水稻抗灰飞虱QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻灰飞虱(Laodelphax striatellus Fallén),属同翅目(Homoptera),飞虱科(Delphacide),是水稻生产上的一种重要害虫,广泛分布于我国各地。灰飞虱除直接刺吸水稻汁液造成为害外,还传播水稻条纹叶枯病和黑条矮缩病等重要病毒病。近年来,灰飞虱种群发生数量呈逐年锐增态势,并于2004年暴发成灾。伴随着灰飞虱大发生,水稻条纹叶枯病也在我国暴发与流行,给水稻生产造成了严重的损失。
     长期以来,对灰飞虱的防治主要依靠施用化学农药,导致灰飞虱种群抗药性不断增强,天敌杀伤严重,环境污染加剧,兼之灰飞虱具有迁飞特性,防治效果并不十分理想。利用品种抗性被认为是防治灰飞虱最为经济有效的方法之一,选育高抗灰飞虱新品种,既能有效防止灰飞虱直接取食为害,也可以阻断灰飞虱传播病毒病。
     本研究在参照标准苗期筛选法的基础上,对该方法进行了适当改进,建立了适用于水稻抗灰飞虱苗期集团鉴定的技术。利用改进的苗期集团筛选法,对138份来自江苏、浙江、云南等地水稻种质进行了抗灰飞虱鉴定与评价,并对其中部分种质进行了抗性特性研究;同时分析了抗虫品种DV85、高抗品种Kasalath和Mudgo对灰飞虱抗性的数量性状基因座。有关研究结果如下:
     1.利用改进的苗期集团鉴定法从138份水稻种质中筛选出对灰飞虱具有不同程度抗性的材料25份,占总鉴定材料的18.1%,其中高抗种质2份,抗性种质9份,中抗材料14份,粳稻品种明显比籼稻品种感虫。对部分材料进行的排驱性、抗生性试验及相关分析表明,Rathu Heenat(iRHT)、Mudgo、Kasalath和IR36对灰飞虱具有强的排驱性和抗生性,其抗性水平与这两种抗虫机制密切相关;道人桥、羊毛谷的抗生性强,但排驱性弱,其主要抗虫类型为抗生性;Dular、ASD7和Milyang 23对灰飞虱具有较强的排驱性和抗生性,表明排驱性和抗生性是这3个品种的重要抗性类型;DV85具有较强的排驱性,但抗生性较弱,窄叶青8号和鬼衣谷具有中等水平的抗生性和排驱性,推测这3个材料具有较好的耐害特性。中抗材料9311的抗性水平由中等排驱性和抗生性控制,V20A的抗性主要表现为排驱性,明恢63和扬粳9538的排驱性与抗生性均较弱,暗示其抗性机制主要是耐害性。上述具有强抗生性或排驱性的材料是理想的抗灰飞虱资源。
     2.籼稻品种DV85对灰飞虱表现明显的苗期抗性,运用改进的苗期集团筛选法,结合排驱性及抗生性测验,鉴定了由81个株系组成的Kinmaze ( japonica) / DV85 ( indica)重组自交系(recombinant inbred lines, RIL)群体的亲本及各株系对灰飞虱的抗性表现。利用Windows QTL Cartographer 2.5进行抗灰飞虱数量性状基因座检测和遗传效应分析。通过苗期集团筛选法,在第11染色体上检测到2个抗性QTLs,即Qsbph11a、Qsbph11b,其LOD值分别为2.51和4.38,贡献率分别为16.7%和27.8%,结合表型值,Qsbph11b应为主效QTL。通过排驱性测验,共检测到3个抗性QTLs,分别位于第3、4、11染色体上,LOD值分别为2.88、2.41和2.39,贡献率为9.17~14.9%,可解释37.5%的总表型变异。此外,在第3、11染色体上分别检测到1个抗生性相关QTL,其LOD值分别为2.79和2.33,贡献率分别为12.4%和13.5%。通过上述3种方法,均在11染色体上的XNpb202~C1172标记区间检测到1个抗性QTL,且其抗性效应均来自DV85,说明该抗性位点能够稳定表达。上述抗性QTL及其相应的连锁标记,可望在聚合多个抗性基因的分子标记辅助选择育种中加以应用。
     3.水稻品种Kasalath高抗灰飞虱,对灰飞虱表现出强的排驱性和抗生性。为了进一步解析该品种的抗性机理,利用Nipponbare/ Kasalath//Nipponbare回交重组自交系群体进行水稻抗灰飞虱数量性状基因座分析。通过Windows QTL Cartographer 2.5进行复合区间作图发现,在苗期集团接虫试验中,于第3、11染色体上共检测到3个抗灰飞虱QTL位点Qsbph3b、Qsbph11d、Qsbph11e,其LOD值分别为3.14、2.95和4.12,贡献率为13.8%、12.6%和23.5%。从其加性效应看出,增强抗性的基因效应分别来自于Kasalath、Nipponbare和Kasalath。通过排驱性测验,检测到3个对灰飞虱具有排驱性的QTLs(Qsbph3c、Qsbph8和Qsbph11f),分别位于第3、8、11染色体上,各QTL的LOD值分别为3.19、2.58和3.36,贡献率为10.3 %~13.6 %,可解释群体表型总变异的36.4 %。抗生性研究表明,在第2、11染色体上各存在1个抗性QTL位点Qsbph2、Qsbph11g,LOD值分别为3.23和3.52,贡献率为13.8%和14.7%,加性效应显示这2个数量性状基因座对灰飞虱的抗性均来自抗虫亲本Kasalath。通过三种不同的表型鉴定方法分别检测到的Qsbph11e、Qsbph11f和Qsbph11g,均位于第11染色体上标记S2260~G257之间,表明该位点对Kasalath的抗性表现起着重要作用。与这些数量性状基因座连锁的分子标记,可望应用于培育对灰飞虱具有持久抗性水稻新品种的育种实践中。
     4.Mudgo是一个高抗稻飞虱的籼稻品种,对灰飞虱具有强的排驱性和抗生性抗性。本研究利用Mudgo/武育粳3号F2群体,构建了含有177个单株的F2群体的遗传连锁图谱。该连锁图包含104个SSR标记和3个Indel标记,覆盖整个水稻基因组1409.9 cM ,每两个标记之间的平均距离为13.2 cM。采用改进的苗期集团筛选法对177个F2:3家系进行了抗性鉴定,通过Windows QTL Cartographer 2.5进行复合区间作图分析,在第2、3、12染色体上各检测到1个抗灰飞虱QTL位点Qsbph2b、Qsbph3d和Qsbph12a,分别位于标记RM5791~RM29、RM3199~RM5442和I12-17~RM333 1之间,单个LOD值分别为3.25、3.11和6.82,贡献率为15.6%~35.3%,可解释68.7%的总表型变异。其中Qsbph12a与标记RM3331和I12-17紧密连锁。加性效应表明,各QTL增强抗性的等位基因效应均来自于Mudgo。结合表型鉴定的结果,Qsbph12a应为抗灰飞虱主效QTL,与该位点紧密连锁的标记可用于进行抗灰飞虱快速选择辅助育种。
The small brown planthopper (SBPH), Laodelphax striatellus Fallén (Homoptera: Delphacide), is an economically important pest in rice (Oryza sativa L.) and distributes widely in China. It not only causes direct damage by sucking plant sap but also transmits several viral diseases such as rice stripe virus (RSV) and rice black-streaked dwarf virus (RBSDV), which often cause major yield losses. In recent years, the damage caused by SBPH feeding and the diseases transmitted by this planthopper has been increasing in China and the outbreak occurred in 2004, which caused serious rice yield reduction.
     Protection against SBPH pest has depended mostly on insecticides in the past years, which has led to enhanced resistance of SBPH to chemicals, natural enemy death and environmental pollution and then caused the pest resurgence. Host resistance has been recognized as one of the most economic and effective measures in controlling SBPH. The varieties, highly resistant to SBPH can control this planthopper effectively as well as RSV due to prevention of transmission of virus.
     Based on the trait of SBPH, a seedling screening technique suitable for SBPH has been established by way of proper modification of standard seedbox screening test. 138 rice accessions, collected from Jiangsu, Zhejiang and Yunnan Province were screened for resistance to SBPH by seedbox screening test with modification. Mechanism of resistance to SBPH in some varieties was analyzed. Then, QTLs for SBPH resistance in‘DV85’,‘Kasalath’and‘Mudgo’was detected. The results were as follows:
     1.Out of the one hundred and thirty-eight rice accessions, twenty-five entries with different level of resistance to SBPH were detected, accounting for 18.1% of the total accessions, including 2 highly resistant, 9 resistant and 14 moderately resistant varieties. Compared with indica rice, japonica rice was more susceptible to SBPH. Antixenosis test, antibiosis test and correlation analysis were performed to elucidate resistance mechanism. The highly resistant varieties such as Rathu Heenat(iRHT), Mudgo and Kasalath and resistant IR36 expressed strong antixenosis and antibiosis against SBPH, indicating the close relationship between resistance level and these two resistance mechanisms in the four rice varieties. Antibiosis was the dominant resistance pattern in the resistant varieties Daorenqiao and Yangmaogu due to their high antibiosis but low antixenosis. Dular, ASD7 and Milyang23 had relatively strong antixenosis and antibiosis, indicating the two resistance mechanisms were significant in these three varieties. The resistant DV85 expressed relatively high level of antixenosis but low antibiosis, while Zhaiyeqing 8 and Guiyigu conferred only moderate antibiosis and antixenosis to SBPH, suggesting tolerance in these three varieties. Antibiosis and antixenosis governed the resistance to SBPH in the moderately resistant accession 9311. Antixenosis was the main resistance type in V20A. Tolerance was considered to be an important resistance mechanism in Minghui 63 and Yangjing 9538 due to their poor antibiosis and antixenosis resistance. The above accessions with strong antibiosis or antixenosis were the ideal candidate for resistance breeding.
     2.The indica rice‘DV85’showed resistance to SBPH at the seedling stage. A mapping population consisting of 81 recombinant inbred lines (RILs), derived from a cross between a japonica cultivar Kinmaze and an indica rice DV85, was used to detect quantitative trait loci (QTLs) for the resistance to SBPH. Modified seedling screening test (MSST), along with antixenosis test and antibiosis test were applied to evaluate the resistance response of the two parents and 81 RILs to SBPH and composite interval mapping (CIM) was used for QTL analysis. When the resistance was measured by MSST method, two QTLs conferring resistance to SBPH were mapped on chromosome 11, namely Qsbph11a and Qsbph11b, with log of odds (LOD) scores 2.51 and 4.38, respectively. The two QTLs explained 16.7% and 27.8% of the phenotypic variance in this population, respectively. A total of three QTLs controlling antixenosis against SBPH were detected on chromosomes 3, 4 and 11, respectively, accounting for 37.5% of the total phenotypic variance. Two QTLs expressing antibiosis to SBPH were mapped on chromosomes 3 and 11, respectively, explaining 25.9% of the total phenotypic variance. The identified QTL located between markers XNpb202 and C1172 on chromosome 11 was detected repeatedly by three different screening methods and therefore may be important to confer the resistance to SBPH. Once confirmed in other mapping populations, these QTLs should be useful in breeding for resistance to SBPH by marker-assisted selection of different resistance genes in rice varieties.
     3.An indica variety,‘Kasalath’is highly resistant to SBPH, which expresses strong antixenosis and antibiosis against SBPH. A mapping population of 98 BC1F9 lines (Backcross inbred lines: BILs), derived from a backcross of Nipponbare (japonica) / Kasalath (indica) // Nipponbare by the single-seed descent methods, was applied to detect quantitative trait loci (QTLs) for resistance to SBPH. In the modified seedbox screening test, three QTLs for SBPH resistance were mapped on chromosomes 3 and 11, namely Qsbph3c, Qsbph8 and Qsbph11f, with LOD scores 3.14, 2.95 and 4.12, explaining 13.8%, 12.6% and 23.5% of the phenotypic variance in this population, respectively. As indicated by the additive effect, resistance alleles at Qsbph3c, Qsbph8 and Qsbph11f derived from Kasalath, Nipponbare and Kasalath, respectively. In the antixenosis, a total of three QTLs(Qsbph3c, Qsbph8 and Qsbph11f)conferring antixenosis against SBPH were detected on chromosome 3, 8 and 11, with LOD scores 3.19, 2.58 and 3.36, respectively, accounting for 36.4% of the total phenotypic variance. In addition, two QTLs, Qsbph2 and Qsbph11g, which came from Kasalath, expressing antibiosis to SBPH were detected on chromosomes 2 and 11, with LOD scores 3.23 and 3.52, respectively. Individual QTL accounted for 13.8% and 14.7% of the phenotypic variance. Qsbph11e, Qsbph11f and Qsbph11g were located in the region between S2260 and G257 on chromosome 11, indicating the locus is significant in conferring resistance in Kasalath. The molecular markers linked to these QTLs should be useful in breeding of varieties with horizontal resistance to SBPH.
     4.The indica rice‘Mudgo’expressed high resistance to SBPH, with strong antixenosis and antibiosis against SBPH. A genetic linkage map constructed from a F2 population, derived from a cross of‘Mudgo’and‘Wuyujing 3’was used for mapping QTLs associated with resistance to SBPH. The linkage map comprised of 104 SSR and 3 Indel markers and covered 1409.9 cM of the rice genome with an average marker interval of 13.2 cM. One hundred and seventy-seven F2:3 families were identified for resistance to SBPH by way of seedbox screening test with modification. A total of three QTLs such as Qsbph2b, Qsbph3d and Qsbph12a conferring resistance to SBPH were detected on chromosome 3, 8 and 11, locating in the region of RM5791~RM29, RM3199~RM5442 and I12-17~RM3331, with LOD scores 3.19, 2.58 and 3.36, respectively, accounting for 68.7 % of the total phenotypic variance observed in this population. As showed by the additive effect, resistance alleles at Qsbph2b, Qsbph3d and Qsbph12a came from Mudgo. The locus Qsbph12a, with 35.3% of variance explained, was linked tightly to the makers RM3331 and I12-17, which were useful in breeding for resistance to SBPH by rapid marker-assisted selection.
引文
1. 蔡邦华,黄复生,冯维熊等.华北稻区灰稻虱的研究.昆虫学报,1964,13(4):552~570.
    2. 陈建明,俞晓平,吕仲贤,郑许松,徐红星,程家安,刘光杰. 水稻品种对白背飞虱的耐虫性反应及稻株营养成分的变化. 应用生态学报,2003,14 (12):2246~2250.
    3. 崔建平, 仲泉, 李文卓, 严健, 沈大棱. 灰飞虱Wolbachia群体生物学的遗传特性研究. 复旦学报 (自然科学版),1998,37 (4): 542~546.
    4. 丁可军. 水稻品种抗虫性对白背飞虱种群控制作用. 华南农业大学学报,1993,14 (3): 37~41.
    5. 丁秀兰, 江玲, 刘世家, 王春明, 陈亮明, 程兆榜, 范永坚, 周益军, 万建民. 利用重组自交系群体检测水稻条纹叶枯病抗性基因. 遗传学报. 2004, 31 (3): 287~292.
    6. 顾伯良, 薛萍霞, 施文贤, 等. 水稻灰飞虱转移穗部为害及其对产量损失的观察. 中国植保导刊, 2005, 25 (5): 7~8.
    7. 顾开联, 王兆唐, 杨根, 马林, 徐加健.灰飞虱与水稻条纹叶枯病大暴发的因果关系及控制途径. 安徽农业科学, 2005, 33 (1): 44.
    8. 郝丹青,顾才东,洪波.灰飞虱发生规律与防治.宁夏农学院学报,1995,16(1):74~78.
    9. 何国民,陈权志,林义钱. 不同品种杂交水稻对黑条矮缩病抗(耐)病性研究. 中国植保导刊,2005,25 (5): 14~15.
    10. 胡国文,梁天锡,刘光杰, 楼小华, 马巨法, 吴园生, 唐健. 抗白背飞虱品种挥发性次生物质的提取、组分鉴定与生测. 中国水稻科学,1994, 8 (4): 223~230.
    11. 胡国文,马巨法,唐健,盛仙俏. Nabeshi等14个台湾品种对白背飞虱的抗生性测定初报. 中国水稻科学,1989,3 (3): 138~140.
    12. 胡国文,毛立新,唐健, 朱明华,胡中和. 水稻品种资源对白背飞虱的抗性鉴定. 昆虫知识,1988b, 25(3): 129~131.
    13. 胡国文,唐健,马巨法, 姜文正, 饶宪章. 江西省稻种资源抗白背飞虱鉴定. 江西农业科技,1988a, 3: 28.
    14. 胡淑霞. 论植物病毒的传毒介体及传播方式.生物学杂志. 1997, 14 (5): 33~34.
    15. 黄次伟,冯炳灿,王焕弟, 姚静,宋丽君. 白背飞虱生物学特性和防治研究. 浙江农业科学,1982, (3): 138~141.
    16. 姜人春, 赖风香, 王桂荣. 稻褐飞虱实验种群致害性的遗传分析. 西南农业大学学报. 1998,20(5):438~441.
    17. 李洪山,赵阳,李红阳,李慈厚. RSV传毒媒介灰飞虱种群转移扩散规律及其数量控制技术. 江苏农业科学,2004,2:39~40.
    18. 李济哀,李桂珍,高立起,李青松. 灰飞虱发生规律的研究. 北京农业科学,1998, 16 (6): 24~27.
    19. 李西明,刘光杰,马良勇, 胡国文, 闵绍楷, 马巨法. 水稻抗白背飞虱的资源发掘及其抗性遗传分析. 中国水稻科学,1996, 10 (3): 173~176.
    20. 李西明,马良勇,刘光杰,庄杰云. 农香 16 等六个水稻新品种(系)对白背飞虱抗性的遗传分析,中国农业科学,2001, 34(6): 615~618.
    21. 李西明. 水稻白背飞虱新抗源的发掘、遗传研究和新抗性基因的分子定位 [博士学位论文]. 南京:南京农业大学,2003.
    22. 梁小波, 鲁瑞芳, 吴云锋, 彭学贤. 植物病毒昆虫介体传播的研究进展. 生物工程进展, 2001, 21 (4): 9~15.
    23. 廖富荣. 水稻条纹病毒及其介体灰飞虱的遗传多样性 [硕士学位论文]. 福州:福建农林大学,2004.
    24. 廖珊,康琳,陈小爱,叶鑫,李昌本. Wolbachia在灰飞虱体内的分布. 复旦学报(自然科学版), 2001, 40 (5): 539~543.
    25. 林含新, 林奇田, 魏太云, 吴祖建, 林奇英, 谢联辉. 水稻品种对水稻条纹病毒及其介体灰飞虱的抗性鉴定. 福建农业大学学报, 2000, 29 (4): 453~458.
    26. 林莉,刘玉彬,包绍水,李晓铭. 灰飞虱生物学特性及传毒特性研究初报. 云南农业科技,1990, 3: 16~20.
    27. 林莉,徐云,刘玉彬,包绍录,刑玉仙. 灰飞虱传播水稻条纹病毒的特性. 植物保护学报,1996,23(3):16~20.
    28. 林凌伟,董国,汪恩国. 水稻黑条矮缩病传毒昆虫的防治实践与研究. 昆虫知识,2001,3 (6):426~428.
    29. 林奇英,谢联辉,周仲驹, 谢莉妍, 吴祖建. 水稻条纹叶枯病的研究I. 病害的分布和损失. 福建农学院学报,1990,19(4):421~425.
    30. 林友伟, 张晓梅, 沈晋良. 亚洲稻区灰飞虱抗药性研究进展. 昆虫知识,2005,42 (1):28~36.
    31. 林友伟,林美珍,沈晋良.灰飞虱对几种农药的敏感性.中国农村科技,2005,1:30.
    32. 林志伟, 刘宏毅, 刘洋, 辛惠普. 寒地灰飞虱田间发生规律的研究. 黑龙江农业科学, 2004,(6) : 24~26.
    33. 刘芳,戴志一,胡国文, 等. 不同类型水稻品种对白背飞虱忌避性,抗生性和耐害性的测定. 中国水稻科学,1998, 12 (3): 189~192.
    34. 刘光杰,Ibabao M G, Saxena R C, Juliano B O. 白背飞虱在抗感稻株分泌蜜露的氨基酸分析,中国水稻科学,1993, 7 (2): 117~119.
    35. 刘光杰,Wilkins R M, Saxena R C. 白背飞虱对不同抗性稻株糖类物质的利用. 昆虫学报,1995, 38 (4): 421~427.
    36. 刘国庆, 颜辉煌, 傅强, 钱前, 张志涛, 翟文学, 朱立煌. 栽培稻的紧穗野生稻抗褐飞虱主效基因的遗传定位. 科学通报,2001,46 (9): 738~742.
    37. 刘向东,翟保平,刘慈明. 灰飞虱种群暴发成灾原因剖析. 昆虫知识,2006, 43 (2): 141~146.
    38. 鲁守强,江东流,刘理.浅析不同栽培因素对水稻条纹叶枯病发生程度的影响.中国植保导刊,2005,5:35~36.
    39. 马良勇, 庄杰云, 刘光杰, 阂绍楷, 李西明. 水稻抗白背飞虱新基因 Wbph6(t) 的初步定位. 中国水稻科学,2002, 16 (1): 15~18.
    40. 马学文, 陈思宏, 王兆伦. 2000年洪泽县水稻条纹叶枯病大面积发生. 植保技术与推广, 2001, 21(1): 41.
    41. 浦茂华.苏南灰稻虱(Laodelphax striatellus Fallen)的初步研究.昆虫学报,1963,12(2):117~135.
    42. 秦文胜,高东明,陈声祥. 灰稻虱体内稻条叶枯病毒快速检测技术研究. 浙江农业学报, 1994, 6(4): 226~229.
    43. 曲志才, 马向前, 白逢伟, 叶鸣明, 潘重光, 沈大棱. 活跃传毒介体灰飞虱 (Laodelphax striatellus) 品系的杂交与选育. 复旦学报 (自然科学版), 2002, 41(6): 684~687.
    44. 任寿美, 徐优良, 王中信, 包志军, 蔡宏芹. 灰飞虱大发生年份的防治对策. 现代农业科技(上半月刊) , 2005, (06): 22.
    45. 三宅利雄.ウンカの长短翅型发现と寄主转换.植物防疫,1959,13(7):311~314.
    46. 施燕. 灰飞虱种群消长规律及传毒特性研究 [硕士学位论文]. 扬州:扬州大学,2007,25~32.
    47. 史明武, 邢卫锋, 韩方胜, 王加成, 李毅, 陈长红, 沈军. 淮北中稻区水稻条纹叶枯病发生特点与对策. 作物杂志, 2003, 3: 20~21.
    48. 苏昌潮,程遐年,翟虎渠,万建民. 利用回交重组自交群体检测水稻抗褐飞虱数量性状基因座. 遗传学报,2002, 29 (4): 332~339.
    49. 孙黛珍, 江玲, 张迎信, 程遐年, 王春明, 翟虎渠, 万建民. 8 个水稻品种对条纹叶枯病抗性特性的研究. 中国水稻科学,2006,20(2):219~222.
    50. 孙立宏. 水稻品种抗褐飞虱基因的定位及分子标记辅助选择 [硕士学位论文]. 南京,南京农业大学, 2005.
    51. 孙兴全, 吴静菊, 吴爱忠, 支月娥. 灰飞虱生物学特性研究. 上海农学院学报, 2000, 18 (2): 150~154.
    52. 邰德良,李瑛,梅爱中,丁志宽,王春兰,仲凤翔. 2004年稻田灰飞虱重发原因分析与控制对策. 中国植保导刊,2005,25(3):33~35.
    53. 谭荫初. 水稻植株内的氨基酸与病虫害关系. 植物保护,1993,19(6): 28~29.
    54. 谭玉娟,陈峰. 15 个水稻品种对褐飞虱的抗性. 广东农业科学,1987 (2): 16~19.
    55. 谭玉娟,黄炳超,张扬. 抗褐飞虱生物型 1 和 2 的水稻新品种-粳籼 89. 植物保护学报,1995, 22(1): 91~92.
    56. 万由衷, 曲志才, 曹清玉, 沈大棱. 不同种群灰飞虱 (Laodelphax striatellus) 的RAPD分析. 复旦学报(自然科学版), 2001, 40 (5): 535~538.
    57. 汪恩国, 关梅萍, 林凌伟. 水稻黑条矮缩病发病规律研究. 植物保护, 2002, 28 (2): 23~24.
    58. 汪恩国,王华弟,关梅萍,陈克松. 杂交水稻黑条矮缩病的为害及防治指标初探. 中国农学通报,2005,21(1): 278~282.
    59. 汪恩国. 灰飞虱种群数量变动规律与模型测报技术研究. 植物保护,2007,33(3):102~107.
    60. 王布哪, 黄臻, 舒理慧, 任翔, 李香花, 何光存. 两个来源于野生稻的抗褐飞虱新基因的分子标记定位. 科学通报, 2001, 46 (1): 46~49.
    61. 王德民,皖石. 稻飞虱和稻叶蝉的防治. 天津:天津科学技术出版社, 1992.
    62. 王德全. 水稻黑条矮缩病和玉米粗缩病的发生特点及防治策略. 湖北植保, 2000, 3: 7~10.
    63. 王桂荣, 樊叶杨, 庄杰云, 郑康乐, 张志涛. 稻褐飞虱的遗传变异性分析. 昆虫学报, 2001, 44(1): 123~126.
    64. 王建军, 俞晓平, 吕仲贤, 陶林勇, 石守鋆, 董文其. 釉型杂交水稻抗褐飞虱育种研究. 中国水稻科学, 1999, 13 (4): 242~244.
    65. 王泉章,李瑛,邰德良,等.锐劲特等农药防治水稻穗期灰飞虱田间药效.现代农药,2005,4(1):46~47.
    66. 魏太云. 水稻条纹病毒的基因组结构及分子群体遗传 [博士学位论文]. 福州,福建农业大学,2003.
    67. 巫国瑞,俞晓平,Saxena R C. 水稻品种对白背飞虱的抗性表现. 植物保护,1991,17(4):
    15~16.
    68. 吴爱忠, 赵艳, 曲志才, 沈大棱, 潘重光, 苏德明. 水稻条叶枯病毒(RSV)的 SP 蛋白在介体灰飞虱内的亚细胞定位. 科学通报,2001,46 (14): 1183~1186.
    69. 吴雪芬,张国彪,林茂松,陈军.水稻条纹叶枯病暴发原因及其防治对策研究.中国农学通报,2005,21(2): 237~241.
    70. 夏温澍.武昌灰稻虱的初步研究.昆虫学报,1962,11(2): 105~117.
    71. 谢联辉, 林奇英, 朱其亮. 水稻簇矮病的研究II病害的分别、损失、寄主和越冬. 植物病理学报,2001,12(4):16~20.
    72. 徐晓兰, 张银贵, 杨爱国. 灰飞虱不同虫量与水稻条纹叶枯病发病的相关性研究. 中国植保导刊, 2005, 25 (3): 5~6.
    73. 许骏,赵艳,吴爱忠,潘重光,曲志才,沈大棱,苏德明. 不同地区灰飞虱群体的 RA PD分析. 上海交通大学学报 (农业科学版), 2001, 19 (1): 20~23.
    74. 杨荣明,刁春友,朱叶芹. 江苏省水稻条纹叶枯病上升原因及防治对策. 植保技术与推广, 2002, 22(3): 9~12.
    75. 俞晓平,巫国瑞,陶林勇. 褐飞虱和白背飞虱在水稻品种上的为害特征. 中国水稻科学,1991, 5 (2): 91~93.
    76. 俞晓平. 水稻抗虫品种对褐飞虱和白背飞虱种群增长影响. 中国水稻科学,1993,7 (2): 88~94.
    77. 俞晓平. 水稻品种对白背飞虱的抗性及其与稻株营养成分的关系. 中国水稻科学, 1989, 3 (2): 51~56.
    78. 张宏.寄主植物对灰飞虱种群的影响及翅型分化机制研究[硕士学位论文].扬州,扬州大学,2006,23~35.
    79. 张惠琴,张水妹,周奶弟. 水稻黑条矮缩病暴发原因及防治对策. 江西植保, 2003, 26 (1): 9~10.
    80. 张景飞,龚林根,瞿燕,屈惠良. 2004 年常熟市 5、6 代灰飞虱严重为害水稻穗部. 中国植保导刊,2005,25(4):39.
    81. 张文辉. 水稻抗白背飞虱近等基因系的抗性观察及其机理研究 [硕士学位论文]. 北京,中国农业科学院研究生院,2001.
    82. 张彦英,张弘.吡虫啉抗性产生的可能与治理.农药,1999,38(4):22~23.
    83. 赵建周.害虫对吡虫啉抗性的研究进展.植物保护,1998,24(6):40~41.
    84. 朱绍先,邬楚中,杜景佑.稻飞虱及其防治. 上海:上海科学技术出版社,1984.
    85. 祝树德.水稻条纹叶枯病及灰飞虱防治理论与技术.水稻丰产高效技术及理论第四篇,2005,93~117.
    86. Alam S N, Cohen M B. Detection and analysis of QTLs for resistance to the brown planthopper, Nilaparvata lugens, in a doubled~haploid rice population. Theoretical and Applied Genetics, 1998b, 97: 1370~1379.
    87. Alam S N, Cohen M B. Durability of brown plnathopper, Nilaparvata lugens, resistance in rice variety IR64 in greenhouse selection studies. Entomologia Experimentalis et Applicata, 1998a, 89: 71~78.
    88. Alborn H T, Turlings T C J, Jones T H, Stenhagen G, Loughrin J H, Tumlinson J H. An elicitor of plant volatiles from beet armyworm oral secretion. Science, 1997, 276: 945~949.
    89. Angeles E R, Khush G S, Heinrichs E A. New genes for resistance to whitebacked planthopper in rice. Crop Science, 1981, 21: 47~50.
    90. Athwal D S, Pathak M D, Bacalangco E H, Pura C D. Genetics of resistance to brown planthoppers and green leaf hoppers in Oryza sativa L. Crop Science, 1971, 11: 747~750.
    91. Basten, C J, Weir B S, Zeng Z B. QTL Cartographer, Version 1.16. 2002. Department of statistics, North Carolina State University, Raleigh, NC. http://www.statgen.ncsu.edu/qtlcart.
    92. Beard C B, O’Neill S L, Mason P. Nucleotide genetic transformation and phylogeny of bacteria symbionts from tsetse. Insect Molecular Biology,1993,1(3): 123~131.
    93. Besson E, Dellamonica G, Chopin J, Markham K R, Kim M, Koh H, Fuka H. C-Glycosylflavones from rice plant involved in planthopper feeding. Phytochemistry, 1985, 24:1061~1064.
    94. Bostock R M. Signal conflicts and synergies in induced resistance to multiple attackers. Physiol Mol Plant Path, 1999, 55: 99~109.
    95. Bouchard E, Michaud D, Cloutier C. Molecular interactions between an insect predator and its herbivore prey on transgenic potato expressing a cysteine proteinase inhibitor from rice. Molecular Ecology, 2003, 12: 2429~2437.
    96. Bourtzis K, Dobson S L, Braig H R, O’Neill S L. Rescuing Wolbachia have been overlooked. Nature, 1998, 391: 852~853.
    97. Cai L J, Ma X Z, Kang L, Deng K J, Zhao S Y, Li C B. Detecting rice stripe virus (RSV) in thesmall brown planthopper (Laodelphax striatellus) with high specificity by RT-PCR. Journal of Virological Methods, 2003, 112 (1-2): 115~120.
    98. Chen J W, Wang L, Pang X F, Pan Q H. Genetic analysis and fine mapping of a rice brown planthopper (Nilaparvata lugens St?l) resistance gene bph19 (t). Molecular genetics and Genomics, 2006, 1: 1~9.
    99. Chen R Z,Weng Q M,Huang Z,He G C. Analysis of resistance-related proteins in rice against brown planthopper by two-dimensional electrophoresis. Acta Botanica Sinica,2002 (44): 427~432
    100. Chen X, Temnykh S, Xu Y, Cho Y G, McCouch S R. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theoretical and Applied Genetics, 1997, 97: 370~380.
    101. Choi SY, Lee J O, Lee H R, Park J S. Resistance of new varieties Milyang No. 21 and No.23 to plant and leafhoppers. Plant Protection, 1976, 15: 147~151.
    102. Claridge M F, Hokkander J D, Haslam D. The significance of morphometric and fecundity differences between the “biotypes” of planthopper, Nilaparvata lugens. Entomologia Experimentalis et Applicata, 1984, 39: 107~114.
    103. Claridge M F, Hollander J D. The “biotypes” of the rice brown planthopper, Nilaparvata lugens. Entomologia Experimentalis et Applicata, 1980,27:23~30.
    104. Claridge M F, Hokkander J D. The biotype concept and its application to insect pests of agriculture. Crop Protection, 1983, 2: 85~95.
    105. Cohen M B, Alam S N, Medina E B, Bernal C C. brown planthopper, Nilaparvata lugens, and resistance in rice cultivar IR64: Mechanism and role in successful N. lugens management in Central Luzon, Philippines. Entomologia Experimentalis et Applicata, 1997, 85: 221~229.
    106. Cook A G, Denno R F. Planthopper/plant interactions: Feeding behavior, Plant nutrition, plant defense and host plant specialiazation. Pp114-138. In Robert F. Denno and T. John perfect, ed. Planthoppers:their ecology & management. New York: Chapman & Hall, 1994.
    107. Curtis C F, Sinkins S P. Wolbachia as a possible means of driving genes into populations. Parasitology,1998, 116: 111~115.
    108. Demayo C C, Saxena R C, Barrion A A. Allozyme variation in local populations of brown planthopper, Nilaparvata lugens (St?l) in the Philippines. Philippine Entomology, 1990, 8: 737~748.
    109. Dempsey D M A, Shah J, Klessig D E. Salicylic acid and disease resistance in plants. Crit Rev Plant Science, 1999, 18:547~575.
    110. Dicke M. Are herbivore~induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods. Entomologia Experimentalis et Applicata, 1999, 91:131~142.
    111. Endo S, Takahashi A, Tsurumachi M. Insecticide susceptibility of the small brown planthopper, Laodelphax striatellus Fallen (Homoptera: Delphacidae), collected from East Asia. AppliedEntomology and Zoology, 2002, 37 (1): 79~84.
    112. Endo S, Tsurumachi M. Insecticide resistance and insensitive acetylcholinesterase in small brown planthopper, Laodelphax striatellus. Journal of Pesticide Science, 2000, 25: 395~397.
    113. Fidantsef A L, Stout M J, Thaler J S, Duffey S S, Bostock R M. Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Physiological and Molecular Plant Pathology, 1999, 54:97~114.
    114. Fukuta Y, Tamura K, Hirae M, Oya S. Genetic analysis of resistance to green rice leafhopper (Nephotettix cincticeps UHLER) in rice parental line, norin-PL6, using RFLP markers. Breeding Science, 1998, 48:243~249.
    115. Gallagher K D, Kenmore P E, Sogawa K. Judicial use of insecticides deter planthopper outbtreaks and extend the life of resistant varieties in southeast Asian Rice. Pp599~614. In Robert F. Denno, T. John perfect, ed. Planthoppers:their ecology & management. New York: Chapman & Hall, 1994
    116. Gray, S. M. 1996. Plant virus proteins involved in natural vector transmission. Trends in Microbiology, 4: 259~264.
    117. Guiderdoni E E, Galinato, Luistro J, Vergara J. Another culture of tropical japonica×indica hybrids of rice (O. sativa L.). Euphytica, 1992, 62: 219~224.
    118. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin S Y, Antonio B A, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush G S, Sasaki. A High-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics. 1998, 149: 479~494.
    119. Hatchett J H, Gallum R L. Genetics of the ability of the Hessian fly, Mayetiola destructor, to survive on weat having different genes for resistance. Annals of the Entomological Society of America, 1970, 63:1400~1407.
    120. He R F,Wang Y Y, Shi Z Y, He G C. Construction of genomic library of wild rice and Agrobacterium-mediated transformation of large insert DNA linked to BPH resistance locus. Genes,2003 (321):113~121.
    121. Heinrich E A. Management of rice insect nests. Department of Entomology in University of Nebraska, 2001.
    122. Heinrichs E A, Medrano F G, Rapusas H R. Genetic Evaluation for Insect Resistance in Rice. International Rice Research Institution. LosBanos, Philippines, 1985, p71~142.
    123. Hernandez J E,Khush G S. Genetics of resistance to whitebacked planthopper in some rice varieties. Oryza, 1981, 18:44~50.
    124. Hibino H.Insectborne viruses of rice.Advance in Disease Vector Research, 1989.
    125. Hirabayashi H, Ogawa T. RFLP mapping of Bph-1 (Brown.planthopper resistance gene) in rice. Breeding Science, 1995, 45: 369~371.
    126. Hirabayashi H, Ogawa T. Identification and utilization of DNA markers linked to genes forresistance to brown planthoppe (BPH) in rice. Recent Adv. Breeding Science, 1999, 41: 71~74
    127. Hirabayashi H, Ogawa T. RFLP Mapping of Bph-1 (Brown planthopper resistance gene) in rice. Breeding Science, 1995, 45:369~371.
    128. Hollander J D, Pathak P K. The genetics of the “biotypes” of the rice brown planthopper, Nilaparvata lugens. Entomologia Experimentalis et Applicata, 1981, 29: 76~86.
    129. Hoshizaki S. Allozyme polymorphism and geographic variation in the small brown planthopper, Laodelphax striatellus (Homoptera: Delphacidae). Biochemical Genetics, 1997, 35 (11-12): 383~393.
    130. Huang N, Parco, Mew T, Magpantay G, McCouch S, Guiderdoni E, Xu J, Subudi P, Angeles E R, Khush G S. RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown.planthopper resistance gene in a doubled haploid rice population. Molecular Breeding, 1997, 3: 105~113.
    131. Huang Z, He G, Shu L, Li X, Zhang Q. Identification and mapping of two brown.planthopper resistance gene in rice. Theoretical and Applied Genetics, 2001, 102: 929~934.
    132. Ikeda R, Kaneda C. Genetic analysis of resistance to brown planthopper, Nilaparvata lugens (St?l), in rice. Japanese Journal of Breeding, 1981, 31(3):279~285.
    133. Ikeda R, Kaneda C. Trisomic analysis of resistance to brown planthopper, Nilaparvata lugens St?l, in rice. Japanese Journal of Breeding, 1983, 33: 40~44.
    134. Ikeda R, Lei J K, Tsunematsu H, Aida Y, Yasui H, Yoshimura A. Rice QTL analysis for days to heading using different RI (Recombinant Inbred) lines. Breeding Science, 1998, 48 (Suppl. 1): 72.
    135. Ikeda R. Studies of the inheritance of resistance to the rice brown planthopper (Nilaparvata lugens st?l) and the breeding of resistance rice cultivar. Bulletin of the National Agricultural Research Center, 1985, 3: 1~54 (in Japanese).
    136. IRRI. Annual Report for the Year 1982, Manila, Philippines: IRRI, 1983, 61~62.
    137. IRRI. Levels of resistance of rice varieties to biotypes of the brown planthopper, Nilaparvata lugens, in South and Southeast Asia. IRRI Research Paper Series, 1982, 72:1~14.
    138. IRRI. Standard evaluation systems for rice. IRRI, Manila, Philippines. 1988.
    139. Ishii T, Brar D S, Multani D S, Khush G S. Molecular tagging of genes for brown planthopper resistance and earliness introgressed from Oryza australiensis into culivated rice, O. sativa. Genome, 1994, 37: 217~221.
    140. Jena K K, Pasalu I C, Rao Y K, Varalaxmi Y, Krishnaiah K, Khush G S. Molecular tagging of a gene for resistance to brown planthopper in rice (Oryza sativa L.). Euphytica, 2003, 129 (1): 81~88.
    141. Jeon Y H, Ahn S N, Choi H C, Hahn T R, Moon H P. Identification of a RAPD marker linked to a brown planthopper resistance gene in rice. Euphytica, 1999, 107: 23~28.
    142. Kabir M A, Kush G S. Genetic analysis of resistance to brown planthopper in rice (Oryzasativa L.). Plant Breeding, 1988,100:54~58.
    143. Kadirvel R, Maheswaran M, Gunathilagaraj K. Molecular mapping of quantitative trait loci (QTL) associated with whitebacked planthopper in rice. International Rice Research Newsletter, 1999, 24 (3): 12~13.
    144. Kaneda C, Nemoto H, Ikeda R, Yokoo M, Kobayashi A, Ikehashi H, Takita T. Breeding of rice Norin-PL4, a new germplasm with brown planthopper resistance gene ‘bph2’. Bulletin of National Agricultural Research Center, 1986, 6: 19~32 .
    145. Kaneda C, Nemoto H, Ikeda R, Yokoo M, Kobayashi A. Breeding of rice Norin-PL3, a new germplasm with brown planthopper resistance. Bulletin of National Agricultural Research Center, 1985, 5: 93~103.
    146. Kang L, Ma X, Cai L, Liao S, Sun L, Zhu H, Chen X, Shen D, Zhao S, Li C. Superinfection of Laodelphax striatellus with Wolbachia from Drosophila simulans. Heredity, 2003, 90 (1): 71~76
    147. Karban R, Agrawal A A, Mangel D M. The benefits of induced defenses against herbivores. Ecology, 1997, 78:1351~1355
    148. Katiyar S K. Molecular tagging of gall midge resistance genes in rice, In: Fragile Lives in Fragile Ecosystems Proc, 1995, Int. Rice Res. Conf., 13-17 Feb, pp. 935~948. Manila: International Rice Research Institute.
    149. Kawaguchi M, Murata K, Ishii T, Takumi S, Mori N. Assignment of a Brown Planthopper (Nilaparvata lugens st?l) Resistance Gene bph4 to the Rice Chromosome 6. Breeding Science, 2001, 51:13~18.
    150. Kennedy G G, Barbour J D. Resistance in natural and managed systems, In: Plant Resistance to Herbivores and Pathogens Ecology, Evolution and Genetics ed., 1992, RS Fritz, EL Simms, pp.13~41. Chicago: University of Chicago Press.
    151. Khan Z R,Saxena R C.Varietal resistance in rice against Sogatella furcifera (Horvath).Crop Protection,1986,5(1): 15~25.
    152. Kim S M, Sohn J K. Identification of a rice gene (Bph1) conferring resistance to brown planthopper (Nilaparvata lugens Stal) using STS markers. Mol Cells, 2005, 20 (1):30~34.
    153. Kim Y H, Lee J O, Park J S. Resistance of recommended rice varieties to planthopper and leafhopper in Korea. Research Department Office of Rural Development, 1983, 25 (S.P.M.V.): 79~84.
    154. Kimura Y,Nakazawa K.Local variations of susceptibility to organophosphorus insecticides in the green rice leafhopper in Hiroshima prefecture.Chugoku Agriculture,1973, 47: 100~102.
    155. Kimura Y.Resistance to malathion in the small brown planthopper,Laodelphax striatellus Fallen.Japanese Journal of Applied Entomology and Zoology,1965,9:251~258.
    156. Kisimoto R. Genetic variation in the ability of a planthopper vector, Laodelphax striatellus Fallen to acquire the rice stripe virus. Virology, 1967, 32 (1): 144~152.
    157. Kogan M, Ortman E E. Antixenosis-a new term proposed to replace Painter’s ‘nonpreference’ modality of resistance. Bulletin of Entomological Society of America, 1978, 24: 175~176.
    158. Kosambi D. The estimation of map distances from recombination values. Annals of Eugenics, 1994, 12:172~175.
    159. Korth K L,Dixon R A. Evidence for chewing insect~specific molecular events distinct from a general wound response in leaves. Plant Physiology, 1997, 115:1299~1305.
    160. Krishna T S , Seshu D V. Indian J Genet. Plant Breeding, 1984, 44 (2): 336~342.
    161. Lakshiminarayana A, Khush G S. New genes for resistance to the brown planthopper in rice. Crop Science, 1977,17: 96~100.
    162. Lamb C, Dixon R A. The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48:251~275.
    163. Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic maps of experimental and natural populations. Genomics, 1987,1:174~181.
    164. Lincoln S., Daly M. and lander E. Constructing genetics maps with MAPMARKER/EXP3.0. Whitehead Institute Technical Report . Cambridge, MA 1992.
    165. Liu G,Wilkins R M, Saxena R C. Feeding behavior of the whitebacked planthopper Sogatella furcifera (Homoptera: Delphacidae) on resistant and susceptible rice plants and their extracts, Brighton Crop Protection Conference-Pests and Diseases, 1990a, 1: 185~190.
    166. Liu G. Behavioral responses of the whitebacked planthhoper Sogatella furcifera (Homoptera: Delphacidae)on rice plants whose odors have been masked. Journal of Insect Behavior, 1994, 7 (3): 343~353.
    167. Liu G. Mechanisms of varietal resistance in rice to Sogatella furcifera (Horvath) and inhibition of its feeding by carbofuran, Ph.D. Thesis, the University of Newcastle uponTyne, U K, 1990b.
    168. Liu Z Y, Liu G J. Study on mapping the resistant gene to the whitebacked planthopper, Sogatella furcifera using RFLP markers. Chinese Rice Research Newsletter, 2001, 9 (2): 10.
    169. lkeda R, Kaneda C. Genetic analysis of resistance to brown planthopper, (Nilaparvata lugens St?l ) in rice. Japanese Journal of Breeding, 1981, 31: 279~285.
    170. lkeda R, Kaneda C. Trisomic analysis of the gene Bph-1 for resistance to brown.planthopper, ( Nilaparvata lugens St?l ) in rice. Japanese Journal of Breeding, 1983, 33: 40~44.
    171. Ma L Y, Zhuang J Y, Liu G J, Min S K, Li X M. Mapping of Wbph6(t)-a new gene resistant to whitebacked planthopper (Sogatella furcifera) in Rice. Chinese Rice Research Newsletter, 2001,9 (4):1~2.
    172. Mackill, D J, Ni J J. Molecular mapping and marker-assisted selection for major-gene traits in rice. Rice genetics. Ⅳ, 2001, 137~151.
    173. McCouch S R, Khush G S, Tanksley S D. Tagging genes for disease and insect resistance via linkage to RFLP markers, Rice Genetics II. Manila, Philippines: IRRI, 1991, 443~449.
    174. McCouch S R, Teytelman L, Xu Y, Lobos K B, Clare K, Walton M, Fu B, Maghirang R, Li Z,Xing Y. Development and mapping of 2240 new SSR marker for rice (Oryza sativa L.). DNA Research, 2002, 9: 199~207.
    175. McCouch S R, Teytelman L, Xu Y. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research, 2002, 9:199~207.
    176. McDowell J M, Dangl J L. Signal transduction in the plant immune response. Trends in Biochemical Sciences, 2000, 25: 79~82.
    177. Mohan M, Nair S, Bentur J S, Rao U P, Bennett J. RFLP and RAPD mapping of the rice Gm2 gene that confers resistance to biotype I of gall midge (Orseolia oryzae), Theoretical and Applied Genetics, 1994, 87: 782~788.
    178. Mohan M, Sathyanarayanan, Kumar A, Srivastava M N, Nair S. Molecular mapping of a resistance-specific PCR~based marker linked to a gall midge resistance gene (Gm4t) in rice. Theoretical and Applied Genetics, 1997, 95: 777~782.
    179. Multani D S, Jena K K, Brar D S. Development of monosomic alien addition lines and introgression of genes from Oryza australiensis Domin. to cultivated rice, O. sativata L . Theoretical and Applied Genetics, 1994, 88: 102~109.
    180. Murai H, Hashimoto Z, Sharma P N, Shimizu T, Murata K, Takumi S, Mori N, Kawasaki S, Nakamura C. Construction of a high-resolution linkage map of a rice brown planthopper (Nilaparvata lugens St?l) resistance gene bph2. Theoretical and Applied Genetics, 2001, 103 (4) : 526~532.
    181. Murata K, Fujiwara M, Kaneda C, Takumi S, Mori N, Nakamura C. RFLP mapping of a brown planthopper (Nilaparvata lugens St?l) resistance gene bph2 of indica rice introgressed into a japonica breeding line ‘Norin-PL4’. Genes & Genetic Systems, 1998a, 73: 359~364.
    182. Murata K, Fujiwara M, Murai H, Takumi S, Mori N, Nakamura C. Bph9, a dominant brown planthopper resistance gene, is located on the long arm of chromosome 12. Rice Genetics Newsletter, 2000, 17: 84~86.
    183. Murata K, Fujiwara M, Murai H, Takumi S, Mori N, Nakamura C. Mapping of brown planthopper (Nilaparvata lugens St?l ) resistance genes Bph9 on the long arm of rice chromosome 12. Cereal Research Communications, 2001, 29: 245~250.
    184. Murata K, Fujiwara M, Nakamura C, Mori N, Kaneda C. Mapping of brown planthopper resistance genes bph2 and Bph9 in rice. Journal of Crop Science and Breeding, 1998b, 43: 4~7.
    185. Murata K, Fujiwara M, Nakamura C. Mapping of brown planthopper resistance genes bph2 and Bph9 in rice. Journal of Crop Science and Breeding, 1998, 43: 4~7.
    186. Nagata T, Hayakawa T. Activity of aconiti acid and oxalic acid on brown planthopper, Nilaparvata lugens (St?l), and green rice leafhopper, Nephoterrix cincticeps (Uhler). Japanese Journal of Applied Entomology and Zoology, 1998, 42: 115~121.
    187. Nair R V, Masajo E M, Khush G S. Genetic analysis of resistance to whitebacked planthopper in twenty-one varieties of rice Oryza sativa L. Theoretical and Applied Genetics, 1982,61:19~22.
    188. Nemoto H, Ikeda R, Kaneda C. New genes for resistance to brown planthopper, Nilaparvata lugens (St?l), in rice. Japanese Journal of Breeding, 1989a, 39:23~28.
    189. Nemoto H, Ishikawa K, Shimura E. The resistances to rice stripe virus and small brown planthopper in rice variety IR50. Breeding Science, 1994, 44: 13~18.
    190. Nemoto H, Yokoo M, Kaneda C, Shimura E, Ikeda R, Kobayashi A. Breeding of rice Norin-PL7, a new germplasm with the brown planthopper resistance gene ‘bph4’. Research Bulletin of the National Agricultural Research Center, 1988, 9: 93~105.
    191. Nemoto H, Yokoo M, Kaneda C, Shimura E, Ikeda R, Kobayashi A. Breeding of rice Norin-PL7, a new germplasm with the brown planthopper resistance gene ‘bph3’. Research Bulletin of the National Agricultural Research Center, 1989b, 15: 47~57.
    192. O’Neill S L, Karr T L. Bidirectional incompatibility between conspecific population of Drosophila simulans. Nature, 1990, 348: 178~180.
    193. Painter R H. Biological strains of Hessian fly. Journal of Economic Entomology, 1930, 23: 322~326.
    194. Painter R H. Insect resistance in crop plants. Macmillan, New York. 1951.
    195. Palm C J, Costa M A, An G, Ryan C A. Wound-inducible nuclear protein binds DNA fragments that regulate a proteinase inhibitor II gene from potato. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87:603~607.
    196. Park D S,Lee S K,Lee J H,Song M Y,Song S Y,Kwak D Y,Yeo U S,Jeon N S,Park S K,Yi G,Song Y C,Nam M H,Ku Y C,Jeon J S. The identification of candidate rice genes that confer resistance to the brown planthopper (Nilaparvata lugens) through representational difference analysis. Theoretical and Applied Genetics, 2007, 115: 537~547.
    197. Pieterse C M J, van Loon L C. Salicylic acid-independent plant defense pathways. Trends in Plant Science, 1999, 4:52~58.
    198. Qu LJ, Chen J, Liu M, Pan N, Okamoto H, Lin Z, Li C, Li D, Wang J, Zhu G, Zhao X, Chen X, Gu H, Chen Z. Molecular cloning and functional analysis of a novel type of Bowman-Birk inhibitor gene family in rice. Plant Physiology, 2003, 133 (2): 560~570.
    199. Reganayaki K, Fritz A K, Sadasivam S, Pammi S, Harington S E, McCouch S R, Mohankumar S, Reddy A S. Mapping and progress toward map-based cloning of brown.planthopper biotype-4 resistance gene introgressed from Oryza officinalis into culivated rice, O. sativa. Crop Science, 42: 2112~2117.
    200. Ren X, Wang X, Yuan H, Weng Q, Zhu L, He G. Mapping quantitative trait loci and expressed sequence tags related to brown planthopper resistance in rice. Plant Breeding, 2004, 123 (4): 342~348.
    201. Ren X, Weng Q M, Zhu L L, He G C. Dynamic mapping of quantitative trait loci for brown planthopper resistance in rice. Cereal Research Communications, 2004, 32 (1): 31~38.
    202. Sakai T, Sogawa K. Effects of nutrient compounds on sucking response of the brownplanthopper. Nilaparvata lugens (Homoptera: Delphacidae). Applied Entomology and Zoology, 1976, 11:82~88.
    203. Sanguinetti C J, Dias N E, Simpson A J G. Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques, 1994,17:915~919.
    204. Saxena R C, Barrion A A. Biotypes of the brown planthopper, Nilaparvata lugens (St?l) and strategies in development of host plant resistance. Insect Science and Its Applications, 1985, 6 (3): 271~289.
    205. Saxena R C, Demayo C C, Barrion A A. Allozyme variation among biotypes of the brown planthopper, Nilaparvata lugens in the Philippines. Biochemical Genetics, 1991, 314:115~123.
    206. Saxena R C, Velasco M V, Barrion A A. Morphological variation between brown planthopper biotypes on leersia hexandra and rice in the Philippines. International Rice Research Newsletter, 1983, 8 (3): 3.
    207. Sebastian L S, lkeda R, Huang N, Imbe T, Coffman W R, McCouch S R. Molecular mapping of resistance to rice tungro spherical virus and green leafhopper in rice. Phytopathology, 1996, 86 (1): 25~30.
    208. Sekido S, Sogawa K. Effects of salicylic acid on probing and oviposition of the rice plant and leafhoppers (Homoptera: Delphacidae and Deltocephalinae). Applied Entomology and Zoology, 1976, 11:75~81.
    209. Sharma N, Ketipearachchi Y, Murata K, Torii A, Takumi S, Mori N. RFLP/AFLP mapping of a brown planthopper (Nilaparvata lugens St?l) resistance gene Bph1 in rice. Euphytica, 2003, 129 (1): 109~117.
    210. Sharma P M, Torii a, Takumi S, Mori N, Nakamura C. Marker-assisted pyramiding of brown planthopper (Nilaparvata lugens Stal) resistance genes Bph1 and Bph2 on rice chromosome 12. Hereditas, 2004, 140: 61~69.
    211. Shi Z Y,Ren X,Weng Q M,He G C. Construction of genomic library of a BPH resistant rice line with binary vector and physical map of the Qbpl locus. Plant Science, 2003,165 (4): 879~885.
    212. Shigematsu Y, Murofushi N, Ito K, Kaneda C, Kawabe S, Takahashi N. Sterol and asparagines in the rice plant, endogenous factors related to resistance against the brown planthopper, Nilaparvata lugens. Agricultural and Biological Chemistry, 1982, 46: 2877~2896.
    213. Shufran K A, Whalon M E. Genetics analysis of brown planthopper biotypes using random amplified DNA-polymerase chain reaction (RAPD-PCR). Insect Science and Its Application, 1995, 16 (1): 27~33.
    214. Sidhu G S, Khush G S,Medrano F G. A dominant gene in rice forresistance to whitebacked planthopper and its relationship to other plantcharacteristics. Eupytica, 1979, 28:227~232.
    215. Smith C M. Plant Resistance to Insects: A fundamental Approach, New York: Wiley, 1989, 286pp
    216. Sogawa H, Fujimoto H, Qian Q, Teng S, Liu G J, Zhu L H. QTLs forovicidal response to whitebacked planthopper in rice. Chinese Rice Research Newsletter, 2001, 9 (4): 5.
    217. Sogawa K, Pathak M D. Mechanism of brown planthopper resistance in Mudgo variety of rice (Hemiptera Delphacidae). Applied Entomology and Zoology, 1970, 5:145~158.
    218. Sogawa K. The rice brown planthopper: Feeding physiology and host plant interactions. Annual Review of Entomology, 1982, 27: 49~73.
    219. Sone S, Hattori Y, Tsuboi S, Otsu Y J. Difference in susceptibility to imidacloprid of the populations of the small brown planthopper, Laodelphax striatellus Fallén. Journal of Pesticide Science, 1995, 2 0 (4 ): 541~543.
    220. Soundararajan R P, Kadirvel P, Gunathilagaraj K, Maheswaran M. Mapping of quantitative trait loci associated with resistance to brown planthopper in rice by means of a doubled haploid population. Crop Science, 2004, 44: 2214~2220.
    221. Su C C, Wan J M, Zhai H Q, Wang C M, Sun L H, Yasui H, Yoshimura A. A new locus for resistance to brown planthopper identi.ed in the indica rice variety DV85. Plant Breeding, 2005, 124: 93~95.
    222. Su C C, Zhai H Q, Wang C M, Sun L H, Wan J M. SSR mapping of brown planthopper resistance gene Bph9 in Kaharamana, an Indica rice (Oryza sativa L.). Acta Genetica Sinica, 2006, 33 (3): 262~268.
    223. Sun D Z, Jiang L, Liu S J, Zhang Y X, Huang P H, Cheng X N, Zhai H Q, Wan J M. Detection of QTL for rice stripe virus and small brown planthopper resistance in rice (Oryza sativa L.). Acta Agronomica Sinica, 2007, 32 (6): 805~810.
    224. Sun L, Liu Y, Jiang L, Su C, Wang C, Zhai H, Wan J. Identification of quantitative trait loci associated with resistance to brown planthopper in the indica rice cultivar Col.5 Thailand. Hereditas, 2007, 144 (2): 48~52.
    225. Tan G X,Weng Q M,Ren X,Huang Z,Zhu L L,He G C. Two whitebacked planthopper resistance genes in rice share the same loci with those for brown planthopper resistance. Heredity, 2004, 92 (3): 212~217.
    226. Tanaka K. Quantitative genetic analysis of biotypes of the brown planthopper Nilaparvata lugens: heritability of virulence to resistance rice varieties. Entomologia Experimentalis et Applicata, 1999, 90: 278~287.
    227. Temnykh S, DeClerk G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation transposon association, and genetic marker potential. Genome Research, 2001, 11: 1441~1452.
    228. Temnykh S, Park W D, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho Y G, Ishii T, McCouch S R. Mapping and genome organization of microsatellite sequence in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2000, 100: 697~712.
    229. Thaler J S, Stout N J, Karban R, Duffey S S. Exogenous jasmonates simulate insect woundingin tomato plants (Lycopersicon esculentum) in the laboratory and field. Journal of Chemical Ecology, 1996, 1767~1781.
    230. Tooyama T, Yamamoto T, Tsuji T. Chromosomal location of the brown.planthopper resistance gene Bph-1 revealed by RFLP mapping. Breeding Science, 1995, 45 (Suppl.2): 171.
    231. Toriyama S. Characterization of rice stripe virus: a heavy component carrying infectivity. Journal of General Virology, 1982, 61:187~195.
    232. Turelli M, Hoffmann A A, McKechnie S W. Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Journal of Genetics, 1992, 132 : 713~723.
    233. van Wees S C M, Luijendijk M, Smoorenburg I, Van Loon L C, Pieterse, C M J. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate~inducible gene AtVsp upon challenge. Plant Molecular Biology, 1999, 41:537~549.
    234. Walker G P, Perring T M. Feeding and oviposition behavior of whiteflies (Homoptera: Aleyrodidae) interpreted from AC electronic feeding monitor waveforms. Annals of the Entomological Society of America, 1994, 87: 363~374.
    235. Wang G L, Mackill D J, Bonman J M, McCouch S R, Nelson R J. RFLP mapping of genes conferring and partial resistance to blast in a durably resistance rice cultivar. Genetics, 1994, 136: 1421~1434.
    236. Wang X L, He R F, He G C. Construction of suppression subtractive hybridization libraries and identification of brown planthopper-induced genes. Journal of Plant Physiology, 2005, 162: 1254~1262.
    237. Wang X L, He R F, He G C. Construction of suppression subtractive hybridization libraries and identification of brown planthopper-induced genes. Journal of Plant Physiology, 2005, 162 (11): 1254~1262.
    238. Wang X L, Wang Q M, You A Q, He G C. Cloning and characterization of rice RH3 gene induced by Brown planthopper. Chinese Science Bulletin, 2003 (48): 1547~1552.
    239. Wang Y, Wang X, Yuan H, Chen R, Zhu L, He R, He G. Responses of two contrasting genotypes of rice to brown planthopper. Molecular Plant-Microbe Interactions, 2008, 21(1): 122~32.
    240. Wang, D G, Fan J B, Siao C, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Mittmann M, Morris M S, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson T J, Lipshutz R, Chee M, Lander E S. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998, 280:1077~1082.
    241. Washio O, Ezuka A, Sakurai Y. Studies on the breeding of rice varieties resistant to stripe disease II. Genetic study on resistance to stripe disease in Japanese upland rice. JapaneseJournal of Breeding, 1968a, 18:96~101.
    242. Washio O, Ezuka A, Sakurai Y. Studies on the breeding of rice varieties resistant to stripe disease III. Genetic studies on resistance to stripe disease in foreign varieties. Japanese Journal of Breeding, 1968b, 18:167~172.
    243. Washio O,Ezuka A,Sakurai Y.Studies on the breeding of rice varieties resistant to stripe disease Ⅰ.Varietal difference in resistance to stripe disease.Japan Journal of Breeding,1967,17(1):91.
    244. Wen J G, Yan J, Xu J, Shen D L. Cloning and characterization of a beta3 tubulin cDNA from the small brown planthopper, Laodelphax striatellus. Biochemical Genetics, 2005, 43 (1-2): 59~64.
    245. Weng Q M,Huang Z,Wang X L, He G C. In situ localization of proteinase inhibitor mRNA in rice plant chanllenged by brown planthopper. Chinese Science Bulletin, 2003 (48): 827~830.
    246. Werren J H . Biology of Wolbachia. Annual Review of Entomology, 1997, 42: 587~609.
    247. Wu A Z, Zhao Y, Qu Z C, Shen D L, Pan C G, Su D M. Subcellular localization of the stripe disease-specific protein encoded by rice stripe virus (RSV) in its vector, the small brown planthopper, Laodelphax striatellus. Chinese Science Bulletin, 2001, 48(21): 1819~1822.
    248. Wu A, Pang Y, Tang K. Homozygous transgenic rice lines expressing GNA with enhanced resistance to the rice sap-sucking pest Laodelphax striatellus. Plant Breeding, 2002, 121(1): 93~95.
    249. Wu C F, Khush G S. A new domunant gene for resistance to whitebacked planthopper in rice. Crop Science, 1985, 25 (3): 505~509.
    250. Xu X F, Mei H W, Luo L J, Cheng X N, Li Z K. RFLP-facilitated investigation of the quantitative resistance of rice to brown.planthopper (Nilaparvata lugens ). Theoretical and Applied Genetics, 2002, 104: 248~253.
    251. Yamasaki H, Tsunematsu H, Yoshimura A, Iwata N, Yasui H. Quantitative trait loci mapping of ovicidal response in rice (Oryza. sativa L.) against whitebacked planthopper (Sogatella furcifera Hovath). Crop Science, 1999, 39 (4): 1178~1183.
    252. Yang H X, Ren X, Weng Q, Zhu L, He G. Molecular mapping and genetic analysis of a rice brown planthopper (Nilaparvata lugens St?l) resistance gene. Hereditas, 2002, 136: 39~43.
    253. Yasui H, Yoshimura A. QTL mapping of antibiosis to green leafhopper, Nephotettix virescens Distant and green leafhopper, Nephotettix cincticeps Uhler in rice, Oryza Sativa L. Rice Genetics Newsletter, 1999, 16: 96~98.
    254. Yazawa S, Yasui H, Yoshimura A, Iwata N. RFLP mapping of genes for resistance to green rice leafhopper (Nephotettix cincticeps Uhler) in rice cultivar DV85 using near isogenic lines. Science Bulletin of the Faculty of Agriculture Kyushu University, 1998, 52:169~175.
    255. Yoshihara T, Sogawa K, Pathak M D, Juliana B, Sakamara S. Soluble silicic acid as a sucking inhibitory substance on rice against the brown planthopper (Nilaparvata lugens). Entomologia Experimentalis et Applicata, 1970, 26:314~322.
    256. Yoshimura S, Yoshimura A, Nelson R J, McCouch S R, Mew T V, Iwata N. Mapping and combining of bacterial blight resistance genes in rice using molecular markers. Japanese Journal of Breeding, 1993, 43: 161.
    257. Yuan H Y, Chen X P, Zhu L L, He G C. Identification of genes responsive to brown planthopper Nilaparvata lugens St?l (Homoptera: Delphacidae) feeding in rice. Planta, 2005, 221: 105~112.
    258. Yuan H Y, Chen X P, Zhu L L, He G C. Identification of genes responsive to brown planthopper Nilaparvata lugens St?l(Homoptera: Delphacidae)feeding in rice. Planta, 2005, 221: 105~112.
    259. Yuan H Y, Chen X P, Zhu L L, He G C. Isolation and characterization of a novel rice gene encoding a putative insect-inducible protein homologous to wheat wirl. Plant Physiology, 2004, 161:79~85.
    260. Zhang F T, Zhu L L, He G C. Differential gene expression in response to brown planthopper feeding in rice. Journal of Plant Physiology, 2004, 161 (1): 53~62.
    261. Zsuzsa B, Hopper K R, Jordaan J, Saayman T. Biotypic differences in Russian wheat aphid (Diuraphis noxia) between south African and Hungarian agro-ecosystems. Agriculture, Ecosystems & Environment, 2001, 83: 121~128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700