板栗种质资源遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国板栗(Castanea mollissima)居群分布,按照群体分布及其生态梯度进行(随机)分组取样,研究了板栗9个种群群体的表型多样性及DNA水平多样性,并对表型与DNA二个不同层次的遗传多样性研究进行了比较和评价;应用AFLP分子标记技术,进行供试板栗品种的分子鉴定。主要结果如下:
     (1) 板栗种群表型性状在群体间和群体内都存在极显著差异。群体间表型分化系数为V_(ST)=0.2426;群体内为V_(ST)=0.7574,Shannon信息指数群体内Ⅰ=0.0705,群体间为Ⅰ=9413;板栗群体内的平均表型变异占75.74%,种群内变异是表型变异的主要来源,种群内的多样性大于种群间的多样性。板栗表型性状与EGA(生态梯度)相关显著,随着纬度的南移,坚果逐渐增大,果实由半圆形、圆形向长圆形变化,叶形由长倒卵形向宽倒卵形变化,随着海拔升高,坚果逐渐变小。利用群体间欧氏距离进行UPGMA聚类分析,可将供试群体划分为两大类组,4个亚类。
     (2) 利用筛选出的9对荧光引物,对6个群体共90个品种进行了AFLP标记分析,共得到806条带,其中多态性条带695条,平均多态位点百分率为86.23%。AFLP标记测定的扩增谱带频率的差异,反映了群体间遗传结构的差异,揭示了基因频率在群体间差异显著;群体特异带及群体间共有带的差异与分布揭示了各群体的遗传差异及相似性;板栗遗传多样性在群体间存在真实遗传差异,但遗传多样性52.47%分布于群体内,群体内分化比较严重。群体间的遗传多样性(Dst)为0.0728,群体内遗传多样性(Hs)为0.0804,基因流Nm为0.4529。
     (3) 用AFLP荧光法技术对板栗90个优良品种进行了DNA鉴定,为其中20个品种找到了独一无二的AFLP指纹。其余的品种用2条或3条带完全可以分开。供试板栗品种之间的相似系数均大于0.56,品种间的亲缘关系比较接近。UPGMA聚类分析可以初步将板栗供试品种分为14类,板栗自然群体间的遗传距离有随地理距离跨度递增趋势。
     (4) 表型与DNA分子标记揭示的板栗遗传多样性水平有差异,表型性状比DNA具有更大的变异性,对环境更敏感。二种方法揭示的群体聚类结果较一致,表明这二种方法在评价板栗(同一套试材)遗传多样性中的耦合性较好。本研究为板栗及其它栗属植物种质保存、评价和利用研究提供了可信赖的实验依据。
Based on field investigations and analysis of the natural distribution of Castanea mollissima in P. R. China, 90 varieties of 9 populations of C.Mollissima (Beijing, Hebei, Shandong, Zhejiang, Shanxi, Hubei, Henan, Jiangsu, and Anhui) were selected and investigated. Genetic diversities were evaluated and compared at two levels of morphology(i.e., leaf and nut for 9 populations) and DNA fingerprint(AFLP analysis on 6 populations) . The study was undertaken to identify chestnut(Castanea mollissima) material of varieties in China by Amplified Fragment Length Polymorphism(AFLP) The main results as following:(1) Morphological diversities among/within populations were discussed by analyzing characters such as leaf and nut. Analysis of variance for all characteristics were significantly different among populations and among individuals within population. The mean phenotypic differentiation coefficient (Vst) shows that the variation within population (24.26%) is extremely higher than that among populations(75.74%) which revealed that variation within population were the more important. The nut becomes larger, the shape of the nut changes from spherical, and leaf shape of the longitude and latitude, upon increasing of the lonitude and latitude. The nut gets smaller as the altitude becomes higher. According to the correlation analysis, the populations of C.Mollissima investigated may be divided into two groups and four sub-groups.(2) The AFLP system was built and used for the amplification reaction in the experiment. There were totally 90 individuals were selected and analyzed by amplifications using 9 pairs of AFLP primers screened, 806 bands were obtained, 695 bands (86.23% ) of them were found to be polymorphic. The difference of frequency reflected the differences of genetic structure. The polymorphic bands and common bands showed variation diversity and genetic intercommunity of chestnut germplasm resources. As for C. Mollissima, genetic differentiation coefficient among 6 populations (Gst) is 0.4753. Genetic identities within the 6 populations were 0.0804 , this indicated that the genetic diversity of C. Mollissima were mainly existed within population at molecular level. According to the UPGMA cluster analysis.(3) To obtain AFLP markers in chestnut germplasm resources, the polymophic primers were used. It was found that 20 varieties had unique AFLP fingerprinting. The others could be identified by 2-3 bands. The similar coefficient of materials tested was 0.56. The UPGMA cluster based on AFLP was
    undertaken and a total of 90 chestnut varieties were distinctly classified into 14 types. The genetic distance increased with the enhancing of geographic distance.(4)The diversity levels are different between pheuotype or DNA markers and the former was more sensitive to environment. Genetic cluster analysis is similar based on the results of phenotype and DNA markers which means the coincidence of this two methods applied for evaluating genetic diversity was better. The study is a meaningful approach for evaluating genetic diversity, sampling strategy, conservation and utilization of genetic resources of Castanea.
引文
毕晓颖.苹果属显性矮生主基因分子标记的筛选.沈阳农业大学博士学位论文,2000
    蔡永立,王希华,宋永昌.中国东部亚热带青冈果实形态变异的研究.生态学报,1999,19(4):581~586
    房经贵,刘大钧,章镇,等.两个芒果品种的AFLP指纹图谱.南京农业大学学报,1999,22(2):25~27
    房经贵,乔玉山.AFLP在芒果品种鉴定中的应用.广西植物,2001,21(3):281~283,286
    高捍东,黄宝龙.板栗主要栽培品种的分子鉴别.林业科学,2001,37(1):64~71
    葛颂,王海群,张灿明,等.八面山银杉林德遗传多样性与群体分化.植物学报,1997,39(3):266~271
    顾万春,李斌,游应天.生态梯度轴(EGA)区划林木育种区的研究.生态学报,1997,17(2):58
    顾万春,王琪,游应天,等.森林遗传资源学概论.中国科学技术出版社,北京:1998,154~296
    顾万春.统计遗传学.科学出版社,北京:2004,43
    郎萍,黄宏文.栗属中国特有种居群的遗传多样性及地域差异.植物学报,1999,41(6):651~657
    李俊清.植物遗传多样性及保护研究进展.植物研究,1998,18(2):227-242
    李俊清,吴刚.四川南江两种水青冈种群遗传多样性初步研究。生态学报,1999,19(1):42~49
    李巧明,何田华,许再富,等.濒危植物望天树的遗传多样性和居群遗传结构.分子植物育种,2003,1(6):819~820
    李自超,增亚文.云南地方稻种资源核心种质取样方案研究。中国农业科学,2000,33(5):1~7
    柳鎏.栗属植物遗传多样性保护研究.植物资源与环境,1992,4(1):7~13
    沈永宝,施季森,林同龙.福建建瓯锥栗、茅栗遗传多样性分析.南京林业大学学报,2004,28(6):15~17
    宋婉,续九如,扬凯,等.AFLP技术在中国枣优良品种鉴定中的应用.全国干果生产与科研进展学术研讨会,1999
    王彩虹,王倩,戴洪义,等.与苹果柱型基因(Co)相关的AFLP标记片段的克隆.果树学报,2001,18(4);193~195
    王崇云.植物交配系统与遗传资源的保护和持续利用.云南大学学报,1997,19(增刊):94~97
    王静慧和吴文良,我国燕山板栗生产带的优势、问题与对策研究.中国农业资源与区划,2003,24(4):24~28
    王涛.应用AFLP标记、RAPD标记构建桃遗传连锁图谱及基因定位的研究.中国农业大学博士学位论文,1999
    王同坤和于凤鸣.不同品种过氧化物同功酶研究.河北农业大学学报,1988,15(2):65~67
    王文采.中国植物志(第二十八卷).科学出版社,北京:1980,267~302
    汪小凡,廖万金,宋志平.小毛茛居群的遗传分化及其与空间隔离的相关性.生物多样性,2001, 9(2):138~144
    王晓梅和宋文芹.利用技术筛选与银杏性别相关的分析标记.南开大学学报(自科版),2001,34(1):5~9
    王中仁.等位酶分析的遗传学基础(续).生物多样性,1994,2(4):213~219
    王中仁.植物等位酶分析.北京:科学出版社,1996.
    魏振国和刘维国.矮化板栗表型特征及早期鉴定.落叶果树,2001,33(3):4~6
    夏铭,周晓峰,赵士洞,等.天然蒙古栎群体遗传多样性的RAPD分析.林业科学,2001,37(5):126~133
    项艳,朱苏文,程备久.14个板栗品种遗传多样性的RAPD分析.激光生物学报,2003,12(4):259~263
    阎爱民和.陈文新.苜蓿、草木樨、锦鸡儿根瘤菌的表型多样性分析.生物多样性.1999,7(2):1~8
    杨剑,涂炳坤,谢谱清,等.湖北的主要板栗品种资源及其野生近缘种.广西植物2001,21(2):187—190
    易干军,霍合强,蔡长河,等.适于AFLP分析用的荔枝DNA提取方法.华南农业大学学报,1999,20(3):123—124
    易干军,于晓英,霍合强,等.香蕉种质资源的AFLP鉴别与分类中DNA模板的制备.果树学报,2001,18(6):345 348
    易干军,于晓英,霍合强,等.粉蕉、大蕉和龙牙蕉的AFLP分类研究.园艺学报,2002a,29(5):413—417
    易干军,于晓英,霍合强,等.应用AFLP进行香牙蕉品种(系)的鉴别与分类.果树学报,2002b,19(4):247-251
    余瑛.AFLP标记在苹果属植物分类中的应用.西南农业大学博士学位论文,2000
    恽锐等.蒙古栎、辽东栎的遗传分化:从形态到DNA.植物学报,1997(40):1040-1046
    张峰,宋文芹,陈瑞阳.AFLP-银染法检测植物基因组多态性.细胞生物学杂志,1999,21(2):98-100
    张春晓.林木同工酶遗传多样性研究进展.北京林业大学学报,1998,20(3):58-66
    张辉和柳鎏.板栗在6个同功酶位点上的遗传变异.生物多样性,1998,6(4):282~286
    张辉和柳鎏.板栗群体的遗传多样性及人工选择的影响.云南植物研究,1998,20(1):80~88
    周涵韬,林鹏.海桑属红树植物遗传多样性和引种关系研究.海洋学报,2002,24(5):98~106
    周世良,叶文国.夏蜡梅的遗传多样性及保护.生物多样性,2002,10(1):1~6
    周世良,张方,王中仁.等位酶淀粉凝胶电泳技术中的几个应引起重视的问题.植物学通报,1998,15(5):68~72
    邹喻苹.系统与进化植物学中的分子标记.科学出版社,2001
    祝军,周爱琴,李光晨,等.苹果系矮化砧木指纹图谱的构建与分析.农业生物技术学报,2000,8(1):59-62
    Ajmone M P, Castigliono P, Fusari F, et al. Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor Appl Genet, 1998, 96: 219~227
    Anagnostakis S L, Chestnuts and the introduction of chestnut blight.North Nut Growers Assoc Ann Rep, 1992, 83: 39~42
    Baldoni L, Pellegrini M, Mencuccini M M, et al. Genetic relationships among cultivated and wild olives revealed by AFLP markers, In: Van LHW der plus, Dons JJM, Vanderleyden J , et al. Acta Horticulturae. Belgium, 2000
    Brauner S, Crawford DJ, Stuessy TF. Ribosomal DNA and RAPD variation in the rare plant family Lactoridaceae. Amer J Bot, 1992, 79: 1436~1439.
    Brochmann C, Soltis P S. Recurrent formation and polyphly of Nordic polyploids in Draba(Brassicaceae).Amer.J.Bot.1992, 79(6): 673~688
    Brown A H D, Weir B S.Measuring genetic variation in plant population. Inn: Tanksley S D, Orton T J (eds.), Isozyme in plant genetics and breeding(part A). Amsterdan: Elsevier, 1983, 219~239
    Casasoli M, Mattioni C, Cherubini, et al., A genetic linkage map of European chestnut (Castanea sativa Mill.) based on RAPD, ISSR and isozyme markers. Theor Appl Genet., 2001, 102: 1190~1199
    Cervera M T, Remington D, Frigerio J M, et al. Improved AFLP analysis of tree species. Can. J. For. Res, 2000, 30: 1608~1616
    Chechowitz N. and Chappell D M, et al, Morphological, electrophoretic and ecological analysis of Ouercus macrocarpa population in the Black Hills of South Dakota and Wyoming. Can. J. Bot. 1990, 68: 2185~2194
    Daniel L H, Andrew G C.Principles of Population genetics, Sinauer Associates, Inc., USA, 1989, 110~670
    Dirlewanger E, Duha S, Viruel MA, Saunier R, et al. Identification of peach varieties using molecular markers. Acta Horticulturae. 1998, 465: 69~77
    Diers B W, Keim P, Fehr W R, et al., RFLP analysis of soybean seed protein and oil content.Theor Appl Genet, 1992, 83: 608~612
    Ducousso A, Michaud H, Lumaret. R.Reproduction and gene flow in the genus Quercus.Ann Sci For., 1993, 50: 91~106
    Elsner G, Morphological variability of oak stands (Quercus petraea and Q. robur) in northern Germany. Ann Sci For., 1993, 50: 228~232
    Fineschi S Malvolti ME, Morgante M, et al.Allozyme variation within and among cultivated varieties of sweetchestnut(Castanea sativa). Can. J. For.Res., 1994, 24: 1160~1165
    Goto N Y. Phenetic Clustering of Grapes(Vitis spp)by AFLP Analysis. Breeding science, 2000, 50: 53~57
    Greipsson S and Davy AJ. Seed mass and germination behaviour in population of the dune-buiding grass Leymusarenarius. Ann. of Botany, 1995, 76, 493~501
    Hamrick J. L., Godt M. J. W. Allozyme diversity in plant species. In: Brown A H, Clegg M T, Kahler A L (eds), Plant population genetics, breeding and genetics resources, Sunderland, Mass: Sinauer, 1990, 43~63
    Hamrick J L, Godt M J W, Sherman-Broyes S L. Factors influencing levels diversity in woody plant species. New Forest, 1992, (6): 95~124
    Harpe JL, Lovell PH and Moore KG. The shapes and sizes of seeds. Ann.Rev. of Eco. and Sys., 1970, 1: 327~356
    Hill M, Witsebboer H, Zabeau M, et al. PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactucaspp. Theor Appl Genet, 1996, 93 (4): 1202~1210
    Hu J G, Qurios C F. Identification of broccoli and cauliflower cultivars with RAPD markers. Plant Cell Rep, 1991, 10: 505~511
    Huang H, Dane FG, Norton JD. Allozyme diversity in Chinese, Seguin and American chestnut (Castanea spp.).The APPL genet, 1994, 88: 981~985
    Huang H. Central-China origin of genus Castanea section Eucastanon: a new evidence of allozyme genetic diversity. In: X. Shen (eds). Forest tree improvement in the Asia-Pacific region. Beijing, P.R. China: China Forestry Publishing House.1995, 34~40
    Huang H, Dane FG, Kubisiak. Allozyme AND and RAPD analysis of the genetic and geographic variation in wild population of the American chestnut Castanea dentate (Fagaceae). Am J Bot, 1998
    Jaynes RA.Chestnuts.In: Janick J, Moore JN eds.Advances in Fruit Breeding.West Lafayette Indiana: Pudure UNIVERSITY press, 1975 Casasoli M, Mattioni C, Cherubini M, et al, A genetic linkage map of European chestnut (Castanea sativa Mill.) based on RAPD, ISSR and isozyme markers.Theor Appl Genet, 2001, 102: 1190~1199
    Kim Z S, Yi Cheng Ho, Seock woolee. Genetc variation and sampling strategy for conversation in Pinus species[M].In: Kim Zin-Suh, Hans HH(eds.) Conversation and manipulation of genetic resources in forestry. Soul: Kwang Moon Kag.1994, 294~319
    Koller B, Lehmann A, Mcdermott J M, et al. Identifition of apple cultivar using RAPD markers. Theor Appl Genet, 1993, 85: 901~904
    Lumaret R and Yacine A.Mating system and genetic diversity in Holm Oak (Quercus ilex L. Fagaceae).Biochemical markers in the population genetics of forest trees: 1991,5: 149~153
    Lande R.Thonpson R.Efficiency of marker assisted selection in the improvement of qualatitative traits. Genetics, 1990, 124: 743~756
    Lavi U, Sharon D, Mhameed S, et al. Molecular markers in tropical and subtropical horticulture. Acta Horticulturae. 1998, 49~54
    Leitao JM, Elisiario PJ, Cabrita LF, et al. Molecular markers in genetic variability assessment, cultivar fingerprinting and hybrid identification in fruit and vegetables.Acta Horticulturae, 2000, 521: 185~192
    Lu ZX, Sosinski B, Reighard G L, et al. Construction of a genetic linkage map and identification of AFLP markers for resistance to root—knot nematodes peach rootstocks. Genome, 1998, 41: 199~207
    Margis R, Felix D, Caldas J F, et al. Genetic differentiation among three neighboring Brazil cherry(Eugeniaunmora L.)populations within the Brazilian Atlantic rain forest. Biodiversity and conservation, 2002, 11(1): 149~163
    Mary JW and Hamrick JL. Estimation of mating system parameters of Albizia Julibrissin (Fabaceae). Forest Genetics, 1997, 4(4): 217~221
    Michelle RL, Westoby M, Jurado E. Correlates of seed size variation: acomparison among five temperate flo-ras. Jounal of Ecology.1995, 83: 517~530
    Mitton JB. The dynamic mating system of conifers. New forests, 1992, 6: 197~216
    Nei M. Analysis of gene diversity in subdivided population.Proc Natl Acad Sci, 1973, 70(12): 3321~3323
    Nei M.Estamation of averase heterozygosity and genetic distance from a small number of individuals. Genetics, 1978, (89): 583~590
    Nei M. Molecular Evolutionary Genetics. Columbia Univ. press. New York.1987, 187~192
    Oraguzie NC, Mcneil D, Klinac AG, et al.Genectic relationships in chestnut species and New Zealand chestnut selections using morpho-nut characters, 1998, 99: 27~33
    Pereira S, Fernandez J, Moreno J., Variability and Grouping of Northwestern Spanish Chestnut Cuitivars. I. Morpfological Traits. J.Amer. Soc.Hort.Sci. 1996, 121(2): 183~189
    Petit R J, Bahrman N, Baradat P.Comparison of genetic differentiation in maritime pine (Pinus pinaster Ait) estimated using isozyme, total protein and terpenic loci. Heredity, 1995, 75(4): 382~389
    Powell W, Morgante M, Mndre C. The comparison of RFLP, RAPD, AFLP and SSR(microsatellite) markers for germplasm analysis. Mol Breed, 1996, 2: 225~238
    Powell W, Thomas WTB, Baird E et al. Analysis of quantitative traits in barley by the use of amplified fragment polymorphism. Heredity, 1997, 79: 48~59
    Roach DA and Wulff RD.Maternal effects in plants. Annual Review of Ecology and Systematics, 1987, 18: 209~223
    Rushton B S. Natural hybridization within the genus Quercus. Ann. Sci. For. 1993, 50: 73~90
    Rutter PA, Miller G, Payne JA.Chestnuts. In: Moore JN, er eds. Genetic resourses of temperate fruit and nut crops.The Netherlands: The international Society for Horticultural Science.1990
    Sheldon I.Guttman, Lee A.Weigt. Morphological, electrophoretic, and ecological analysis of Quercus macrocarpa population in the Black Hills of South Dakota and Wyoming. Can. J. Bot. Vol.68, 1990: 2185~2194
    Smith J S C.Diversity of United States hybrid maize germplasm: Isozymic and chromatographic evidence. Crop Sci, 1988, 28: 63~69
    Testulin R, Huang W G, Cipriani G, et al. Towards a linkage map in kiwifruit(Actinidia chinensis Planch.)based on microsatel—lites and saturated with AFLP markers. In: Proceedings of the Fourth International Symposium on kiwifruit. 1999, 498: 79~84
    Tignon M, Kettmann R, Watillon B, et al. AFLP: use for the identification of apple cultivars and mutants. Acta Horticulturae, 2000,219~226
    Toshiya Y, Takehiko S, Kazuo K, et al. Genetic characterization of Asian chestnut varieties assessed by AFLP. Breeding Science, 1998, 48: 359~363
    Van Valen L. Ecological species, multispecies and oaks. Taxon, 1976, (25): 233~239
    Villani F and Pigliucci M, Cherubini M.Evolution of Castanea sativa Mill.in Turkey and Europe. Genet Res Cambridge, 1994, 63: 109~116
    Villani F, Benedettelli S, Paciucci M et al, Genetic variation and differentiation between natural populations of chestnut(Castanea sativa Mill.) from Italy. In: Fineschi S, Malvoti ME, Cannata F eds.Biochemical Markers in the Population Genetics of Forest Trees.The Haugue, The Netherland: SPB academic Publishing by, 1991
    Zabeau M. Selective restriction fragment amplification: a general method for DNA fingerprinting. 1993, European Patent Application. EP 534858A1.
    Zoharry D, Hopf M.Domestication of plants in the old world.Oxford: Clarendon Press, 1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700