits a Codon-Optimized HIV-1 gag-pol Gene[J]. J. Virol.2000,74:4839-4852.
    12. Megede J, Chen MC, Doe B, Schaefer M, Greer CE, Selby M, et al. Increased Expression and Immunogenicity of Sequence-Modified Human Immunodeficiency Virus Type 1 gag Gene[J]. J. Virol.2000,74:2628-2635.
    13. Ourmanov I, Brown CR, Moss B, Carroll M, Wyatt L, Pletneva L, et al. Comparative Efficacy of Recombinant Modified Vaccinia Virus Ankara Expressing Simian Immunodeficiency Virus (SIV) Gag-Pol and/or Env in Macaques Challenged with Pathogenic SIV[J]. J. Virol.2000,74:2740-2751.
    14. Pal R, Venzon D, Letvin NL, Santra S, Montefiori DC, Miller NR, et al. ALVAC-SIV-gag-pol-env-Based Vaccination and Macaque Major Histocompatibility Complex Class I (A*01) Delay Simian Immunodeficiency Virus SIVmac-Induced Immunodeficiency[J]. J. Virol.2002,6:292-302.
    15. Benlahrech A, Harris J, Meiser A, Papagatsias T, Hornig J, Hayes P, et al. Adenovirus vector vaccination induces expansion of memory CD4 T cells with a mucosal homing phenotype that are readily susceptible to HIV-1 [J]. Proc. Natl. Acad. Sci. U S A 2009,106:19940-19945.
    16. Grabstein KH, Eisenman J, Shanebeck K, Rauch C, Srinivasan S, Fung V, et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor[J]. Science.1994,264:965-968.
    17. Waldmann TA, Tagaya Y. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens[J]. Annu. Rev. Immunol.1999,17:19-49.
    18. Diab A, Cohen AD, Alpdogan O, Perales MA. IL-15:targeting CD8+T cells for immunotherapy[J]. Cytotherapy.2005,7:23-35.
    19. Schluns KS, Lefrancois L. Cytokine control of memory T-cell development and survival[J]. Nat Rev Immunol.2003,3:269-279.
    20. Ahmad R, Sindhu ST, Toma E, Morisset R, Ahmad A. Studies on the production of IL-15 in HIV-infected/AIDS patients[J]. J Clin. Immunol.2003,23:81-90.
    21. Boulassel MR, Young M, Routy JP, Sekaly RP, Tremblay C, Rouleau D. Circulating levels of IL-7 but not IL-15, IGF-1, and TGF-beta are elevated during primary HIV-1 infection[J]. HIV. Clin. Trials.2004,5:357-359.
    22. Mueller YM, Bojczuk PM, Halstead ES, Kim AH, Witek J, Altman JD, et al. IL-15 enhances survival and function of HIV-specific CD8+T cells[J]. Blood 2003,101:1024-1029.
    23. Chang KH, Kim JM, Kim HY, Song YG, Choi YH, Park YS, et al. Spontaneous programmed cell death of peripheral blood mononuclear cells from HIV-infected persons is decreased with interleukin-15[J]. Yonsei. Med. J.2000,41:112-118.
    24. Kacani L, Sprinzl GM, Erdei A, Dierich MP. Interleukin-15 enhances HIV-1-driven polyclonal B-cell response in vitro[J]. Exp Clin Immunogenet 1999;16:162-172.
    25. Hayday AC. [gamma][delta] cells:a right time and a right place for a conserved third way of protection[J]. Annu. Rev. Immunol.2000,18:975-1026
    26. Davis MM. The evolutionary and structural'logic'of antigen receptor diversity[J]. Semin. Immunol.2004,16:239-243.
    27. Rock EP, Sibbald PR, Davis MM, Chien YH. CDR3 length in Antigen specific immune Receptors[J]. J. Exp. Med.1994,179:323-328.
    28. Kabelitz D, Glatzel A, Wesch D. Antigen recognition by human γδ T lymphocytes[J]. Int. Arch. Allergy. Immunol.2000,122:1-7.
    29. TJ Allison, CC Winter, JJ Fournie, M Bonneville, DN Garboczi. Structure of a human γδT-cell antigen receptor[J]. Nature.2001,411:820-824.
    30. Adams EJ, Chien YH, Garcia KC. Structure of a gammadelta T cell receptor in complex with the nonclassical MHC T22[J]. Science 2005,308:227-231
    31. Xu C, Zhang H, Hu H, He H, Wang Z, Xu Y, Chen H, Cao W, Zhang S, Cui L, et al. Gammadelta T cells recognize tumor cells via CDR3delta region[J]. Mol. Immunol. 2007,44:302-310.
    32. Gan YH, Malkovsky M. Mechanisms of simian gamma delta T cell cytotoxicity against tumor and immunodeficiency virus-infected cells[J]. Immunol. Lett. 1996,49:191-196.
    33. Behr C, Dubois P. Preferential expansion of V gamma 9 V delta 2 T cells following stimula-tion of peripheral blood lymphocytes with extracts of Plasmodium falciparum[J]. Int. Immunol.1992,4:361-366.
    34. Wallace M, Gan YH, Pauza CD, Malkovsky M. Antiviral activity of primate gamma delta T lymphocytes isolated by magnetic cell sorting[J]. J. Med. Primatol. 1994,23:131-135.
    35. Autran B, Triebel F, Katlama C, Rozenbaum W, Hercend T, Debre P. T cell receptor gamma/delta+lymphocyte subsets during HIV infection[J]. Clin. Exp. Immunol.1989,75:206-210.
    36. DeMaria A, Ferrazin A, Ferrini S, Ciccone E, Terragna A, Mor-etta L, et al. Selective increase of a subset of T cell receptor gamma delta T lymphocytes in the peripheral blood of patients with human immuno-deficiency virus type 1 infection[J]. J. Infect. Dis.1992,165:917-919.
    37. Paoli PD, Gennari D, Martelli P, Basaglia G, Crovatto M, Bat-tistin S, et al. A subset of gamma delta lymphocytes is increased during HIV-1 infection[J]. Clin. Exp. Immunol.1991,83:187-191.
    38. Wesch D, Hinz T, Kabelitz D. Analysis of the TCR Vgamma repertoire in healthy donors and HIV-1-infected individuals[J]. Int. Immunol.1998,10,1067-1075.
    39. Boullier S, Cochet M, Poccia F, Gougeon ML. CDR3-Independent γδ Ⅴδ1+T Cell Expansion in the Peripheral Blood of HIV-Infected Persons[J].J. Immunol 1995,154:1418-1431.
    40. Michael A. Poles, Shady Barsoum, Wenjie Yu, Jian Yu, Patricia Sun, Jeanine Daly, et al. Human Immunodeficiency Virus Type 1 Induces Persistent Changes in Mucosal and Blood γδT Cells despite Suppressive Therapy[J]. J. Virol.2003,77:10456-10467.
    41. Gherardi MM, Perez-Jimenez E, Najera JL, Esteban M. Induction of HIV Immunity in the Genital Tract After Intranasal Delivery of a MVA Vector:Enhanced Immunogenicity After DNA Prime-Modified Vaccinia Virus Ankara Boost Immunization Schedule. J. Immunol.2004,172:6209-6220.
    42. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, et al. Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand. New. Engl. J. Med.2009,361:2209-2220.
    43. Oh S, Berzofsky JA, Burke DS, Waldmann TA, Perera LP. Coadministration of HIV vaccine vectors with vaccinia viruses expressing IL-15 but not IL-2 induces long-lasting cellular immunity[J]. Proc. Natl. Acad. Sci. U S A 2003,100:3392-3397.
    44. Ranasinghe C, Medveczky JC, Woltring D, Gao K, Thomson S, Coupar BE, et al. Evaluation of fowlpox-vaccinia virus prime-boost vaccine strategies for high-level mucosal and systemic immunity against HIV-1 [J]. Vaccine 2006,24:5881-5895.
    45. Bruce T. Seet, J.B. Johnston, Craig R. Brunetti, JohnW. Barrett, Helen Everett, Cheryl Cameron, et al. Poxvirus and Immune evasion[J]. Annu. Rev. Immunol.2003, 21:377-423.
    46. Chong SY, Egan MA, Kutzler MA, Megati S, Masood A, Roopchard V, et al. Comparative ability of plasmid IL-12 and IL-15 to enhance cellular and humoral immune responses elicited by a SIVgag plasmid DNA vaccine and alter disease progression following SHIV(89.6P) challenge in rhesus macaques[J]. Vaccine. 2007,25:4967-82.
    47. Villinger F, Brar SS, Mayne A, Nathaniel Chikkala, Aftab A. Ansari. Comparative Sequence Analysis of Cytokine Genes from Human and Nonhuman Primates'[J]. J. Immunol.1995,155:3946-3954.
    48. Jeffrey D. Ahlers, Igor M. Belyakov. Memories that last forever:strategies for optimizing vaccine T-cell memory[J]. Blood.2010,115:1678-1689.
    49. Scott G Hansen, Cassandra Vieville, Nathan Whizin, Lia Coyne-Johnson, Don C Siess, Derek D Drummond,et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge.[J]. Nature Med.2009,15:293-299.
    50. Li W, Li S, Hu Y, Tang B, Cui L, He W. Efficient augmentation of a long-lasting immune responses in HIV-1 gag DNA vaccination by IL-15 plasmid boosting[J]. Vaccine.2008,26:3282-90.
    51. Adam C. Soloff, Xiangdong Liu, Wentao Gao, Richard D. Day, Andrea Gambotto and Simon M. Barratt-Boyes. Adenovirus 5-and 35-based immunotherapy enhances the strength but not breadth or quality of immunity during chronic SIV infection[J]. Eur. J. Immunol.2009,39:2437-2449.
    52. Davis M, Bjorkman PJ. T-cell antigen receptor genes and T-cell recognition[J]. Nature 1988,334:395-402.
    53. Chen H, He X, Wang Z, Wu D, Zhang H, Xu C, et al. Identification of human T cell receptor gammadelta-recognized epitopes/proteins via CDR3delta peptide-based immunobiochemical strategy[J]. J Biol Chem.2008,283:12528-12537.
    54. He X, Chen H, Wu D, Cui L, He W. Tandem-epitope peptide:A novel stimulator for γδT cells in tumor immunotherapy Tandem-epitope peptide:a novel stimulator for gammadeltaT cells in tumor immunotherapy[J]. Cancer. Lett.2010,288:86-93.
    [1.]Hutchinson JF. The biology and evolution of HIV [J]. Annu Rev Anthropol 2001, 30:85-108.
    [2.]Waldmann TA, Tagaya Y. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens[J]. Annu Rev Immunol 1999; 17:19-49.
    [3.]Diab A, Cohen AD, Alpdogan O, Perales MA. IL-15:targeting CD8+T cells for immunotherapy[J]. Cytotherapy 2005;7(1):23-35.
    [4.]Ahmad A, Ahmad R, Iannello A, Toma E, Morisset R, Sindhu ST. IL-15 and HIV infection:lessons for immunotherapy and vaccination[J]. Curr HIV Res 2005;3(3):261-70.
    [5.]Ahmad R, Sindhu ST, Toma E, Morisset R, Ahmad A. Studies on the production of IL-15 in HIV-infected/AIDS patients[J]. J Clin Immunol 2003;23(2):81-90.
    [6.]Meier UC, Owen RE, Taylor E, Worth A, Naoumov N, Willberg C, et al. Shared alterations in NK cell frequency, phenotype, and function in chronic human immunodeficiency virus and hepatitis C virus infections[J]. J Virol 2005;79(19):12365-74.
    [7.]Boulassel MR, Young M, Routy JP, Sekaly RP, Tremblay C, Rouleau D. Circulating levels of IL-7 but not IL-15, IGF-1, and TGF-beta are elevated during primary HIV-1 infection[J]. HIV Clin Trials 2004;5(5):357-9.
    [8.]d'Ettorre G, Ceccarelli G, Carnevalini M, Forcina G, Zaffiri L, Massetti AP, et al. Central role of interleukin-15 in human immunodeficiency virus (HIV)-infected patients with visceral leishmaniasis[J]. Acta Trop 2006;99(1):83-7.
    [9.]Amicosante M, Poccia F, Gioia C, Montesano C, Topino S, Martini F, et al. Levels of interleukin-15 in plasma may predict a favorable outcome of structured treatment interruption in patients with chronic human immunodeficiency virus infection[J]. J Infect Dis 2003;188(5):661-5.
    [10.]D'Offizi G, Gioia C, Corpolongo A, Martini F, Paganelli R, Volpi I, et al. An IL-15 dependent CD8 T cell response to selected HIV epitopes is related to viral control in early-treated HIV-infected subjects[J]. Int J Immunopathol Pharmacol 2007;20(3):473-85.
    [11.]Stacey AR, Norris PJ, Qin L, Haygreen EA, Taylor E, Heitman J, et al. Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections[J]. J Virol 2009;83(8):3719-33.
    [12.]Walter J, Ghosh MK, Kuhn L, Semrau K, Sinkala M, Kankasa C, et al. High concentrations of interleukin 15 in breast milk are associated with protection against postnatal HIV transmission[J]. J Infect Dis 2009;200(10):1498-502.
    [13.]Ahmad A, Ahmad R, Toma E, Morisset R, Menezes J. Impaired induction of IL-15 in response to herpes simplex virus type 1 infection in peripheral blood mononuclear cells of HIV-infected patients[J]. Aids 2000;14(6):744-6.
    [14.]D'Ettorre G, Forcina G, Andreotti M, Sarmati L, Palmisano L, Galluzzo CM, et al. Discordant response to antiretroviral therapy:HIV isolation, genotypic mutations, T-cell proliferation and cytokine production[J]. Aids 2002;16(14):1877-85.
    [15.]d'Ettorre G, Forcina G, Andreotti M, Sarmati L, Palmisano L, Andreoni M, et al. Interleukin-15 production by monocyte-derived dendritic cells and T cell proliferation in HIV-infected patients with discordant response to highly active antiretroviral therapy[J]. Clin Exp Immunol 2004;135(2):280-5.
    [16.]Quaranta MG, Camponeschi B, Straface E, Malorni W, Viora M. Induction of interleukin-15 production by HIV-1 nef protein:a role in the proliferation of uninfected cells[J]. Exp Cell Res 1999;250(1):112-21.
    [17.]Giordani L, Giacomini E, Quaranta MG, Viora M. HIV-1 Nef protein inhibits the in vitro induction of a specific antibody response to Candida albicans by an early up-regulation of IL-15 production[J]. Clin Exp Immunol 2000; 122(3):358-63.
    [18.]Haas DW, Geraghty DE, Andersen J, Mar J, Motsinger AA, D'Aquila RT, et al. Immunogenetics of CD4 lymphocyte count recovery during antiretroviral therapy: An AIDS Clinical Trials Group study[J]. J Infect Dis 2006; 194(8):1098-107.
    [19.]Bayard-McNeeley M, Doo H, He S, Hafner A, Johnson WD, Jr., Ho JL. Differential effects of interleukin-12, interleukin-15, and interleukin-2 on human immunodeficiency virus type 1 replication in vitro[J]. Clin Diagn Lab Immunol 1996;3(5):547-53.
    [20.]Patki AH, Quinones-Mateu ME, Dorazio D, Yen-Lieberman B, Boom WH, Thomas EK, et al. Activation of antigen-induced lymphocyte proliferation by interleukin-15 without the mitogenic effect of interleukin-2 that may induce human immunodeficiency virus-1 expression[J]. J Clin Invest 1996;98(3):616-21.
    [21.]Al-Harthi L, Roebuck KA, Landay A. Induction of HIV-1 replication by type 1-like cytokines, interleukin (IL)-12 and IL-15:effect on viral transcriptional activation, cellular proliferation, and endogenous cytokine production[J]. J Clin Immunol 1998; 18(2):124-31.
    [22.]Hryniewicz A, Price DA, Moniuszko M, Boasso A, Edghill-Spano Y, West SM, et al. Interleukin-15 but not interleukin-7 abrogates vaccine-induced decrease in virus level in simian immunodeficiency virus mac251-infected macaques[J]. J Immunol 2007;178(6):3492-504.
    [23.]Lum JJ, Schnepple DJ, Nie Z, Sanchez-Dardon J, Mbisa GL, Mihowich J, et al. Differential effects of interleukin-7 and interleukin-15 on NK cell anti-human immunodeficiency virus activity[J]. J Virol 2004;78(11):6033-42.
    [24.]Mastroianni CM, d'Ettorre G, Forcina G, Vullo V. Teaching tired T cells to fight HIV:time to test IL-15 for immunotherapy[J]? Trends Immunol 2004;25(3):121-5.
    [25.]Loubeau M, Ahmad A, Toma E, Menezes J. Enhancement of natural killer and antibody-dependent cytolytic activities of the peripheral blood mononuclear cells of HIV-infected patients by recombinant IL-15[J]. J Acquir Immune Defic Syndr Hum Retrovirol 1997; 16(3):137-45.
    [26.]Lin SJ, Roberts RL, Ank BJ, Nguyen QH, Thomas EK, Stiehm ER. Human immunodeficiency virus (HIV) type-1 GP120-specific cell-mediated cytotoxicity (CMC) and natural killer (NK) activity in HIV-infected (HIV+) subjects: enhancement with interleukin-2(IL-2), IL-12, and IL-15[J]. Clin Immunol Immunopathol 1997;82(2):163-73.
    [27.]Nguyen QH, Roberts RL, Ank BJ, Lin SJ, Thomas EK, Stiehm ER. Interleukin (IL)-15 enhances antibody-dependent cellular cytotoxicity and natural killer activity in neonatal cells[J]. Cell Immunol 1998;185(2):83-92.
    [28.]Lin SJ, Roberts RL, Ank BJ, Nguyen QH, Thomas EK, Stiehm ER. Effect of interleukin (IL)-12 and IL-15 on activated natural killer (ANK) and antibody-dependent cellular cytotoxicity (ADCC) in HIV infection[J]. J Clin Immunol 1998;18(5):335-45.
    [29.]Chang KH, Kim JM, Yoo NC, Kim WH, Park JH, Choi IH, et al. Restoration of P-glycoprotein function is involved in the increase of natural killer activity with exogenous interleukin-15 in human immunodeficiency virus-infected individuals[J]. Yonsei Med J 2000;41(5):600-6.
    [30.]Rodriguez AR, Arulanandam BP, Hodara VL, McClure HM, Cobb EK, Salas MT, et al. Influence of interleukin-15 on CD8+natural killer cells in human immunodeficiency virus type 1-infected chimpanzees[J]. J Gen Virol 2007;88(Pt 2):641-51.
    [31.]Chehimi J, Marshall JD, Salvucci O, Frank I, Chehimi S, Kawecki S, et al. IL-15 enhances immune functions during HIV infection[J]. J Immunol 1997;158(12):5978-87.
    [32.]Naora H, Gougeon ML. Enhanced survival and potent expansion of the natural killer cell population of HIV-infected individuals by exogenous interleukin-15[J]. Immunol Lett 1999;68(2-3):359-67.
    [33.]Strbo N, de Armas L, Liu H, Kolber MA, Lichtenheld M, Pahwa S. IL-21 augments natural killer effector functions in chronically HIV-infected individuals [J]. Aids 2008;22(13):1551-60.
    [34.]Goodier MR, Imami N, Moyle G, Gazzard B, Gotch F. Loss of the CD56hiCD16-NK cell subset and NK cell interferon-gamma production during antiretroviral therapy for HIV-1:partial recovery by human growth hormone[J]. Clin Exp Immunol 2003;134(3):470-6.
    [35.]Vitale M, Caruso A, De Francesco MA, Rodella L, Bozzo L, Garrafa E, et al. HIV-1 matrix protein p17 enhances the proliferative activity of natural killer cells and increases their ability to secrete proinflammatory cytokines[J]. Br J Haematol 2003;120(2):337-43.
    [36.]Hayday AC. [gamma][delta] cells:a right time and a right place for a conserved third way of protection[J]. Annu Rev Immunol 2000;18:975-1026.
    [37.]Dobmeyer TS, Dobmeyer JM, Klein SA, Wesch D, Wagner S, Helm EB, et al. Mechanism of gamma sigma T-cell-mediated inhibition of stem cell differentiation in vitro:possible relevance for myelosuppression in HIV-infected individuals[J]. Cell Immunol 1998;184(1):26-36.
    [38.]Boullier S, Poquet Y, Debord T, Fournie JJ, Gougeon ML. Regulation by cytokines (IL-12, IL-15, IL-4 and IL-10) of the Vgamma9Vdelta2 T cell response to mycobacterial phosphoantigens in responder and anergic HIV-infected persons[J]. Eur J Immunol 1999;29(1):90-9.
    [39.]Mastroianni CM, d'Ettorre G, Forcina G, Lichtner M, Mengoni F, D'Agostino C, et al. Interleukin-15 enhances neutrophil functional activity in patients with human immunodeficiency virus infection[J]. Blood 2000;96(5):1979-84.
    [40.]Agostini C, Zambello R, Facco M, Perin A, Piazza F, Siviero M, et al. CD8 T-cell infiltration in extravascular tissues of patients with human immunodeficiency virus infection. Interleukin-15 upmodulates costimulatory pathways involved in the antigen-presenting cells-T-cell interaction[J]. Blood 1999;93(4):1277-86.
    [41.]Seder RA, Grabstein KH, Berzofsky JA, McDyer JF. Cytokine interactions in human immunodeficiency virus-infected individuals:roles of interleukin (IL)-2, IL-12, and IL-15[J]. J Exp Med 1995; 182(4):1067-77.
    [42.]Lucey DR, Pinto LA, Bethke FR, Rusnak J, Melcher GP, Hashemi FN, et al. In vitro immunologic and virologic effects of interleukin 15 on peripheral blood mononuclear cells from normal donors and human immunodeficiency virus type 1-infected patients[J]. Clin Diagn Lab Immunol 1997;4(1):43-8.
    [43.]Parayath KE, Harrison TS, Levitz SM. Effect of interleukin (IL)-15 priming on IL-12 and interferon-gamma production by pathogen-stimulated peripheral blood mononuclear cells from human immunodeficiency virus-seropositive and-seronegative donors[J]. J Infect Dis 2000;181(2):733-6.
    [44.]d'Ettorre G, Andreotti M, Carnevalini M, Andreoni C, Zaffiri L, Vullo V, et al. Interleukin-15 enhances the secretion of IFN-gamma and CC chemokines by natural killer cells from HIV viremic and aviremic patients[J]. Immunol Lett 2006;103(2):192-5.
    [45.]Oliva A, Kinter AL, Vaccarezza M, Rubbert A, Catanzaro A, Moir S, et al. Natural killer cells from human immunodeficiency virus (HIV)-infected individuals are an important source of CC-chemokines and suppress HIV-1 entry and replication in vitro[J]. J Clin Invest 1998;102(1):223-31.
    [46.]Perera LP, Goldman CK, Waldmann TA. IL-15 induces the expression of chemokines and their receptors in T lymphocytes[J]. J Immunol 1999; 162(5):2606-12.
    [47.]Jourdan P, Vendrell JP, Huguet MF, Segondy M, Bousquet J, Pene J, et al. Cytokines and cell surface molecules independently induce CXCR4 expression on CD4+CCR7+human memory T cells[J]. J Immunol 2000; 165(2):716-24.
    [48.]Hasan MS, Kallas EG, Thomas EK, Looney J, Campbell M, Evans TG. Effects of interleukin-15 on in vitro human T cell proliferation and activation[J]. J Interferon Cytokine Res 2000;20(2):119-23.
    [49.]Bolesta E, Kowalczyk A, Wierzbicki A, Eppolito C, Kaneko Y, Takiguchi M, et al. Increased level and longevity of protective immune responses induced by DNA vaccine expressing the HIV-1 Env glycoprotein when combined with IL-21 and IL-15 gene delivery[J]. J Immunol 2006;177(1):177-91.
    [50.]Kanai T, Thomas EK, Yasutomi Y, Letvin NL. IL-15 stimulates the expansion of AIDS virus-specific CTL[J]. J Immunol 1996;157(8):3681-7.
    [51.]Agostini C, Trentin L, Sancetta R, Facco M, Tassinari C, Cerutti A, et al. Interleukin-15 triggers activation and growth of the CD8 T-cell pool in extravascular tissues of patients with acquired immunodeficiency syndrome[J]. Blood 1997;90(3):1115-23.
    [52.]Caufour P, Le Grand R, Cheret A, Neildez O, Thiebot H, Theodoro F, et al. Longitudinal analysis of CD8(+) T-cell phenotype and IL-7, IL-15 and IL-16 mRNA expression in different tissues during primary simian immunodeficiency virus infection[J]. Microbes Infect 2001;3(3):181-91.
    [53.]Jennes W, Kestens L, Nixon DF, Shacklett BL. Enhanced ELISPOT detection of antigen-specific T cell responses from cryopreserved specimens with addition of both IL-7 and IL-15--the Amplispot assay[J]. J Immunol Methods 2002;270(1):99-108.
    [54.]Calarota SA, Otero M, Hermanstyne K, Lewis M, Rosati M, Felber BK, et al. Use of interleukin 15 to enhance interferon-gamma production by antigen-specific stimulated lymphocytes from rhesus macaques[J]. J Immunol Methods 2003;279(1-2):55-67.
    [55.]Chitnis V, Pahwa R, Pahwa S. Determinants of HIV-specific CD8 T-cell responses in HIV-infected pediatric patients and enhancement of HIV-gag-specific responses with exogenous IL-15[J]. Clin Immunol 2003;107(1):36-45.
    [56.]Munier CM, Zaunders JJ, Ip S, Cooper DA, Kelleher AD. A culture amplified multi-parametric intracellular cytokine assay (CAMP-ICC) for enhanced detection of antigen specific T-cell responses[J]. J Immunol Methods 2009;345(1-2):1-16.
    [57.]Naora H, Gougeon ML. Interleukin-15 is a potent survival factor in the prevention of spontaneous but not CD95-induced apoptosis in CD4 and CD8 T lymphocytes of HIV-infected individuals. Correlation with its ability to increase BCL-2 expression[J]. Cell Death Differ 1999;6(10):1002-11.
    [58.]Chang KH, Kim JM, Kim HY, Song YG, Choi YH, Park YS, et al. Spontaneous programmed cell death of peripheral blood mononuclear cells from HIV-infected persons is decreased with interleukin-15[J]. Yonsei Med J 2000;41(1):112-8.
    [59.]Zaunders JJ, Moutouh-de Parseval L, Kitada S, Reed JC, Rought S, Genini D, et al. Polyclonal proliferation and apoptosis of CCR5+T lymphocytes during primary human immunodeficiency virus type 1 infection:regulation by interleukin (IL)-2, IL-15, and Bcl-2[J]. J Infect Dis 2003;187(11):1735-47.
    [60.]Petrovas C, Mueller YM, Dimitriou ID, Bojczuk PM, Mounzer KC, Witek J, et al. HIV-specific CD8+T cells exhibit markedly reduced levels of Bcl-2 and Bcl-xL[J]. J Immunol 2004;172(7):4444-53.
    [61.]Mueller YM, Bojczuk PM, Halstead ES, Kim AH, Witek J, Altman JD, et al. IL-15 enhances survival and function of HIV-specific CD8+T cells[J]. Blood 2003; 101(3):1024-9.
    [62.]Agostini C, Siviero M, Facco M, Carollo D, Binotto G, Tosoni A, et al. Antiapoptotic effects of IL-15 on pulmonary Tcl cells of patients with human immunodeficiency virus infection[J]. Am J Respir Crit Care Med 2001; 163(2):484-9.
    [63.]Lubong R, Ng HL, Uittenbogaart CH, Yang OO. Culturing of HIV-1-specific cytotoxic T lymphocytes with interleukin-7 and interleukin-15[J]. Virology 2004;325(2):175-80.
    [64.]Naora H, Gougeon M. Activation, survival and apoptosis of CD45RO+and CD45RO-T cells of human immunodeficiency virus-infected individuals:effects of interleukin-15 and comparison with interleukin-2[J]. Immunology 1999;97(2):181-7.
    [65.]Mueller YM, Petrovas C, Bojczuk PM, Dimitriou ID, Beer B, Silvera P, et al. Interleukin-15 increases effector memory CD8+t cells and NK Cells in simian immunodeficiency virus-infected macaques[J]. J Virol 2005;79(8):4877-85.
    [66.]Mueller YM, Do DH, Altork SR, Artlett CM, Gracely EJ, Katsetos CD, et al. IL-15 treatment during acute simian immunodeficiency virus (SIV) infection increases viral set point and accelerates disease progression despite the induction of stronger SIV-specific CD8+T cell responses[J]. J Immunol 2008;180(l):350-60.
    [67.]Kreisberg JF, Yonemoto W, Greene WC. Endogenous factors enhance HIV infection of tissue naive CD4 T cells by stimulating high molecular mass APOBEC3G complex formation[J]. J Exp Med 2006;203(4):865-70.
    [68.]Stopak KS, Chiu YL, Kropp J, Grant RM, Greene WC. Distinct patterns of cytokine regulation of APOBEC3G expression and activity in primary lymphocytes, macrophages, and dendritic cells[J]. J Biol Chem 2007;282(6):3539-46.
    [69.]Lin SJ, Chao HC. Interleukin-15 enhances CD4(+) CD45RA(+) expression on umbilical cord blood mononuclear cells[J]. Pediatr Allergy Immunol 2001;12(4):188-93.
    [70.]Pahwa S. Role of common gamma chain utilizing cytokines for immune reconstitution in HIV infection[J]. Immunol Res 2007;38(1-3):373-86.
    [71.]Picker LJ, Reed-Inderbitzin EF, Hagen SI, Edgar JB, Hansen SG, Legasse A, et al. IL-15 induces CD4 effector memory T cell production and tissue emigration in nonhuman primates[J]. J Clin Invest 2006; 116(6):1514-24.
    [72.]Calarota SA, Dai A, Trocio JN, Weiner DB, Lori F, Lisziewicz J. IL-15 as memory T-cell adjuvant for topical HIV-1 DermaVir vaccine[J]. Vaccine 2008;26(40):5188-95.
    [73.]Zanussi S, D'Andrea M, Simonelli C, Trabattoni D, Bortolin MT, Caggiari L, et al. The effects of CD40 ligation on peripheral blood mononuclear cell interleukin-12 and interleukin-15 production and on monocyte CD 14 surface antigen expression in human immunodeficiency virus-positive patients[J]. Scand J Immunol 1999;49(3):286-92.
    [74.]Dybul M, Mercier G, Belson M, Hallahan CW, Liu S, Perry C, et al. CD40 ligand trimer and IL-12 enhance peripheral blood mononuclear cells and CD4+T cell proliferation and production of IFN-gamma in response to p24 antigen in HIV-infected individuals:potential contribution of anergy to HIV-specific unresponsiveness[J]. J Immunol 2000;165(3):1685-91.
    [75.]Yu Q, Gu JX, Kovacs C, Freedman J, Thomas EK, Ostrowski MA. Cooperation of TNF family members CD40 ligand, receptor activator of NF-kappa B ligand, and TNF-alpha in the activation of dendritic cells and the expansion of viral specific CD8+T cell memory responses in HIV-1-infected and HIV-1-uninfected individuals[J]. J Immunol 2003; 170(4):1797-805.
    [76.]Forcina G, D'Ettorre G, Mastroianni CM, Carnevalini M, Scorzolini L, Ceccarelli G, et al. Interleukin-15 modulates interferon-gamma and beta-chemokine production in patients with HIV infection:implications for immune-based therapy[J]. Cytokine 2004;25(6):283-90.
    [77.]Patterson J, Jesser R, Weinberg A. Distinctive in vitro effects of T-cell growth cytokines on cytomegalovirus-stimulated T-cell responses of HIV-infected HAART recipients[J]. Virology 2008;378(1):48-57.
    [78.]Kinter AL, Godbout EJ, McNally JP, Sereti I, Roby GA, O'Shea MA, et al. The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands[J]. J Immunol 2008;181(10):6738-46.
    [79.]Castelli J, Thomas EK, Gilliet M, Liu YJ, Levy JA. Mature dendritic cells can enhance CD8+cell noncytotoxic anti-HIV responses:the role of IL-15[J]. Blood 2004;103(7):2699-704.
    [80.]White L, Krishnan S, Strbo N, Liu H, Kolber MA, Lichtenheld MG, et al. Differential effects of IL-21 and IL-15 on perforin expression, lysosomal degranulation, and proliferation in CD8 T cells of patients with human immunodeficiency virus-1 (HIV) [J]. Blood 2007;109(9):3873-80.
    [81.]Hogg AE, Bowick GC, Herzog NK, Cloyd MW, Endsley JJ. Induction of granulysin in CD8+T cells by IL-21 and IL-15 is suppressed by human immunodeficiency virus-1 [J]. J Leukoc Biol 2009;86(5):1191-203.
    [82.]Kacani L, Stoiber H, Dierich MP. Role of IL-15 in HIV-1-associated hypergammaglobulinaemia[J]. Clin Exp Immunol 1997;108(1):14-8.
    [83.]Kacani L, Sprinzl GM, Erdei A, Dierich MP. Interleukin-15 enhances HIV-1-driven polyclonal B-cell response in vitro[J]. Exp Clin Immunogenet 1999;16(3):162-72.
    [84.]Ansari AA, Mayne AE, Onlamoon N, Pattanapanyasat K, Mori K, Villinger F. Use of recombinant cytokines for optimized induction of antiviral immunity against SIV in the nonhuman primate model of human AIDS[J]. Immunol Res 2004;29(1-3):1-18.
    [85.]Lori F, Weiner DB, Calarota SA, Kelly LM, Lisziewicz J. Cytokine-adjuvanted HIV-DNA vaccination strategies[J]. Springer Semin Immunopathol 2006;28(3):231-8.
    [86.]Leone A, Picker LJ, Sodora DL. IL-2, IL-7 and IL-15 as immuno-modulators during SIV/HIV vaccination and treatment[J]. Curr HIV Res 2009;7(1):83-90.
    [87.]Xin KQ, Hamajima K, Sasaki S, Tsuji T, Watabe S, Okada E, et al. IL-15 expression plasmid enhances cell-mediated immunity induced by an HIV-1 DNA vaccine[J]. Vaccine 1999;17(7-8):858-66.
    [88.]Oh S, Berzofsky JA, Burke DS, Waldmann TA, Perera LP. Coadministration of HIV vaccine vectors with vaccinia viruses expressing IL-15 but not IL-2 induces long-lasting cellular immunity [J]. Proc Natl Acad Sci U S A 2003;100(6):3392-7.
    [89.]Kutzler MA, Robinson TM, Chattergoon MA, Choo DK, Choo AY, Choe PY, et al. Coimmunization with an optimized IL-15 plasmid results in enhanced function and longevity of CD8 T cells that are partially independent of CD4 T cell help[J]. J Immunol 2005; 175(1):112-23.
    [90.]Li W, Li S, Hu Y, Tang B, Cui L, He W. Efficient augmentation of a long-lasting immune responses in HIV-1 gag DNA vaccination by IL-15 plasmid boosting[J]. Vaccine 2008;26(26):3282-90.
    [91.]Kraynyak KA, Kutzler MA, Cisper NJ, Laddy DJ, Morrow MP, Waldmann TA, et al. Plasmid-encoded interleukin-15 receptor alpha enhances specific immune responses induced by a DNA vaccine in vivo[J]. Hum Gene Ther 2009;20(10):1143-56.
    [92.]Pistello M, Bonci F, Zabogli E, Conti F, Freer G, Maggi F, et al. Env-Expressing Autologous T Lymphocytes Induce Neutralizing Antibody and Afford Marked Protection against Feline Immunodeficiency Virus[J]. J Virol 2010;84(8):3845-56.
    [93.]Nikolich-Zugich J. Non-human primate models of T-cell reconstitution[J]. Semin Immunol 2007; 19(5):310-7.
    [94.]Chong SY, Egan MA, Kutzler MA, Megati S, Masood A, Roopchard V, et al. Comparative ability of plasmid IL-12 and IL-15 to enhance cellular and humoral immune responses elicited by a SIVgag plasmid DNA vaccine and alter disease progression following SHIV(89.6P) challenge in rhesus macaques[J]. Vaccine 2007;25(26):4967-82.
    [95.]Boyer JD, Robinson TM, Kutzler MA, Vansant G, Hokey DA, Kumar S, et al. Protection against simian/human immunodeficiency virus (SHIV) 89.6P in macaques after coimmunization with SHIV antigen and IL-15 plasmid[J]. Proc Natl Acad Sci U S A 2007; 104(47):18648-53.
    [96.]Halwani R, Boyer JD, Yassine-Diab B, Haddad EK, Robinson TM, Kumar S, et al. Therapeutic vaccination with simian immunodeficiency virus (SIV)-DNA+ IL-12 or IL-15 induces distinct CD8 memory subsets in SIV-infected macaques[J]. J Immunol 2008;180(12):7969-79.
    [97.]Soloff AC, Liu X, Gao W, Day RD, Gambotto A, Barratt-Boyes SM. Adenovirus 5-and 35-based immunotherapy enhances the strength but not breadth or quality of immunity during chronic SIV infection[J]. Eur J Immunol 2009;39(9):2437-49.
    [98.]Dubie RA, Maksaereekul S, Shacklett BL, Lemongello D, Cole KS, Villinger F, et al. Co-immunization with IL-15 enhances cellular immune responses induced by a vif-deleted simian immunodeficiency virus proviral DNA vaccine and confers partial protection against vaginal challenge with SIVmac251[J]. Virology 2009;386(1):109-21.
    [99.]Hyrcza MD, Kovacs C, Loutfy M, Halpenny R, Heisler L, Yang S, et al. Distinct transcriptional profiles in ex vivo CD4+and CD8+T cells are established early in human immunodeficiency virus type 1 infection and are characterized by a chronic interferon response as well as extensive transcriptional changes in CD8+T cells[J]. J Virol 2007;81(7):3477-86.
    [100.]Sekaly RP. The failed HIV Merck vaccine study:a step back or a launching point for future vaccine development?[J]. J Exp Med 2008;205(1):7-12.
    [101.]Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, et al. Vaccination with ALVAC and AIDS VAX to prevent HIV-1 infection in Thailand[J]. N Engl J Med 2009;361(23):2209-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700