鼠尾藻(Sargassum Thunbergii)繁殖生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼠尾藻种群更新取决于三个生活史阶段:生殖分配、配子生殖和幼殖体补充,本文以生活史为线索,围绕这三个阶段开展了繁殖生态学研究。
     烟台地区鼠尾藻一年一次的有性生殖时期自6月中旬开始,7月中旬达高峰,此时90%藻体成熟,生殖分配(RA)均值达到75%。在繁殖季节,生殖分配和成熟比例均显示了显著的时间变化。繁殖高峰时,未成熟的藻体仅出现在小长度级,生殖分配均值显示了显著的层级变化,two-wayANOVA分析结果表明发育进程和藻体长度对藻体成熟和生殖分配具有显著影响,证实了成熟和生殖分配的大小依赖。侧枝的产生具有明显的季节性,并在侧枝产生后有性生殖启动。生殖分配与侧枝数量、长度呈正相关,意味着侧枝的出现对生殖具有重要意义。另外,有性生殖季节过后,大量的构件(module)开始脱落,而且成熟藻体构件的脱落明显多于未成熟的藻体。因为在7-8月所有存活下来的藻体都是未成熟的小个体。所以,生殖和生长的权衡关系(trade-off)在鼠尾藻个体水平上可能是存在的。
     海藻配子释放得到了很多的关注,但引起配子释放的环境因子间的交互作用以及各种因子对配子释放的相对重要性却没有得到足够的重视。本文采用了2~(8-4)分式析因设计(ResolutionⅣ)侦寻环境因素的主效应和交互作用。结果显示,在设计的因素中,水流、温度、盐度和光期是影响配子释放的重要因素,这些因素间的两维交互作用均显著。基于方差分析评估的影响效应,环境因素对配子释放的相对重要性依次为盐度、水流*光期(或温度*盐度)、水流*盐度(或温度*光期)、温度、水流*温度(或光期*盐度)、水流和光期。最适的因素组合25℃、30‰盐度、静水、12 h光照可能是鼠尾藻配子释放的“机会窗”。这些实验室条件下的研究结果对于深入认识配子释放机制具有重要意义。
     野外跟踪观测鼠尾藻的成熟繁殖状况,采集临近成熟的鼠尾藻至实验室培养,跟踪观测其卵子和受精卵的发育以及幼殖体的早期生长。研究发现,鼠尾藻的卵子发育属于8核1卵型,卵子受精后20 h左右开始脱离生殖托,受精卵先连续进行两次的横分裂,而后再由一端的一个细胞发育成假根,另外两个发育成体细胞。幼孢子体在接近2mm时候开始形成分枝突起。
     同步的配子释放和杂藻的生长是鼠尾藻苗种人工繁殖中的两个难题。自然群体和人工养殖群体比较研究结果表明,在繁殖高峰期自然群体和人工养殖群体生殖力分别为40%和65%;幼殖体发生呈现显著的时间变化,不过,相对自然群体,养殖群体显示了较低的时间离散。平均每公斤鲜重的养殖群体获得了约3.2×10~5株幼殖体,可以满足大规模生产的需要。本文采用了高密度播种和洗刷的办法以消除杂藻的生长。幼殖体播种后的附着能力随时间逐渐提高。播种后48h采用1 kg cm~(-1)的压力洗刷育苗器时,脱落率不足10%,使洗刷可以在生活史早期阶段进行,从而在早期阶段就开始阻止杂藻的生长。研究发现,高密度的播种对幼殖体生长具有消极的影响:减小了平均长度、大小不均性提高、侧枝发生偏晚。然而,30-50 cm~(-2)的播种密度下,幼殖体受到的种内竞争的影响较小,并且可以忍受连续的洗刷。在结合高密度和洗刷的处理中,杂藻被有效消除,表明了这两项措施是有效的。经过1个月的培养多数幼殖体长度达到0.5 cm以上。
     潮间带生态学调查了鼠尾藻种群结构的季节变化,采用逐步回归分析了生境因子对生物量的影响。结果表明,鼠尾藻分布在低潮线以上50~125cm的中潮带和低潮带之间;生物量消长和平均藻体长度消长的季节变化趋势一致,呈双峰曲线(7月份和12月份达到峰值,9月份达到最低值);生活周期可以划分为4个时期:休止期、生长期、繁殖期和衰退期,6月中旬到7月下旬为有性生殖期;营养生殖贯穿全年,并呈现一定的季节变化;快速生长期内(5~7月),其大小级层次明显,近似正态分布;水温为影响其生长的主要因素,其次为浪冲击度和人为干扰,干露对鼠尾藻的生长影响不显著。总之,本调查区域的鼠尾藻种群呈现明显的季节变化,并与其它地区种群差异显著,生长地区的环境因素是导致差异的根本原因。
Three life-history stages including reproductive allocation (RA),gametogenesisand recruitment influence the population structure of Sargassum thunbergii.Based onthis life-history cycle,the reproductive ecology of the species was conducted.
     Annual reproduction initiated in mid-June and peaked in mid-July (90% fertilethalli and 75% RA mean).Both RA and percentage of fertile thalli exhibitedsignificant temporal variations during reproduction.Sterile thalli were only observedin small hierarchies at peak reproduction and mean values of RA showed asignificantly hierarchical variation,suggesting that the size of thalli played importantroles in reproduction and both reproduction and RA were size-dependent.Numerousreceptacles were produced along the lateral branches during the reproductive period.A distinct seasonal pattern was observed wherein the presence of lateral branches wasfollowed by the onset of reproduction.RA was positively correlated with the numberof lateral branches,as well as the total length of lateral branches,suggesting that theappearance of lateral branches is of importance for reproduction.In addition,massiveshedding of modules occurred after the reproductive season.Moreover,theprobability of shedding was evidently higher for fertile than for sterile modules,because all surviving thalli were sterile and short during July-August.So,a trade-offbetween reproduction and survival may exist at individual levels in S.thunbergii.
     More attentions have been paid to the gamete release of fucoid algae,but theinteractions between the environmental cues and their importance order for thegamete release remain little known.In this study,a 2~(8-4) fractional factorial design(ResolutionⅣ) was used to identify the main effects and interactions ofenvironmental factors.Of the factors tested,water motion,temperature,photoperiodand salinity were found to be the most important factors affecting egg release.Moreover,the interactions between any two factors were all significant.Based on thesize of effect estimated by ANOVA,the effects which contribute to the release ofeggs,in order of importance,are:salinity,water motion~*photoperiod (possiblytemperature~*salinity),water motion~*salinity (possibly temperature~*photoperiod),temperature,water motion~*temperature (photoperiod~*salinity),water motion and photoperiod.The optimum conditions of 25℃,30‰salinity,slack seawater and 12 hirradiance that achieved 100% release rate may be the“window of opportunity”ofegg release in S.thunbergii.These findings give insight into the egg release in S.thunbergii under laboratory conditions.
     The development of ovum and zygote,and the growth of juvenile sporophyte wereobserved on the laboratory conditions.Eggs adhered to the receptacle followingrelease from their conceptacles.The zygote detached from receptacle 20 happroximately after fertilization.After taking transverse division twice,one terminalcell developed into rhizoid and the two others developed into the germling.Thejuveniles started growing new branch when nearly reached 2mm in length.
     Commercial farming of Sargassum thunbergii is being developed in China.Asynchronous discharge of gametes and growth of epiphytic algae are the two mainconstraints for the seedling production of this species.In this study,40% and 65%reproductive output for nature and farmed population were respectively recordedduring peak reproduction.Furthermore,lower degree of temporal dispersion ofgermling occurrences for farmed population in related to nature ones was found,although germling occurrence exhibited significant temporal variations for bothpopulations.These results indicated that using farmed population as parental plants tocollect germlings is an effective strategy in achieving mass discharge of gametes.Atthe peak period of discharge,as more as 3.2×10~5 germlings per kg wet weight plantsfrom the farmed population was obtained,which was significantly more than that ofnature ones and could meet the demand of large scale seedling production.Anotherconstraint (i.e.growth of epiphytic algae) interfering the seedling cultivation wasattempted to eliminate by a strategy of jet-washing and high density seeding.Theattachment capacity of germlings was found to be significantly increased with theduration of attachment.A detachment of less than 10% was observed on collectorsthat were jet-washed using an intensity of 1 kg cm~(-1) by 48 h post-attachment,whichenables the jet-washing to be early conducted,thus preventing the growth of epiphyticalgae from early life stage.High density had adverse effects on length mean,sizeequality and occurrence of branches of germlings.However,30-50 individuals cmwere thought to be usable in the seedling production of S.thunbergii,because theyunderwent less density effects,and withstood the impact of continual jet washing.Noevident epiphytic algae growing on collectors or adhering to host plants were observed in the treatments which combined jet-washing and high seeding density,suggesting that both jet-washing and high density significantly reduced epiphyticalgae.Most seedlings in a length of>0.5 cm were achieved after one month of tankculture under less controlled conditions.
     The effects of environmental factors including disturbance,temperature,wavemotion,epiphytes and grazer (i.e.Chlorostorna rustica) on biomass were conducted,using step-wise regression analysis.The results showed that S.thunbergii distributedbetween the low-tidal zone and mid-tidal zone at 50~125 cm tidal level.Both biomassand mean thallus length of S.thunbergii exhibited a statistically significant temporalvariation,with a similar unimodal trajectory.The biomass and mean thallus lengthreached a highest value in July and decreased to a lowest value in September.Thegrowth pattern of S.thunbergii may be divided into four phases:inactivity period(before March),growth period (from early-April to mid-June),reproductive period(from mid-June to late-July) and senescence period (from late-July to September).Small plants were recorded throughout the year and showed a seasonal variation,indicating that the vegetative reproduction ofS.thunbergii occurred year round.AfterJuly 2005,the number of smallest plants increased rapidly due to the degeneration oflarge plants,recruitment of new plants and vegetative reproduction.During therapid-growth period,the length distribution was not dominated by a few size classes,and-frequencies were more or less evenly distributed in most size classes.Step-wiseregression analysis demonstrated that water temperature,wave motion anddisturbance significantly influenced the increase of biomass;however,the effect ofexposure was not significant.That is considered to be the results that S.thunbergiiclumped during sampling period,because fronds covered each other at low-tide andwater lose was efficiently prevented.On balance,the population investigated inpresent study is significantly different from others growing on the coast of Japan andKorea,which results from the differences of environmental factors.
引文
樊梅英,夏日红,曹万友等.睫毛萼凤仙花响应土壤水分和竞争的表型可塑性.资源开发与市场,2007, 23(1): 1968-967.
    李博,陈家宽,Watkinson A R.植物竞争研究进展.植物学通报,1998,15(4):18-29.
    刘金福,洪伟,李俊清,等.格氏栲林优势种竞争关系及其预测动态的研究.热带亚热带植物学报,2003, 11(3):211-216.
    赵春燕,沈有信.紫茎泽兰种内竞争试验.生态与农村环境学报,2008, 24(2): 27-31.
    韩晓弟,李岚萍.鼠尾藻特征特性与利用.特种经济动植物,2005, 1:27.
    王伟定.浙江省马尾藻属和羊栖菜属的调查研究.上海水产大学学报.2003, 12(3): 227-232.
    郑怡,陈灼华.鼠尾藻生长和生殖季节的研究.福建师范大学学报(自然科学版).1993, 9(1) 81-85
    章守宇,孙宏超.海藻场生态系统及其工程学研究进展.应用生态学报.2007, 18(7):1647-1653.
    邹定辉,夏建荣.海藻有性繁殖生态学研究进展.生态学报.2004, 24(12): 2870-2877.
    曾呈奎,陆保仁.中国海藻志,第三卷,褐藻门,墨角藻目.北京:科学出版社.2000.
    Aarssen LW, Clauss MJ, 1992.Genotypic variation in fecundity allocation in Arabidopsis thaliana.J Ecol 80: 109-114.
    Armbrust EV, Chisholm SW, Olson RJ, 1990.Role of light and the cell cycle on the induction of spermatogenesis in a centric diatom.J Phycol 26: 470-478.
    Arai A, Arai S, Miura A, 1985.Growth and maturation of Sargassum Thunbergii (Phaeophyta,Fucales) at Kominato, Chiba Prefecture.Jap J Phycol 33: 160-166.
    Arenas F, Fern(?)ndez C, 1998.Ecology of Sargassum muticum (Phaeophyta) on the North Coast of Spain.Ⅲ.Reproductive ecology.Bot Mar 41: 209-216.
    Arenas F, Viejo RM, Fernandez C, 2002.Density-dependent regulation in an invasive seaweed:responses at plant and modular levels.J Ecol 90: 820- 829.
    Ang PO, De Wreede RE, 1992.Density dependence in a population of Fucus distichus.Mar Ecol Prog Ser 90: 169-181.
    Ang P Jr O, 1992.Cost of reproduction in Fucus distichus.Mar Ecol Prog Ser 89: 25-35.
    Ang P Jr O, 2000.Relative importance of recruitment versus regeneration in maintaining the populations of Sargassum henslowianum in Ping Chau, Hong Kong.J Phycol 36: 2-3.
    Andrew NL, Viejo RM, 1998.Effects of wave exposure and intraspecific density on the growth and survivorship of Sargassum muticum (Sargassaceae: Phaeophyta).Eur J Phycol 33:251-258.
    Aschwin HE, Anneke MB, Jeanine LO, Wytze TS, 2005.Life history flexibility allows Sargassum polyceratium to persist in different environments subjected to stochastic disturbance events.Coral Reefs 24: 670-680.
    Ateweberhan M, Bruggemann JH, Breeman AM, 2006.Seasonal module dynamics of Turbinaria Triquetra (Fucales, Phaeophyceae) in the southern Red Sea.J Phycol 42: 990-1001.
    Balestri E, Cinelli F (2003) Sexual reproductive success in Posidonia oceanica.Aquatic Botany 75: 21-32.
    Begon M, Harper J L, Townsend C R, 1986.Ecology: Individuals, Populations and Communities.Oxford, U K: Blackwell Scientific Publications
    Bertness MD, Callaway RM, 1994.Positive interactions in communities.Trends Ecol Evol 9:191-193.
    Bertness MD, Leonard GH, 1997.The role of positive interactions in communities: lessons from intertidal habitats.Ecology 78: 1976-1989.
    Berger R, Henriksson E, Kautsky L, Malm T, 2003.Effects of filamentous algae and deposited matter on the survival of Fucus vesiculosus L.germlings in the Baltic Sea.Aqua Ecol 37:1 -11.
    Bertness MD, Leonard GH, Levine JM, Schmidt PR, Ingraham AO (1999). Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 80: 2711-2726.
    Berndt ML, Callow JA, Brawley SH, 2002. Gamete concentrations and timing and success of fertilization in a rocky shore seaweed. Mar Ecol Prog Ser 226: 273-285.
    Brawley SH, Johnson LE, 1992. Gametogenesis, gametes and zygotes: An ecological perspective on sexual reproduction in the algae. Eur J Phycol 27: 233-252.
    Brawley SH, Johnson LE, Pearson GA, Speransky V, Li R, Serr(?)o EA, 1999. Gamete Release at Low Tide in Fucoid Algae: Maladaptive or Advantageous? Integr Comp Bio 39: 218-229.
    Bryce DW, 2007. Mechanical size limitation and life-history strategy of an intertidal seaweed. Mar Ecol Prog Ser 338:1-10.
    Collado-Vides L, 2002. Clonal architecture in marine macroalgae: ecological and evolutionary perspectives. Evol Ecol 15: 531-45.
    Collado-Vides L, 2002. Morphological Plasticity of Caulerpa prolifera (Caulerpales, Chlorophyta) in Relation to Growth Form in a Coral Reef Lagoon. Bot Mar 45: 123-129.
    Cousens K, 1986. Quantitative reproduction and reproductive effort by stands of the brown alga Ascophyllum nodosum (L.) Le Jolis in south-eastern Canada. Estuar. Coast Shelf Sci 22: 495-507.
    Clayton M, 1992. Propagules of marine macroalgae: structure and development. Eur J Phycol 27: 219-232.
    Creed JC, Kain JM, Norton TA, 1998. An experimental evaluation of density and plant size in two large brown seaweeds. J Phycol 34: 39-52
    Chapman ARO, 1995. Functional ecology of fucoid algae: twentythree years of progress. Phycologia 34: 1-32.
    Chapman ARO, Burrows EM, 1970. Experimental investigations into the controlling effects of light conditions on the development and growth of Desmarestia aculeata (L.) Lamour. Phycologia, 9: 103-108.
    Connell JH, Slatyer RO, 1977. Mechanisms of succession in natural communities and their role in community stability and organisation. Am Nat 111:1119-1144.
    Creed J C, Norton T A, Kain J M, 1996. Are neighbours harmful or helpful in Fucus vesiculosus populations? Mar Ecol Prog Ser 133: 191-201.
    Creed JC, Kain JM, and Norton TA, 1998. An experimental evaluation of density and plant size in two large brown seaweeds. J Phycol 34: 39-52
    Dring MJ, 1988. Photocontrol of development in algae. Ann Rev Plant Physiol Plant Mol Biol 39: 157-174.
    Dean TA, Thies K, Lagos SL, 1989. Survival of juvenile giant kelp: the effects of demographic factors, competitors and grazers. Ecology 70: 483-495.
    De Wreede R., Klinger T, 1988. Reproductive strategies in algae. In: (J. Lovett Doust and L. Lovett Doust, eds) Plant Reproductive Ecology. Patterns and Strategies. Oxford University Press, Oxford.
    Emmett JD, Paul JR, Kristin EF, 2005. Ecosystem consequences of diversity depend on food chain length in estuarine vegetation. Ecol Lett 8: 301-309.
    Fei XG, 2004. Solving the coastal eutrophication problem by large scale seaweed cultivation. Hydrobiologia 512: 145-151.
    Gaylord B, 2000. Biological implications of surf-zone flow complexity. Limnol Oceanogr 45: 174-188.
    Gillespiea RD, Critchleya AT, 2001. Reproductive Allocation and Strategy of Sargassum elegans Suhr and Sargassum incisifolium (Turner) C. Agardh from Reunion Rocks, KwaZulu-Natal, South Africa. Bot Mar 44: 231-235.
    Harper JL. 1977, Population Biology of Plants. Academic Press, London.
    Haring RN, Dethier MN, Williams SL, 2002. Desiccation facilitates wave-induced mortality of the intertidal alga Fucus gardneri. Mar Ecol Prog Ser 232: 75-82.
    Han-Gil C, 2003. Effects of canopy and settlement density on the performance of the brown seaweed Fucus serratus Germlings. Korean J Biol Sci 7: 295-301.
    Hemminga MA, Duarte CM, 2000. Seagrass ecology. Cambridge University Press, Cambridge.
    Heck KL, Valentine JF, 2006. Plant-herbivore interactions in seagrass meadows. J Exp Mar Biol Eco 330: 420-436.
    Hales JM, Fletcher RL, 1990. Studies of the recently introduced brown alga Sargassum muticum (Yendo) Fensholt. V. Receptacle initiation and growth, and gamete release in laboratory culture. Botanica Mar 33: 241-249.
    Kawamitsu Y, Boyer JS, 1999. Photosynthesis and carbon storage between tides in a brown alga, Fucus vesiculosus. Mar Biol 133: 361-369.
    Kirst GO, 1989. Salinity tolerance of eukaryotic marine algae. Ann. Rev. Plant Physiol. Plant Mol Biol 40: 21-53.
    Kendrick GA, Walker DI, 1994. Role of recruitment in structuring beds of Sargassum spp. (Phaeophyta) at Rottnest Island, Western Australia. J Phycol 30: 200-208.
    Kendrik GE, 1994. Effects of propagule settlement density and adult canopy on survival of recruits of Sargassum spp. (Sargassaceae: Phaeophyta). Mar Ecol Prog Ser 103: 129-140.
    Koehl MAR, Alberte RS, 1988. Flow, flapping, and photosynthesis of Nereocystis luetkeana: a functional comparison of undulate and flat blade morphologies. Mar Biol 99: 435-444.
    Kelly I, Pfiester LA, 1990. Sexual reproduction in the freshwater dinoflagellate Gloeodinium montanum. J Phycol 26: 167-173.
    Lotze HK, Worm B, Sommer U, 2001. Strong bottom-up and top-down control of early life stages of macroalgae. Limnol Oceanogr 46: 749-757.
    L(?)ning K, Tom Dieck I, 1989. Environmental triggers in algal seasonality. Botanica mar., 32: 389-397.
    L(?)ning K, Dring MJ, 1972. Reproduction induced by blue light in female gametophytes of Larninaria saecharina. Planta, 104: 252-256.
    Mathieson AC, Guo ZY, 1992. Patterns of fucoid reproductive biomass allocation. Eur J Phycol 27: 271-292.
    McCourt RM, 1985. Reproductive biomass allocation in three Sargassum species. Oecologia 67: 113-117.
    Mark WD, 2006. Ocean waves, nearshore ecology, and natural selection. Aqua Ecol 40:439-461.
    Monro K, Poore AGB, 2005. Light quantity and quality induce shade-avoiding plasticity in a marine macroalga. J Evol Biol 18: 426-435.
    Nakaoka M, 2005. Plant-animal interactions in seagrass beds: ongoing and future challenges for understanding population and community dynamics. Popul Ecol 47:167-177.
    Olsen JL, Stam WT, Coyer JA, 2004. North Atlantic phylogeography and large-scale population differentiation of the seagrass Zostera marina L. Mol Ecol 13: 1923-1941.
    Pearson GA, Brawley SH, 1996. Reproductive ecology of Fucus distichus (Phaeophyceae): an intertidal alga with successful external fertilization. Mar Ecol Prog Ser 143: 211-223.
    Pearson GA, Brawley SH, 1998. A model for signal transduction during gamete release in the fucoid alga Pelvetia compressa. Plant Physiol 118: 305-313
    Pearson GA, Serr(?)o EA, Brawley SH, 1998. Control of gamete release in fucoid algae: sensing hydrodynamic conditions via carbon acquisition. Ecology 79: 1725-1739.
    Pearson GA, Serr(?)o EA, Dring M, Schmid R, 2004. Blue- and green-light signals for gamete release in the brown alga, Silvetia compressa. Oecologia 138: 193-201.
    Padilla DK, Allen BJ, 2000. Paradigm lost: reconsidering functional form and group hypotheses in marine ecology. J Exp Mar Biol Ecol 250: 207-21.
    Reed DC, 1990. An experimental evaluation of density dependence in a subtidal algal population. Ecology 71: 2286-2296.
    Reekie EG, Bazzaz FA, 1987. Reproductive effort in plants. 1. Carbon allocation to reproduction. Am. Nat. 129: 876-896.
    Santelices B, 2002. Recent advances in fertilization ecology of macroalgae. J Phycol 38: 4-10.
    Santelices B, 2004. A comparison of ecological responses among aclonal (unitary), clonal, and coalescing macroalgae. J Exp Mar Biol Ecol 300: 31-64.
    Santelices B, Correa JA, Aedo D, Flores V, Hormaz(?)bal M, S(?)nchez P, 1999. Convergent biological processes in coalescing Rhodophyta. J Phycol 35: 1127-1149.
    Santelices B, Aedo D, Hormaz(?)bal M, Flores V, 2003. Field testing of inter- and intraspecific coalescence among mid-intertidal red algae. Mar Ecol Prog Ser 250: 91-103.
    Santelices B, 1990. Patterns of reproduction, dispersal and recruitment in seaweeds. Ocean Mar Biol Ann Rev 28: 177-276.
    Serr(?)o EA, Kautsky L, Brawley SH, 1996. Distributional success of the marine seaweed F. vesiculosus L. in the brackish Baltic Sea correlates with osmotic capabilities of Baltic gametes. Oecologia 107: 1-12.
    Serr(?)o EA, Pearson G, Kautsky L, Brawley SH, 1996. Successful external fertilization in turbulent environments. Proc Natl Acad Sci USA 93(11): 5286-5290.
    Serr(?)o EA, Alice LA, Brawley SH. 1999. Evolution of the Fucaceae (Phaeophyceae) inferred from nrDNA-ITS. J Phycol 35: 382-94.
    Scrosati R, 2005. Review of studies on biomass-density relationships (including self-thinning lines) in seaweeds: main contributions and persisting misconceptions. Phycol Res 53:224-233.
    Scrosati R, 2002. An updated definition of genet applicable to clonal seaweeds, bryophytes, and vascular plants. Basic Appl Ecol 3: 97-99.
    Steen H, Scrosati R, 2004. Intraspecific competition in Fucus serratus and F. evanescens (Phaeophyceae: Fucales) germlings: effects of settlement density, nutrient concentration, and temperature. Mar Biol 144: 61-70.
    Sousa WP, 1979. Experimental investigation of disturbance and ecological succession in a rocky intertidal algal community. Ecol Monogr 49: 227-254.
    Samson DA, Werk KS, 1986. Size dependent effects in the analysis of reproductive effort in plants. Am. Nat. 127: 667-680.
    Schmid B, Puttick GM, Burgess KH, Bazzaz FA, 1988. Correlations between genet architecture and some life history features in three species of Solidago. Oecologia 75: 459-464.
    Sugiyama S, Bazzaz FA, 1998. Size dependence of reproductive allocation: the influence of resource availability, competition and genetic identity. Funct Ecol 12: 280-288.
    Susana MC, Jan WR, Murray TB, 2000. Impacts of anthropogenic stresses on the early development stages of seaweeds. Journal of Aquatic Ecosystem Stress and Recovery 7: 317-333.
    Susan HB, 1991. Survival of Fucoid embryos in the intertidal zone depends upon developmental stage and microhabitat. J Phycol 27: 179-186.
    Tomanek L, Helmuth B, 2002. Physiological Ecology of Rocky Intertidal Organisms: A Synergy of Concepts. Integ Comp Biol 42(4): 771-775.
    Thompson K, Stewart AJA, 1981. The measurement and meaning of reproductive effort in plants. Am Nat 117: 205-211.
    Umezaki J, 1974. Ecological studies of Sargassum thunbergii in Maizuru Bay, Japan Sea. J Plant Res 87:285-292.
    Vadas RL, Johnson S, Norton TA, 1992. Recruitment and mortality of early post-settlement stages of benthic algae. Br Phycol J 27: 331-351.
    White J, 1985. The Thinning rule and its application to mixtures of plant populations. London: Academic Press 291-309.
    Weiner J, Thomas SC, 1986. Size variability and competition in plant monocultures. Oikos, 47: 211-222.
    Weiner J. 1988. The influence of competition on plant reproduction. In: Lovett Doust J, Lovett Doust L (eds) Plant Reproductive Ecology: Patterns and Strategies. Oxford University Press, New York, pp 228-245.
    Westoby M, 1984. The self-thinning rule. Adv Ecol Res 14: 167-225.
    Worm B, Lotze HK, Sommer U, 2001. Algal propagule banks modify competition, resource control on Baltic rocky shores. Oecologia 128: 281-293.
    Wright JT, Williams SL, Dethier MN, 2004. No zone is always greener: variation in the performance of Fucus gardneri embryos, juveniles and adults across tidal zone and season. Mar Biol 145: 1061-1073.
    Yoshida G, Yoshikawa K, Terawaki T (2001) Growth and maturation of two populations of Sargassum horneri (Fucales, Pheaophyta) in Hiroshima Bay, the Seto Inland Sea. Fish Sci 67: 1023-1029.
    Zou DH, Gao KS, Ruan ZX, 2006. Seasonal pattern of reproduction of Hizikia fusiformis (Sargassaceae, Phaeophyta) from Nanao Island, Shantou, China. J Appl Phycol 18: 195-201.
    (?)berg P, 1992. Size based demography of the seaweed Ascophyllum nodosum in stochastic environments. Ecology 73: 1488-1501.
    (?)berg P, 1996. Patterns of reproductive effort in the brown alga Ascophyllum nodosum. Mar. Ecol. Prog. Ser 138: 199-207.
    Akira, K., Masafumi, I., 1999.On growth and maturation of Sargassum thunbergii from southern part of Nagasaki Prefecture, Japan.Jpn.J.Phycol.3, 179-186 (in Japanese).
    Ang, P.Jr O., 1991.Natural dynamics of a Fucus distichus (Phaeophyceae, Fucales) population:reproduction and recruitment.Mar.Ecol.Prog.Ser.78, 71-85.
    Ang, P.Jr O., 1992.Cost of reproduction in Fucus distichus.Mar.Ecol.Prog.Ser.89, 25-35.
    Arenas, F., Fern(?)ndez, C., 1998.Ecology of Sargassum muticum (Phaeophyta) on the North Coast of Spain.Ⅲ.Reproductive ecology.Bot.Mar.41, 209-216.
    Arai, A., Arai S., Miura, A., 1985.Growth and maturation of Sargassum thunbergii (Mertens ex Roth) O.Kuntze (Phaeophyta, Fucales) at Kominto, Chiba Prefecturs.Jpn.J.Phycol.33,160-166.
    Ateweberhan, M., Bruggemann J.H., Breeman, A.M., 2006.Seasonal module dynamics of Turbinaria Triquetra (Fucales, Phaeophyceae) in the southern Red Sea.J.Phycol.42,990-1001.
    Ateweberhan, M., Bruggernann, J.H., Breeman, A.M., 2008.Seasonal module dynamics in SargassumSubrepandum.(Fucales,Phaeophyta)J.Phycol.44,DOI:10.1111/j.1529-8817.2008.00463.x.
    Brenchley, J.L., Raven, J.A., Johnston, A.M., 1996. A comparison of reproductive allocation and reproductive effort between semelparous and iteroparous fucoids (Fucales, Phaeophyta). Hydrobiologia 326/327, 185-190.
    Buschmann, A.H., Moreno, C, V(?)squez, J.A., 2006. Reproduction strategies of Macrocystis pyrifera (Phaeophyta) in Southern Chile: The importance of population dynamics. J. Appl. Phycol. 18,575-582.
    Coleman, J.S., McConnaughay, K.D.M., 1995. A non-functional interpretation of a classical optimal-partitioning example. Funct. Ecol. 9, 951-954.
    Cousens, K., 1986. Quantitative reproduction and reproductive effort by stands of the brown alga Ascophyllum nodosum (L.) Le Jolis in south-eastern Canada. Estuar. Coast Shelf Sci. 22, 495-507.
    De Wreede, R.E., Klinger, T., 1988. Reproductive strategies in algae. In: (J. Lovett Doust and L. Lovett Doust, eds) Plant Reproductive Ecology. Patterns and Strategies. Oxford University Press, Oxford. pp. 2672284.
    Engelen, A.H., Breeman, A.M. Olsen, J.L. Stem, W.T., (?)berg, P., 2005. Life history flexibility allows Sargassum polyceratiumto persist in different environments subjected to stochastic disturbance events. Coral Reefs 24,670-680.
    Gillespiea R.D., Critchleya, A.T., 2001. Reproductive Allocation and Strategy of Sargassum elegans Suhr and Sargassum incisifolium (Turner) C. Agardh from Reunion Rocks, KwaZulu-Natal, South Africa. Bot. Mar. 44, 231-235.
    Koh, C.H., Kim, Y., Kang, S.G., 1993. Size distribution, growth and production of Sargassum thunbergii in an intertidal zone of Padori, west coast of Korea. Hydrobiologia 260/261, 207-214.
    Lortie, C.J., Aarssen, L.W., 2000. Fitness consequences of branching in Verbascum thapsus (Scrophulariaceae). Am. J. Bot. 87, 1793-1796.
    Mathieson, A.C., Guo, Z.Y., 1992. Patterns of fucoid reproductive biomass allocation. Eur. J. Phycol. 27, 271-292.
    McCourt, R.M., 1985. Reproductive biomass allocation in three Sargassum species. Oecologia 67, 113-117.
    Pfister, C.A., 1992. Costs of reproduction in an intertidal kelp: Patterns of allocation and life history consequences. Ecology 73, 1586-1596.
    Phillips, N., 1995. Biogeography of Sargassum (Phaeophyta) in the Pacific basin. In: (I. A., Abbott, Eds) Taxonomy of Economic Seaweeds. California Sea Grant College System. Vol. 5, pp. 107-145.
    Samson, D.A., Werk, K.S., 1986. Size dependent effects in the analysis of reproductive effort in plants. Am. Nat. 127, 667-680.
    Santelices, B., 2004. A comparison of ecological responses among aclonal (unitary), clonal and coalescing macroalgae. J. Exp. Mar. Biol. Ecol. 300,31-64.
    Schmid, B., Puttick, G.M. Burgess, K.H., Bazzaz, F.A., 1988. Correlations between genet architecture and some life history features in three species of Solidago. Oecologia 75, 459-464.
    Scrosati, R., 2002. An updated definition of genet applicable to clonal seaweeds, bryophytes, and vascular plants. Basic Appl. Ecol. 3, 97-9.
    Scrosati, R., 2005. Review of studies on biomass-density relationships (including self-thinning lines) in seaweeds: main contributions and consistent misconceptions. Phycol. Res. 53, 224-33.
    Sprugel, D.G., Hinckley, T.M., Schaap, W., 1991. The theory and practice of branch autonomy. Annu. Rev. Ecol. Syst. 22,309-334.
    Sugiyama, S., Bazzaz, F.A., 1998. Size dependence of reproductive allocation: the influence of resource availability, competition and genetic identity. Funct. Ecol. 12,280-288.
    Sultan, S.E., 2000. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 5, 537-542.
    Umezaki, I., 1974. Ecological Studies of Sargassum Thunbergii (Mertens) O. Kuntze in Maizuru Bay, Japan Sea. Bot. Mag. Tokyo 87, 285-292.
    Zhang, D.Y., Jiang, X.H., 2002. Size-dependent resource allocation and sex allocation in herbaceous perennial plants. J. Evol. Biol. 15, 74-83.
    Zhang, D.Y., Jiang, X.H., Zhao, S.L., 1996. Evolutionarily stable reproductive strategies in sexual organisms. II. Dioecy and optimal resource allocation. Am. Nat. 147, 1115-1123.
    Zhou, D., Wang, T., Valentine, I., 2005. Phenotypic plasticity of life-history characters in response to different germination timing in two annual weeds. Can. J. Bot. 83, 28-36.
    Zou, D.H., Gao, K.S., Ruan, Z.X., 2006. Seasonal pattern of reproduction of Hizikia fusiformis (Sargassaceae, Phaeophyta) from Nanao Island, Shantou, China. J. Appl. Phycol. 18, 195-201.
    (?)berg, P., 1992. Size based demography of the seaweed Ascophyllum nodosum in stochastic environments. Ecology 73, 1488-1501.
    (?)berg, P., 1996. Patterns of reproductive effort in the brown alga Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 138, 199-207.
    Ai M.Y., Zhang R.C.(2004) s~(n-m) Designs containing clear main effects or clear two-factor interactions.Stat Probabil Lett 69: 151-160.
    Berndt M.L., Callow J.A., Brawley S.H.(2002) Gamete concentrations and timing and success of fertilization in a rocky shore seaweed.Mar Ecol Prog Ser 226: 273-285.
    Brawley S.H, Johnson L.E.(1992) Gametogenesis, gametes and zygotes: An ecological perspective on sexual reproduction in the algae.Eur J Phycol 27: 233-252.
    Brawley S.H., Johnson L.E., Pearson G.A., Speransky V., Li R., Serr(?)o E.A.(1999) Gamete Release at Low Tide in Fucoid Algae: Maladaptive or Advantageous? Integr.Comp Bio 39:218-229
    Brawley S.H.(1992) Fertilization in natural populations of the dioecious brown alga Fucus ceranoides and the importance of the polyspermy block.Mar Bio 113: 145-157.
    Chen H.G., Hedayat A.S.,(1998) 2~(n-m) designs with resolution Ⅲ or Ⅳ containing clear two-factor interactions.J Stat Plan Infer, 75: 147-158.
    Davison M.W., Pearson G.A.(1996) Stress tolerance in intertidal seaweeds.J Phycol 32: 197-211.
    Hales J.M., Fletcher R.L. (1990) Studies of the recently introduced brown alga Sargassum muticum (Yendo) Fensholt. V. Receptacle initiation and growth, and gamete release in laboratory culture. Botanica mar 33: 241-249.
    Haaland P.D. (1989) Experimental Design in Biotechnology. Marcel Dekker, New York and Basle.
    Kawamitsu Y, Boyer J.S. (1999) Photosynthesis and carbon storage between tides in a brown alga, Fucus vesiculosus. Mar Biol 133: 361-369.
    Kirst G.O. (1989) Salinity tolerance of eukaryotic marine algae. Ann. Rev. Plant Physiol. Plant Mol Biol 40: 21-53.
    Kobilinsky A. (2000) Analys and Planor Softwares. Unit(?) de Biom(?)trie. INRA.
    Lee J.A., Brinkhuis B.H. (1988) Seasonal light and temperature interaction effects on development of Laminaria saccharina (Phaeophyta) gametophytes and juvenile sporophytes. J.Phycol, 24:181-191.
    Montgomery M.C. (2005) Design and Analysis of Experiments, 6th edn. Hoboken, NJ, USA: John Wiley & Sons Inc.
    Pearson G.A., Brawley S.H. (1996) Reproductive ecology of Fucus distichus (Phaeophyceae): an intertidal alga with successful external fertilization. Mar Ecol Prog Ser 143:211-223.
    Pearson G.A., Brawley S.H. (1998) A model for signal transduction during gamete release in the fucoid alga Pelvetia compressa. Plant Physiol 118:305-313
    Pearson G.A., Serr(?)o E.A., Brawley S.H. (1998) Control of gamete release in fucoid algae: sensing hydrodynamic conditions via carbon acquisition. Ecology 79: 1725-1739.
    Pearson GA., Serr(?)o E.A., Dring M., Schmid R. (2004) Blue- and green-light signals for gamete release in the brown alga, Silvetia compressa. Oecologia 138: 193-201.
    Pearson G.A., Serr(?)o E.A. (2006) Revisiting synchronous gamete release by fucoid algae in the intertidal zone: fertilization success and beyond? Integr Comp Biol 46(5): 587-597.
    Phillips N. (1995) Biogeography of Sargassum (Phaeophyta) in the Pacific basin. In: (I. A., Abbott, Eds) Taxonomy of Economic Seaweeds. California Sea Grant College System. Vol. 5, pp. 107-145.
    Santelices B. (2002) Recent advances in fertilization ecology of macroalgae. J Phycol 38: 4-10.
    Serr(?)o E.A., Kautsky L., Brawley S.H. (1996) Distributional success of the marine seaweed F. vesiculosus L. in the brackish Baltic Sea correlates with osmotic capabilities of Baltic gametes. Oecologia 107: 1-12.
    Serr(?)o EA, Pearson G, Kautsky L, Brawley SH (1996) Successful external fertilization in turbulent environments. Proc Natl Acad Sci USA 93(11): 5286-5290.
    Serr(?)o EA, Alice LA, Brawley SH. 1999. Evolution of the Fucaceae (Phaeophyceae) inferred from nrDNA-ITS. J Phycol 35: 382-94.
    Quinn GP, Keough MJ (2002) Experimental Design and Data Analysis for Biologists Cambridge University Press, Cambridge.
    Zou D, Gao K (2005) Regulation of gamete release in the economic brown seaweed Hizikia fusiforme (Phaeophyta).Biotechnol Lett 27: 915-918.
    曾呈奎,陆保仁.中国海藻志.褐藻门.墨角藻目.北京:科学出版社,2000, 56-58.
    曾呈奎,张德瑞,张峻甫等.中国经济海藻志.北京:科学出版社,1962.
    韩晓弟,李岚萍.鼠尾藻特征特性与利用.特种经济动植物,2005(1), 27.
    王伟定.浙江省马尾藻和羊栖菜属的调查研究.上海水产大学学报,2003, 12 (3): 227-232.
    刘剑华,张耀红.沐官岛潮间底栖海藻春秋季节的群落构成生物量、分布及其变化的初步研究.海洋湖沼通报,1995(1): 80-86.
    师然新,徐祖洪.青岛沿海九种海藻的类脂及酚类抗菌活性的研究.中国海洋药物,1997(4):16-194.
    严小军.中国常见海藻的多酚含量测定.海洋科学集刊,1996, 37: 61-65.
    郑怡,陈灼华.鼠尾藻生长和生殖季节的研究.福建师范大学学报(自然科学版),1993, 9(1):81-85.
    邹吉新,李源强,刘雨新等.鼠尾藻的生物学特性及筏式养殖技术研究.齐鲁渔业,2005, 22(3): 25-29.
    王飞久,孙修涛,李锋等.鼠尾藻的有性繁殖过程和幼苗培育技术研究.海洋水产研究,2006,27(5): 1-6.
    刘启顺,姜洪涛,刘雨新等.鼠尾藻人工育苗技术研究.齐鲁渔业,2006, 23 (12): 5-9.
    Chul-Hwan Koh, Yonghwan Kim and Seong-Gil Kang.Size distribution, growth and production of Sargassum thunbergii in an intertidal zone of Padori, west coast of Korea.Hydrobiologia,1993, 260/261(1): 207-214.
    Isamu Umezaki.Ecological studies of Sargassum thunbergii (Mertens) O'Kuntze in Maizuru Bay,Japan Sea.Journal of Plant Research, 1974, 87(4): 285-292
    YanXiao-jun, HouXiao-lin,SunBiao,etal..Elementcompositionof Sargassum thunbergii.Chinese Journal of Oceanology and Limnology, 1998, 16(2): 189-192.
    Arenas, F., Fern(?)ndez, C., 1998.Ecology of Sargassum inuticum (Phaeophyta) on the North Coast of Spain.Ⅲ.Reproductive ecology.Bot.Mar.41, 209-216.
    Arenas, F., Fern(?)ndez, C., 2000.Size structure and dynamics in a population of Sargassum muticum (Phaeophyceae).J.Phycol.36, 1012-1020.
    Arenas, F.Viejo, R.M.Fern(?)ndez, C., 2002.Density-dependent regulation in an invasive seaweed responses at plant and modular levels.J.Ecol.90, 820-829.
    Amarasekare, P., 2003.Competitive coexistence in spatially structured environments: a synthesis Ecol.Lett.6, 1109-1122.
    Creed, J.C., T.A.Norton and Kain, J.M., 1997.Intraspecific competition in Fucus serratus germlings: the interaction of light, nutrients and density.J.Exp.Mar.Biol.Ecol.212,211-223.
    Creed, J.C., Kain, J.M., Norton, T.A., 1998. An experimental evaluation of density and plant size in two large brown seaweeds. J. Phycol. 34,39-52.
    Dorn, L.A., Hammond-Pyle, E., Schmitt, J., 2000. Plasticity to light cues and resources in Arabidopsis thaliana: testing for adaptive value and costs. Evolution 54, 1982-1994.
    Dudley, S.A., Schmitt, J., 1996. Testing the adaptive plasticity hypothesis: density-dependent selection on manipulated stem length in Impatiens capensis. Am. Nat. 147,445-465.
    Fletcher, R.L., 1995. Epiphytism and fouling in Gracilaria cultivation: an overview. J. Appl. Phycol. 7, 325-333.
    Karez, R., 2003. Do monospecific stands of three Fucus species (Phaeophyta) comply with the self-thinning rule? Eur. J. Phycol. 38,171-180.
    Kraberg, A.C., Norton, T.A., 2007. Effect of epiphytism on reproductive and vegetative lateral formation in the brown, intertidal seaweed Ascophyllum nodosum (Phaeophyceae). Phycol. Res. 55, 17-24.
    Kokko, H., Mackenzie, A., Reynolds, J. D., Lindstrom, J. & Sutherland, W. J., 1999. Measures of inequality are not equal. Am. Nat. 72, 358-382.
    L(?)ning, K., Pang, S.J., 2003. Mass cultivation of seaweeds: current aspects and approaches. J. Appl. Phycol. 15,115-119.
    Mathieson, A.C., Guo Z.Y, 1992. Patterns of fucoid reproductive biomass allocation. Eur. J. Phycol. 27,271-292.
    Murae, N., Kito H., Mizukami, Y., Maegawa, M., 2000. Productivity of a Sargassum macrocarpum (Fucales, Phaeophyta) population in Fukawa Bay, Sea of Japan. Fisheries Sci. 66, 270-277.
    Pickering, T.D., Gordon, M.E., Tong, L.J., 1993. Effect of nutrient pulse concentration and frequency on growth of Gracilaria chilensis plants and levels of epiphytic algae. J. Appl. Phycol. 5, 525-533.
    Pang, S.J., Chen, L.T., Zhuang, D.G., Fei, X.G., Sun, J.Z., 2005. Cultivation of the brown alga Hizikia fusiformis (Harvey) Okamura: enhanced seedling production in tumbled culture. Aquaculture 245, 321- 329.
    Pang, S.J., Zhang, Z.H., Zhao, H.J., Sun, J.Z., 2007. Cultivation of the brown alga Hizikia fusiformis (Harvey) Okamura: stress resistance of artificially raised young seedlings revealed by chlorophyll fluorescence measurement. J. Appl. Phycol. 19, 557-565.
    Pang, S.J., Shan, T.F., Zhang, Z.H., Sun, J.Z., 2008. Cultivation of the intertidal brown alga Hizikia fnsiformis(Harvey) Okamura: mass production of zygote-derived seedlings under commercial cultivation conditions, a case study experience. Aquac. Res. 39, 1408-1415,
    Phillips, N., 1995. Biogeography of Sargassum (Phaeophyta) in the Pacific basin. In: (I. A., Abbott, Eds) Taxonomy of Economic Seaweeds. California Sea Grant College System. Vol. 5, pp. 107-145.
    Steen, H., 2003. Intraspecific competition in Sargassum muticum (Phaeophyceae) germlings under various density, nutrient and temperature regimes. Bot. Mar. 46, 36-43.
    Steen, H., Scrosati, R., 2004. Intraspecific competition in Fucus serratus and F. evanescens (Phaeophyceae: Fucales) germlings: effects of settlement density, nutrient concentration, and temperature. Mar. Biol. 144, 61-70.
    Sugiyama, S., Bazzaz, F.A., 1998. Size dependence of reproductive allocation: the influence of resource availability, competition and genetic identity. Funct. Ecol. 12, 280-288.
    Ugarte, R., Santelices, B., 1992. Experimental tank cultivation of Gracilaria chilensis in central Chile. Aquaculture 101,7-16.
    Vairappan, C.S., 2006. Seasonal occurrences of epiphytic algae on the commercially cultivated red alga Kappaphycus alvarezii (Solieriaceae, Gigartinales, Rhodophyta) J. Appl. Phycol. 18, 611-617.
    Wright, J.T., Williams, S.L., Dethier, M.N., 2004. No zone is always greener: variation in the performance of Fucus gardneri embryos, juveniles and adults across tidal zone and season. Mar. Biol. 145,1061-1073.
    Weiner, J., Solbrig, O.T., 1984. The meaning and measurement of size hierarchies in plant populations. Oecologia 61,334-336.
    Weiner, J., Thomas, S.C., 1986. Size variability and competition in plant monocultures. Oikos, 47, 211-222.
    Xu, B., Zhang, Q.S., Qu, S.C., Cong, Y.Z., Tang, X.X., 2008. Introduction of a seedling production method using vegetative gametophytes to the commercial farming of Laminaria in China. J Appl Phycol DOI 10.1007/s10811-008-9347-z.
    Zou, D.H., Gao K.S. Ruan Z.X., 2006. Seasonal pattern of reproduction of Hizikia fusiformis (Sargassaceae, Phaeophyta) from Nanao Island, Shantou, China. J. Appl. Phycol. 18, 195-201.
    (?)berg, P., 1996. Patterns of reproductive effort in the brown alga Ascophyllum nodosum. Mar. Ecol. Prog. Ser. 138, 199-207.
    曾呈奎,陆保仁.中国海藻志.北京:科学出版社,2000.
    曾呈奎,张德瑞,张峻甫等.中国经济海藻志.北京:科学出版社.1962.
    郑怡,陈灼华.鼠尾藻生长和生殖季节的研究.福建师范大学学报,1993, 9(1): 81-85.
    王伟定.浙江省马尾藻属和羊栖菜属的调查研究.上海水产大学学报,2003, 12(3): 227-232.
    王飞久,孙修涛,李锋等.鼠尾藻的有性繁殖过程和幼苗培育技术研究.海洋水产研究,2006, 27(5): 1-6.
    刘启顺,姜洪涛,刘雨新等.鼠尾藻人工育苗技术研究.齐鲁渔业,2006, 23 (12): 5-9.
    詹冬梅,李美真,丁刚等.鼠尾藻有性繁育及人工育苗技术的初步研究.海洋水产研究,2006, 27(6): 55-59.
    孙修涛,王飞久,张立敬等.鼠尾藻生殖托和气囊的形态结构观察.海洋水产研究,2007,28(3): 125-131.
    张泽宇,李晓丽,韩余香等.鼠尾藻的繁殖生物学及人工育苗的初步研究.大连水产学院学报,2007, 22(4): 255-259.
    王增福,刘建国.鼠尾藻(Sargassum thunbergii)有性生殖过程与育苗.海洋与湖沼,2007,38(5): 453-457.
    邹吉新,李源强,刘雨新等.鼠尾藻的生物学特性及筏式养殖技术研究.齐鲁渔业,2005,22(3): 33-36.
    Arai A, Arai S, Miura A. 1985, Growth and maturation of Sargassum thunbergii (Mertens ex Roth) O' Kuntze (Phaeophyta, Fucales) at Kominto, China Prefectuer Jap. J Phycol, 33: 160-166.
    Berger R, Malm T, Kautsky L 2001. Two reproductive strategies in Baltic Fucus vesiculosus (Phaeophyceae). Eur J Phycol, 36: 265-273.
    Buschmann AH, Moreno C, Vasquez JA, MC, 2006. Reproduction strategies of Macrocystis pyrifera (Phaeophyta) in Southern Chile: The importance of population dynamics Journal of Applied Phycology, 18:575-582.
    Engelen AH, Breeman AM, Olsen JL, Stam WT, 2005. Life history flexibility allows Sargassum polyceratiumto persist in different environments subjected to stochastic disturbance events. Coral Reefs, 24: 670-680.
    Koh CH, Kim Y, Kang SG, 1993. Size distribution, growth and production of Sargassum thunbergii in an intertidal zone of Padori, west coast of Korea. Hydrobiologia, 260-261(1): 207-214.
    Largo DB, Ohno M, 1992. Phenology of two species of brown seaweeds, Sargassum myriocystum J Agardh and Sargassum siliquosum J Agardh (Sargassaceae, Fucales) in Liloan, Cebu, in Central Philippines. Bull Mar Sci, 12:17- 27.
    McCourt RM, 1985. Reproductive biomass allocation in three Sargassum species. Oecologia, 67(1): 113-117.
    Scrosati R, DeWreede RE. 1997, Dynamics of the biomass-density relationship and frond biomass inequality for Mazzaella cornucopiae (Gigartinaceae, Rhodophyta): implications for the understanding of frond interactions. Phycologia, 36(6): 506-516.
    Scrosati R, DeWreede RE, 1998. The impact of frond crowding on frond bleaching in the clonal intertidal alga Mazzaella cornucopiae (Rhodophyta, Gigartinaceae) from British Columbia, Canada. J Phycol, 34: 228-232.
    Wong CL, Phang SM, 2004. Biomass production of two Sargassum species at Cape Rachado, Malaysia. Hydrobiologia, 512: 79-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700