胃电刺激对ICC表型及ICC-ENS突触连接可塑性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:以糖尿病胃轻瘫大鼠为模型,研究糖尿病不同时期ICC表型的变化,探讨糖尿病大鼠ICC减少的深层原因。
     方法:链脲佐菌素60mg/kg腹腔注射制作糖尿病大鼠模型(n=36),分别于造模后第2周、4周、6周、8周、10周、12周处死,每期各6只,对照组(n=18)给予等量柠檬酸-柠檬酸钠缓冲液注射,分别与同期糖尿病大鼠一起处死,每期各3只。电镜下观察其胃ICC超微结构的变化; TUNEL法检测细胞凋亡;免疫荧光双重染色观察肌间层是否存在ICC与平滑肌肌丝蛋白α-SMA(平滑肌α-actin)、desmin(平滑肌结蛋白)或SMHC(平滑肌肌球蛋白重链)的双重表达;RT-PCR和Western Blot法检测c-kit、α-SMA、desmin、SMHC和SMLC(平滑肌肌球蛋白轻链) mRNA和蛋白表达的变化。
     结果:(1)自第4周起糖尿病组大鼠胃肌间层可见c-kit和desmin、c-kit和SMHC的双重标记的ICC细胞,但未见c-kit和α-SMA的双重标记的ICC细胞;对照组未见双重标记的ICC细胞。(2)糖尿病第4周起电镜下可见兼具ICC和平滑肌超微结构特征的“中间状态”的ICC细胞,富含微丝和中间丝,并成束状与细胞外缘并行,外观类似平滑肌细胞,细胞质密度高于邻近的平滑肌细胞。(3)两组大鼠胃肌间层均未见凋亡细胞。(4)糖尿病组大鼠胃c-kit的mRNA表达(2wk vs 6wk vs 12wk: 0.60±0.15 vs 0.39±0.15 vs 0.39±0.11, P<0.05)随糖尿病病程延长而下降;平滑肌肌丝蛋白α-SMA的mRNA表达(2wk vs 6wk vs 12wk: 1.19±0.08 vs 1.21±0.11 vs 1.19±0.13, P>0.05)无显著变化;平滑肌肌丝蛋白desmin (2wk vs 6wk vs 12wk: 0.58±0.11 vs 0.67±0.13 vs 0.78±0.14, P<0.05)、SMHC (2wk vs 6wk vs 12wk: 0.34±0.08 vs 0.46±0.08 vs 0.63±0.11, P<0.05)和SMLC (2wk vs 6wk vs 12wk: 0.24±0.07 vs 0.29±0.08 vs 0.31±0.06,P<0.05)的mRNA表达均上升。对照组大鼠各期c-kit (2wk vs 6wk vs 12wk: 0.61±0.15 vs 0.61±0.12 vs 0.58±0.15, P>0.05)、平滑肌肌丝蛋白α-SMA (2wk vs 6wk vs 12wk:1.25±0.09 vs 1.22±0.14 vs 1.22±0.13, P>0.05)、desmin (2wk vs 6wk vs 12wk: 0.58±0.11 vs 0.57±0.12 vs 0.51±0.13, P>0.05)、SMHC (2wk vs 6wk vs 12wk:0.31±0.06 vs 0.29±0.10 vs 0.31±0.06, P>0.05)和SMLC (2wk vs 6wk vs 12wk: 0.23±0.06 vs 0.25±0.06 vs 0.21±0.08,P>0.05)的mRNA表达均无显著变化。(5)糖尿病组大鼠胃c-kit的蛋白表达(2wk vs 6wk vs 12wk:0.37±0.09 vs 0.24±0.08 vs 0.11±0.04,P <0.05)随糖尿病病程延长而下降;平滑肌肌丝蛋白α-SMA的蛋白表达(2wk vs 6wk vs 12wk: 1.49±0.19 vs 1.43±0.24 vs 1.51±0.20, P>0.05)无显著变化;平滑肌肌丝蛋白desmin (2wk vs 6wk vs 12wk: 0.72±0.10 vs 0.76±0.14 vs 0.84±0.15, P <0.05)、SMHC (2wk vs 6wk vs 12wk: 0.53±0.14 vs 0.62±0.14 vs 0.65±0.16,P <0.05)和SMLC (2wk vs 6wk vs 12wk:0.11±0.02 vs 0.18±0.06 vs 0.29±0.06,P <0.05)的蛋白表达均上升。对照组大鼠各期c-kit蛋白(2wk vs 6wk vs 12wk: 0.44±0.10 vs 0.42±0.10 vs 0.37±0.0, P>0.05)、平滑肌肌丝蛋白α-SMA (2wk vs 6wk vs 12wk: 1.50±0.22 vs 1.49±0.23 vs 1.52±0.22,P>0.05)、desmin (2wk vs 6wk vs 12wk:0.69±0.13 vs 0.67±0.14 vs 0.67±0.14, P>0.05)、SMHC(2wk vs 6wk vs 12wk: 0.69±0.15 vs 0.69±0.08 vs 0.64±0.10, P>0.05)和SMLC (2wk vs 6wk vs 12wk: 0.10±0.03 vs 0.09±0.03 vs 0.09±0.03, P>0.05)的蛋白表达均无显著变化。
     结论:糖尿病大鼠胃内ICC表型可能在糖尿病病程中早期起向平滑肌表型转化。
     目的:以糖尿病胃轻瘫大鼠为模型,研究糖尿病不同时期SCF/KIT信号通路在ICC表型转化中的作用。
     方法:链脲佐菌素60mg/kg腹腔注射制作糖尿病大鼠模型(n=36),分别于造模后第2周、4周、6周、8周、10周、12周处死,每期各6只,对照组(n=18)给予柠檬酸-柠檬酸钠缓冲液注射,分别与同期糖尿病大鼠一起处死,每期各3只。ELISA方法检测血清中游离型SCF (S-SCF)的浓度变化;RT-PCR和Western Blot法检测膜结合型SCF(M-SCF)表达的变化。
     结果:(1)对照组大鼠各期S-SCF含量(2wk vs 6wk vs 12wk:1303.76±194.80 vs 1267.02±128.52 vs 1212.87±123.47 pg/ml, P>0.05)无显著变化。自第2 wk起,糖尿病组S-SCF含量较对照组显著下降(2wk糖尿病组vs对照组: 278.63±37.28 vs 1303.76±194.80 pg/ml,6wk糖尿病组vs对照组:263.92±30.74 vs 1267.02±128.52 pg/ml,12wk糖尿病组vs对照组:228.05±41.56 vs 1212.87±123.47 pg/ml,P<0.001),且随糖尿病病程延长而显著下降(2wk vs 6wk vs 12wk:278.63±37.28 vs 263.92±30.74 vs 228.05±41.56 pg/ml, P<0.01)。S-SCF的含量与c-kit mRNA表达呈正相关(r=0.861, P=0.028);S-SCF的含量与c-kit蛋白表达呈正相关(r=0.927, P=0.008)。(2)对照组大鼠各期M-SCF mRNA表达(2wk vs 6wk vs 12wk: 0.82±0.12 vs 0.83±0.15 vs 0.82±0.13, P>0.05)无显著变化;糖尿病组大鼠各期M-SCF mRNA表达较对照组显著下降,且随糖尿病病程延长而显著下降(2wk vs 6wk vs 12wk: 0.74±0.11 vs 0.63±0.12 vs 0.34±0.09,P<0.01)。M-SCF mRNA表达与c-kit mRNA表达呈正相关(r=0.886, P=0.019)。(3)对照组大鼠各期M-SCF蛋白表达(2wk vs 6wk vs 12wk: 0.74±0.15 vs 0.69±0.13 vs 0.66±0.14, P>0.05)无显著变化;糖尿病组大鼠各期M-SCF蛋白表达较对照组显著下降,且随糖尿病病程延长而显著下降(2wk vs 6wk vs 12wk: 0.43±0.08 vs 0.31±0.06 vs 0.16±0.05, P<0.05)。M-SCF蛋白表达与c-kit蛋白表达呈正相关(r=0.950, P=0.004)。
     结论:糖尿病胃肠动力障碍大鼠血清中游离型SCF含量和膜结合型SCF表达均随病程延长而减少,且与c-kit表达呈正相关,对维持ICC表型极为重要。
     目的:以糖尿病胃轻瘫大鼠为模型,研究糖尿病不同时期ICC-ENS突触连接的变化。
     方法:链脲佐菌素60mg/kg腹腔注射制作糖尿病大鼠模型(n=36),分别于造模后第2周、4周、6周、8周、10周、12周处死,每期各6只,对照组(n=18)给予等量柠檬酸-柠檬酸钠缓冲液注射,分别与同期糖尿病大鼠一起处死,每期各3只。电镜下观察其胃ICC-ENS突触连接的变化;免疫组化法观察肌间层突触素表达的变化;RT-PCR和Western Blot法检测突触素mRNA和蛋白表达的变化。
     结果:(1)电镜发现,随着糖尿病病程延长,大鼠胃内肌间层的神经结构松散,部分神经出现纤维包裹,神经内出现线粒体空泡,突触囊泡明显减少。(2)免疫组化结果显示,随着糖尿病病程延长,大鼠胃内肌间层的突触素表达明显减少。(3)对照组大鼠各期突触素mRNA表达无显著变化;糖尿病组大鼠自第4 wk起,突触素mRNA表达较对照组显著下降(4wk糖尿病组vs对照组: 0.46±0.11 vs 0.64±0.17,8wk糖尿病组vs对照组:0.32±0.08 vs 0.61±0.15,12wk糖尿病组vs对照组:0.21±0.05 vs 0.60±0.16,P<0.01),且随糖尿病病程延长而显著下降(2wk vs 6wk vs 12wk:0.52±0.13vs 0.39±0.10 vs 0.21±0.05,P<0.01)。(4)对照组大鼠各期突触素蛋白表达无显著变化;糖尿病组自第6 wk起,突触素蛋白表达较对照组显著下降(6wk糖尿病组vs对照组:0.29±0.09 vs 0.49±0.13,10wk糖尿病组vs对照组:0.17±0.04 vs 0.49±0.09,12wk糖尿病组vs对照组: 0.15±0.03 vs 0.47±0.07,P<0.05),且随糖尿病病程延长而显著下降(2wk vs 6wk vs 12wk: 0.41±0.13 vs 0.29±0.09 vs 0.14±0.03,P<0.05)。
     结论:糖尿病大鼠胃内肌间层神经变性,突触囊泡明显减少,突触素免疫活性降低,突触素mRNA和蛋白表达随糖尿病病程延长而显著下降。
     目的:观察长脉冲胃电刺激是否能够促使糖尿病胃轻瘫大鼠ICC表型逆转。
     方法:埋置胃浆膜电极后制作糖尿病大鼠模型(n=32),分别给于慢性刺激(自糖尿病病程起连续刺激4周或刺激6周,每组各8只)和急性刺激(在糖尿病病程第4周或第6周仅刺激1周,每组各8只)。免疫荧光双重染色观察肌间层c-kit与desmin(平滑肌结蛋白)或SMHC(平滑肌肌球蛋白重链)的双重表达的ICC细胞的变化;电镜下观察其胃ICC超微结构的变化; RT-PCR和Western Blot法检测c-kit、α-SMA、desmin、SMHC和SMLC mRNA和蛋白表达的变化。
     结果:(1)慢性胃电刺激4wk后,较同期糖尿病组更易见到c-kit和desmin、c-kit和SMHC双重阳性免疫荧光染色的ICC细胞,第4wk和第6wk的急性胃电刺激和慢性胃电刺激6周较同期糖尿病组无明显变化。(2)慢性胃电刺激4wk后,透视电镜下较同期糖尿病组更易见到兼具ICC和平滑肌超微结构特征的、细胞质密度较高的“中间状态”的ICC细胞,胞浆内含部分肌丝样结构。(3)第4wk开始的急性刺激(0.48±0.15 vs 0.50±0.13, P >0.05)、第6wk开始的急性刺激(0.39±0.15 vs 0.44±0.12, P >0.05)和慢性刺激6wk (0.39±0.15 vs 0.45±0.14, P >0.05)对c-kit mRNA表达均无显著影响;第4wk开始的慢性刺激(0.48±0.15 vs 0.58±0.14, P<0.05)可增高c-kit mRNA的表达。第4wk开始的急性刺激、第6wk开始的急性刺激和慢性刺激6wk对平滑肌肌丝蛋白α-SMA、desmin、SMHC和SMLC mRNA表达均无显著影响;第4wk开始的慢性刺激使desmin(0.61±0.10 vs 0.49±0.10,P<0.05)、SMHC(0.44±0.10 vs 0.34±0.08,P<0.05)和SMLC(0.28±0.08 vs 0.19±0.06,P<0.05)mRNA的表达降低,对但平滑肌肌丝蛋白α-SMA的mRNA表达(1.21±0.14 vs 1.22±0.12,P>0.05)无显著影响。(4)第4wk开始的急性刺激(0.34±0.09 vs 0.35±0.08,P >0.05)、第6wk开始的急性刺激(0.24±0.08 vs 0.25±0.05,P>0.05)和慢性刺激6wk (0.24±0.08 vs 0.30±0.08,P>0.05)对c-kit蛋白表达均无显著影响;第4wk开始的慢性刺激(0.34±0.09 vs 0.43±0.09,P<0.05)可增高c-kit蛋白的表达。第4wk开始的急性刺激、第6wk开始的急性刺激和慢性刺激6wk对平滑肌肌丝蛋白α-SMA、desmin、SMHC和SMLC的表达均无显著影响;第4wk开始的慢性刺激使desmin(0.75±0.13 vs 0.51±0.10, P<0.05)、SMHC(0.58±0.13 vs 0.41±0.14,P<0.05)的表达降低,但对平滑肌肌丝蛋白α-SMA(1.48±0.18 vs 1.48±0.19,P >0.05)和SMLC(0.14±0.04 vs 0.13±0.04, P >0.05)蛋白表达无显著影响。
     结论:慢性胃电刺激4周可能促使糖尿病大鼠胃内部分ICC表型逆转。
     目的:研究长脉冲胃电刺激对糖尿病大鼠胃ICC-ENS突触连接可塑性的影响。
     方法:制作胃电刺激糖尿病大鼠模型(n=32),从糖尿病病程第4周和第6周第一天起分别给予急性刺激1周,或者从糖尿病病程第1天起分别给予慢性刺激4周或6周,每组各8只。透视电镜观察胃电刺激后胃肌间层ICC-ENS突触连接超微结构的变化;免疫组化法检测胃电刺激后胃肌间层突触素表达阳性细胞数目的变化;RT-PCR和Western Blot法检测突触素表达的变化。
     结果:(1)电镜发现4组胃电刺激后胃肌间层ICC-ENS突触囊泡都增多,囊泡内的神经递质增多。(2)免疫组化发现胃电刺激后胃肌间层突触素表达阳性细胞数目增加。(3)第4wk开始的急性刺激(0.46±0.11 vs 0.57±0.09,P<0.05)和慢性刺激4wk (0.46±0.11 vs 0.66±0.09, P<0.01)均能使突触素mRNA表达增高;慢性刺激较急性刺激(0.66±0.09 vs 0.57±0.09,P >0.05)的效应略强,但差异并不显著;第6wk开始的急性刺激(0.39±0.10 vs 0.49±0.12, P<0.05)和慢性刺激6wk (0.39±0.10 vs 0.58±0.11,P<0.05)都能显著增高突触素mRNA表达;慢性刺激较急性刺激(0.58±0.11 vs 0.49±0.12, P >0.05)的效应略强,但差异并不显著;急性刺激从第4wk开始比从第6wk开始(0.57±0.09 vs 0.49±0.12, P >0.05)增高突触素mRNA表达的效应略强,但差异并不显著;慢性刺激4wk比刺激6wk (0.66±0.09 vs 0.58±0.11, P >0.05)增高突触素mRNA表达的效应略强,但差异也不显著。(4)第4wk开始的急性刺激(0.35±0.13 vs 0.50±0.11,P<0.05)和慢性刺激4wk(0.35±0.13 vs 0.64±0.10,P<0.01)均能增强突触素蛋白表达,且慢性刺激较急性刺激效应(0.64±0.10 vs 0.50±0.11,P<0.05)更加显著;第6wk开始的急性刺激(0.29±0.09 vs 0.37±0.09, P<0.05)和慢性刺激6wk( 0.29±0.09 vs 0.51±0.10,P<0.01)都能显著增强突触素蛋白表达,慢性刺激较急性刺激的效应(0.51±0.10 vs 0.37±0.09,P<0.05)更加显著;急性刺激从第4wk开始比从第6wk开始(0.50±0.11 vs 0.37±0.09,P<0.05)对突触素蛋白表达的影响更为显著;慢性刺激4wk比刺激6wk(0.64±0.10 vs 0.51±0.10,P<0.05)对突触素蛋白表达的影响更为显著。
     结论:长脉冲胃电刺激能增加糖尿病大鼠胃ICC-ENS突触重塑,早期开始的、慢性的胃电刺激效果更佳。
     目的:研究长脉冲胃电刺激对SCF的影响,探讨SCF/KIT信号通路在ICC表型逆转中的作用。
     方法:制作胃电刺激糖尿病大鼠模型(n=32),从糖尿病病程第4周和第6周第一天起分别给予急性刺激1周,或者从糖尿病病程第1天起分别给予慢性刺激4周或6周,每组各8只。ELISA方法检测血清中游离型SCF (S-SCF)的浓度变化;RT-PCR和Western Blot法检测膜结合型SCF(M-SCF)表达的变化。
     结果:(1)急性和慢性刺激对S-SCF浓度无显著影响。(2)第4wk开始的急性刺激(0.65±0.14. vs 0.76±0.09,P<0.05)和慢性刺激4wk (0.65±0.14. vs 0.80±0.12,P<0.05)均能使M-SCF mRNA表达增高,但两种刺激效应之间(0.76±0.09 vs 0.80±0.12,P>0.05)无显著差异;第6wk开始的急性刺激(0.63±0.12 vs 0.66±0.07,P>0.05)虽不能显著增强M-SCF mRNA表达,但有增强表达的趋势;慢性刺激6wk(0.63±0.12 vs 0.70±0.11,P<0.05)能显著增高M-SCF mRNA表达;急性刺激从第4wk开始比从第6wk开始对M-SCF mRNA表达(0.76±0.09 vs 0.66±0.07, P<0.05)的影响更加显著;慢性刺激4wk比刺激6wk对M-SCF mRNA表达(0.80±0.12 vs 0.70±0.11,P<0.05)的效应更加显著。(3)第4wk开始的急性刺激(0.34±0.09 vs 0.56±0.12,P<0.05)和慢性刺激4wk(0.34±0.09 vs 0.64±0.09,P<0.01)均能增强M-SCF蛋白表达,且慢性刺激较急性刺激效应(0.64±0.09 vs 0.56±0.12,P<0.05)更加显著;第6wk开始的急性刺激(0.31±0.06 vs 0.33±0.10,P>0.05)尚不能显著增加M-SCF蛋白表达;但慢性刺激6wk (0.31±0.06 vs 0.47±0.10,P<0.05)能显著增强M-SCF蛋白表达,慢性刺激较急性刺激的效应(0.47±0.10 vs 0.33±0.10,P<0.05)更加显著;急性刺激从第4wk开始比从第6wk开始(0.56±0.12 vs 0.33±0.10,P<0.01)对M-SCF蛋白表达的影响更为显著;慢性刺激4wk比刺激6wk (0.64±0.09 vs 0.47±0.10,P<0.05)对M-SCF蛋白表达的影响更为显著。
     结论:长脉冲胃电刺激可能通过增高糖尿病大鼠膜结合型SCF表达来影响ICC表型,早期开始的、慢性的胃电刺激效果更佳。
Aims: The aims of this study were to observe changes of phenotype of ICC in diabetic rats induced by STZ.
     Methods: 36 diabetic rats and 18 controls were used in this study, which were sacrificed at the time point 2, 4, 6, 8, 10 and 12 weeks after injection of STZ or citric acid buffer. The morphology of ICC was observed by electron microscopy and double staining of immunohistochemistry with antibodies for c-kit and muscle-specific filament proteins; Occurrence of apoptosis was also assayed by TUNEL; RT-PCR and Western blot were used to confirm the expressions of mRNA and protein for c-kit and muscle-specific filament proteins.
     Results: 1)Kit and desmin or smooth muscle myosin are isolated in controls but colocalized in diabetic rats. Kit andα-SMA immunoreactivities were not colocalized in both controls and diabetic rats. 2)Remaining Kit-immunopositive cells in myenteric region developed ultrastructural features similar to smooth muscle cells, including prominent filament bundles and expression of the muscle-specific intermediate filament protein desmin, and smooth muscle myosin. 3)Apoptosis was not detected in myenteric region. 4)Decreasing in mRNA and protein expressions of c-kit and increasing in mRNA and protein expressions of desmin and smooth muscle myosin heavy and light chain were detected.
     Conclusions: These data suggested inherent plasticity between the ICC and smooth muscle cells in diabetic rats induced by STZ.
     Aims: To observe changes of SCF/KIT signaling in diabetic rats induced by STZ and to study their roles in phenotype plasticity of ICC.
     Methods: 36 diabetic rats induced by STZ and 18 controls were used in this study, which were sacrificed at the time point 2, 4,6,8,10 and 12 weeks after injection of STZ or citric acid buffer. The concentrations of soluble SCF (S-SCF) in serum were detected by ELISA. The expressions of mRNA and protein for membrane-bound SCF (M-SCF) were analyzed by RT-PCR and Western blot.
     Results: Comparing with control group, the concentrations of S-SCF (2wk vs 6wk vs 12wk: 278.63±37.28 vs 263.92±30.74 vs 228.05±41.56 pg/ml, P<0.01) , expressions of M-SCF mRNA (2wk vs 6wk vs 12wk: 0.74±0.11 vs 0.63±0.12 vs 0.34±0.09, P<0.01) and protein levels (2wk vs 6wk vs 12wk: 0.43±0.08 vs 0.31±0.06 vs 0.16±0.05, P<0.05) in diabetic group decreased significantly with course of diabetes. S-SCF and M-SCF were correlative with c-kit mRNA and protein expressions.
     Conclusions: The concentrations of S-SCF and expressions of M-SCF mRNA and protein of diabetic group decreased significantly with course of diabetes, both of them were crucial in maintaining phenotype of ICC.
     Aims: To observe changes of synapse of ICC-ENS in diabetic rats induced by STZ.
     Methods: 36 diabetic rats and 18 controls were used in this study, which were sacrificed at the time point 2, 4, 6, 8, 10 and 12 weeks after injection of STZ or citric acid buffer. The morphology of synapse of ICC-ENS was observed by electron microscopy and immunohistochemistry for synaptophysin antibody; RT-PCR and Western blot were used to confirm the expressions of mRNA and protein for synaptophysin.
     Results: In ultrastructure, nerve fibers were incompact and synaptic vesicle were reduced; Comparing with control group, remaining synaptophysin- immunopositive cells reduced; Synaptophysin mRNA levels (2wk vs 6wk vs 12wk: 0.52±0.13vs 0.39±0.10 vs 0.21±0.05, P<0.01) and protein levels (2wk vs 6wk vs 12wk: 0.41±0.13 vs 0.29±0.09 vs 0.14±0.03, P<0.05) in diabetic group decreased significantly with course of diabetes.
     Conclusions: Synaptic vesicle and synaptophysin-immunopositive cells were reduced in myenteric region of diabetic group. synaptophysin mRNA and protein expressure of diabetic group decreased significantly with course of diabetes.
     Aims: To observe whether long-pulse gastric electrical stimulation could remodel the phenotype of ICC in diabetic rats induced by STZ.
     Methods: 32 rats implanted with 2 pairs of electrodes on gastric serosa were studied, which were divided into four groups. Two acute long-pulse GES groups began from the 4th or 6th week of diabetic course and two chronic long-pulse GES groups continued for four or six weeks from the beginning of diabetic course. The morphology of ICC was observed by electron microscopy and double staining of immunohistochemistry with antibodies for c-kit and muscle-specific filament proteins; RT-PCR and Western blot were used to compare the changes expressions of mRNA and protein for c-kit and muscle-specific filament proteins.
     Results: 1) In ultrastructure, the number of hybrid cells increased after chronic long-pulse GES for 4 weeks. These cells had darkly stained cytoplasm and areas rich in microfilaments and intermediate filamentssynaptic. 2)The cells double-labeling by both c-kit-immunopositive and desmin-immunopositive or SMHC-immunopositive increased after chronic long-pulse GES for 4 weeks. 3) Expression of c-kit mRNA could be up-regulated and expressions of desmin , SMHC and SMLC mRNA could be down-regulated by chronic long-pulse GES for 4 weeks. But there were no significant effects on expression of c-kit, desmin,SMHC and SMLC mRNA after the 4th and 6th week acute GES or chronic GES for 6 weeks. There wasn’t significant deference in the expression ofα-SMA mRNA before and after GES. 4) Expression of c-kit protein could be up-regulated and expressions of desmin,SMHC protein could be down-regulated by chronic long-pulse GES for 4 weeks. But there were no significant effects on expression of c-kit, desmin and SMHC protein after the 4th and 6th week acute GES or chronic GES for 6 weeks. There wasn’t significant deference in the expression ofα-SMA and SMLC protein before and after GES.
     Conclusions: These data showed chronic long-pulse GES for 4 weeks could remodel ICC in diabetic rats induced by STZ.
     Aims: The study is to observe whether long-pulse gastric electrical stimulation could remodel synapse of ICC-ENS in diabetic rats induced by STZ.
     Methods: 32 rats implanted with 2 pairs of electrodes on gastric serosa were studied, which were divided into four groups. Two acute long-pulse GES groups began from the 4th or 6th week of diabetic course and two chronic long-pulse GES groups continued for four or six weeks from the beginning of diabetic course. The morphology of synapse of ICC-ENS was observed by electron microscopy and immunohistochemistry for synaptophysin antibody; RT-PCR and Western blot were used to confirm the expressions of mRNA and protein for synaptophysin.
     Results: 1) In ultrastructure, the number of synaptic vesicle increased after acute and chronic long-pulse GES. 2)Synaptophysin-immunopositive cells increased after acute and chronic long-pulse GES. 3) Expression of Synaptophysin mRNA could be up-regulated by acute GES beginning from the 4th (0.46±0.11 vs 0.57±0.09, P<0.05) and the 6th week (0.39±0.10 vs 0.49±0.12, P<0.05) and it could also be up-regulated by chronic GES both for 4 weeks (0.46±0.11 vs 0.66±0.09, P<0.01) and 6 weeks (0.39±0.10 vs 0.58±0.11, P<0.05). There wasn’t significant deference between the effect of GES from the 4th week and from the 6th week (0.57±0.09 vs 0.49±0.12, P >0.05) , no significant deference was between chronic GES for 4 weeks and 6 weeks (0.66±0.09 vs 0.58±0.11, P >0.05), and no significant deference was between acute GES groups and chronic GES groups. 4) Expression of Synaptophysin protein could be up-regulated by acute GES beginning from the 4th (0.35±0.13 vs 0.50±0.11,P<0.05) and the 6th week (0.29±0.09 vs 0.37±0.09, P<0.05) and it could also be up-regulated by chronic GES both for 4 weeks (0.35±0.13 vs 0.64±0.10,P<0.01) and 6 weeks (0.29±0.09 vs 0.51±0.10,P<0.01). The effect of GES from the 4th week was more significant than that from the 6th week (0.50±0.11 vs 0.37±0.09,P<0.05) and the effect was more significant in chronic GES for 4 weeks than for 6 weeks (0.64±0.10 vs 0.51±0.10,P<0.05).
     Conclusions: Long-pulse gastric electrical stimulation may remodel synapse of ICC-ENS, and maybe chronic GES in the early couse of diabetes was more efficient.
     Aims: To observe effects of long-pulse gastric electrical stimulation on SCF/KIT signaling in STZ induced diabetic rats and to study their roles in remodeling ICC.
     Methods: 32 rats implanted with 2 pairs of electrodes on gastric serosa were studied, which were divided into four groups randomly. Two acute long-pulse GES groups began from the 4th or 6th week of diabetic course and two chronic long-pulse GES groups continued for four or six weeks from the beginning of diabetic course. The concentrations of soluble SCF (S-SCF) in serum were detected by ELISA. The expressions of mRNA and protein for membrane-bound SCF (M-SCF) were analyzed by RT-PCR and Western blot.
     Results: 1)There was no significant effect on concentrations of S-SCF with acute and chronic long-pulse GES. 2) Expression of M-SCF mRNA could be up-regulated by acute GES beginning from not the 6th (0.63±0.12 vs 0.66±0.07, P>0.05) but the 4th week (0.65±0.14. vs 0.76±0.09, P<0.05), and it could also be up-regulated by chronic GES both for 4 weeks (0.65±0.14. vs 0.80±0.12, P<0.05) and 6 weeks (0.63±0.12 vs 0.70±0.11, P<0.05). The effect of GES from the 4th week was more significant than that from the 6th week(0.76±0.09 vs 0.66±0.07, P<0.05), and the effect was more significant for 4 weeks’than 6 weeks’chronic GES (0.80±0.12 vs 0.70±0.11, P<0.05) . 3) Expression of M-SCF protein could be up-regulated by acute GES beginning from not the 6th (0.31±0.06 vs 0.33±0.10, P>0.05) but the 4th week (0.34±0.09 vs 0.56±0.12,P<0.05) and it could also be up-regulated by chronic GES both for 4 weeks (0.34±0.09 vs 0.64±0.09,P<0.01) and 6 weeks (0.31±0.06 vs 0.47±0.10,P<0.05). The effect of GES from the 4th week was more significant than that from the 6th week (0.56±0.12 vs 0.33±0.10,P<0.01) and the effect was more significant in chronic GES for 4 weeks than for 6 weeks (0.64±0.09 vs 0.47±0.10,P<0.05) .
     Conclusions: Long-pulse gastric electrical stimulation may remodel ICC by up-regulating the mRNA and protein expressions of M-SCF, and chronic GES and early in the couse of diabetes was more efficient.
引文
1余跃,殷光甫,钱伟等.胃起搏对胃窦主要的兴奋性和抑制性神经的影响.中华消化杂志2005;25(9)569-70.
    2 Sanders KM, Ordog T, Ward SM. Physiology and pathophysiology of the interstitial cells of Cajal: From bench to bedside IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am J Physiol gastrointest liver physiol. 2002; 282: G747-56.
    3 Torihashi S, Nishi K, Tokutomi Y,et al. Blockade of kit signaling induces transdifferentiation of interstitial cells of cajal to a smooth muscle phenotype. Gastroenterology. 1999; 117: 140-8.
    4 Chang IY, Glasgow NJ, Takayama I, et al. Loss of interstitial cells of Cajal and development of electrical dysfunction in murine small bowel obstruction. J Physiol. 2001; 536(Pt 2): 555-68.
    5 Ordog T, Takayama I, Cheung WK, et al. Remodeling of networks of interstitial cells of Cajal in a murine model of diabetic gastroparesis. Diabetes. 2000; l49: 1731-9.
    6 Sandgren K, Larsson LT, Ekblad E. Widespread changes in neurotransmitter expression and number of enteric neurons and interstitial cells of Cajal in lethal spotted mice: an explanation for persisting dysmoyility after operation for Hischsprung's disease? Dig Dis Sci. 2002; 47:1049-64.
    7刑仕歌,张英鸽.神经突触发育的影响因素及研究方法.中华神经医学杂志2005;14(6): 628-35.
    8 Liu J, Qiao X, Micci MA, et al. Improvement of gastric motility with gastric electrical stimulation in STZ-induced diabetic rats. Digestion. 2004; 70: 159-66.
    9 Song G, Hou X, Yang B, et al. Two-channel gastric electrical stimulation accelerates delayed gastric emptying induced by vasopressin. Dig Dis Sci. 2005; 50: 662-8.
    10 Beckett EA, McGeough CA, Sanders KM, et al. Pacing of interstitial cells of Cajal in the murine gastric antrum: neurally mediated and direct stimulation. J Physiol. 2003; 553(Pt 2): 545-9.
    11 Huizinga JD, Thuneberg L, Vanderwinden JM, et al. Interstitial cells of Cajal as targets for pharmacological intervention in gastrointestinal motor disorders. Trends Pharmacol Sci. 1997;18(10):393-403.
    12 Jean-Pierre Timmermans. Interstitial cells of Cajal: is their role in gastrointestinal function in view of therapeutic perspectives underestimated or exaggerated? Folia Morphol. Vol. 60, No. 1, pp. 1–9
    13 Ekblad E, Sjuve R, Arner A, et al. Enteric neuronal plasticity and a reduced number of interstitial cells of Cajal in hypertrophic rat ileum. Gut. 1998;42;836-844.
    14 Maria-Simonetta Faussone-Pellegrini . Maria-Giuliana Vannucchi . Oren Ledder . et al. Plasticity of interstitial cells of Cajal: a study of mouse colon. Cell Tissue Res. 2006;325(2):211-7.
    15 Ward SM, Harney SC, Bayguinov JR, et al. Development of electrical rhythmicity in the murine gastrointestinal tract is specifically encoded in thetunica muscularis. Physiol.1997;505;241-258 J.
    16 Elizabeth AH Beckett, Seungil Ro, Yulia Bayguinov, et al. Kit Signaling Is Essential For Development and Maintenance of Interstitial Cells of Cajal and Electrical Rhythmicity in the Embryonic Gastrointestinal Tract.Developmental dynamics 2007;236:60–72.
    17 Sean M. Ward,Tamas Ordog, Ulia R. Bayguinov, et al. Development of Interstitial Cells of Cajal and Pacemaking in Mice Lacking Enteric Nerves. Gastroenterology 1999;117:584–594.
    18 Menachem Hanani, Oren Ledder, Vladimir Yutkin, et al. Regeneration of Myenteric Plexus in the Mouse Colon after Experimental Denervation with Benzalkonium Chloride. The Journal of Comparative Neurology 2003;462:315–327.
    19 Xuan-Yu Wang, Irene Berezin, Hanne B. Mikkelsen, et al. Pathology of Interstitial Cells of Cajal in Relation to Inflammation Revealed by Ultrastructure But Not Immunohistochemistry. American Journal of Pathology, 2002; No. 4, Vol. 160.
    20 Lomax AE , Fernandez E , Sharkey KA. Plasticity of the enteric nervous system during intestinal inflammation. Neurogastroenterol Motil 2005;17, 4–15.
    21 Streutker CJ, Huizinga JD, Driman DK, et al. Interstitial cells of Cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology. 2007;50(2):176-89.
    1 Sanders KM, Ordog T, Ward SM. Physiology and pathophysiology of the interstitial cells of Cajal: From bench to bedside IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am J Physiol gastrointest liver physiol. 2002; 282: G747-56.
    2 Nakahara M, Isozaki K, Vanderwinden JM, et al. Dose-dependent and time-limited proliferation of cultured murine interstitial cells of Cajal in response to stem cell factor. Life Sci. 2002;70(20):2367-76.
    3 Torihashi S, Kuwahara M, Kurahashi M. In vitro developmental model of the gastrointestinal tract from mouse embryonic stem cells.Nagoya J Med Sci. 2007;69(3-4):133-7.
    4 Torihashi S, Kuwahara M, Ogaeri T, et al. Gut-like structures from mouse embryonic stem cells as an in vitro model for gut organogenesis preserving developmental potential after transplantation. Stem Cells. 2006;24(12):2618-26.
    5 Torihashi S. Formation of gut-like structures in vitro from mouse embryonic stem cells. Methods Mol Biol. 2006;330:279-85.
    6 Torihashi S, Fujimoto T, Trost C, et al. Calcium oscillation linked to pacemaking of interstitial cells of Cajal: requirement of calcium influx and localization of TRP4 in caveolae. J Biol Chem. 2002;277(21):19191-7.
    7 Rich A, Miller SM, Gibbons SJ, et al. Local presentation of Steel factor increases expression of c-kit immunoreactive interstitial cells of Cajal in culture. Am J Physiol Gastrointest Liver Physiol. 2003;284(2):G313-20.
    8 Maria-Simonetta Faussone-Pellegrini . Maria-Giuliana Vannucchi . Oren Ledder . et al. Plasticity of interstitial cells of Cajal: a study of mouse colon. Cell Tissue Res. 2006;325(2):211-7.
    9 Ward SM, Sanders KM. Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. I. Functional development and plasticity of interstitial cells of Cajal networks.Am J Physiol Gastrointest Liver Physiol. 2001;281(3):G602-11.
    10 Ward SM, Ord?g T, Bayguinov JR, et al. Development of interstitial cells of Cajal and pacemaking in mice lacking enteric nerves.Gastroenterology. 1999;117(3):584-94.
    11 Wu JJ, Rothman TP, Gershon MD. Development of the interstitial cell of Cajal: origin, kit dependence and neuronal and nonneuronal sources of kit ligand. J Neurosci Res. 2000;59(3):384-401.
    12 Horváth VJ, Vittal H, L?rincz A, et al. Reduced stem cell factor links smooth myopathy and loss of interstitial cells of cajal in murine diabetic gastroparesis. Gastroenterology. 2006;130(3):759-70.
    13 Horváth VJ, Vittal H, Ord?g T. Reduced insulin and IGF-I signaling, not hyperglycemia, underlies the diabetes-associated depletion of interstitial cells of Cajal in the murine stomach. Diabetes. 2005;54(5):1528-33.
    14 Horváth VJ, Vittal H, L?rincz A, et al. Reduced stem cell factor links smooth myopathy and loss of interstitial cells of cajal in murine diabetic gastroparesis. Gastroenterology. 2006;130(3):759-70.
    15 Dolci S, Levati L, Pellegrini M, et al. Stem cell factor activates telomerase in mouse mitotic spermatogonia and in primordial germ cells. J Cell Sci. 2002;115(Pt 8):1643-9.
    16 Dolci S, Pellegrini M, Di Agostino S, et al. Signaling through extracellular signal-regulated kinase is required for spermatogonial proliferative response to stem cell factor. J Biol Chem. 2001;276(43):40225-33.
    17 Abkowitz JL, Broudy VC, Bennett LG, Zsebo KM, Martin FH. Absence of abnormalities of c-kit or its ligand in two patients with Diamond-Blackfan anemia. Blood. 1992;79(1):25-8.
    18 Abkowitz JL, Sabo KM, Nakamoto B, et al. Diamond-blackfan anemia: in vitro response of erythroid progenitors to the ligand for c-kit.Blood. 1991;78(9):2198-202.
    19 Abkowitz JL, Hume H, Yancik SA, et al. Stem cell factor serum levels may not be clinically relevant. Blood. 1996;87(9):4017-8.
    20 Abkowitz JL, Robinson AE, Kale S, et al. Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure.Blood. 2003;102(4):1249-53.
    21 Gibbons SJ, Rich A, Distad MA, et al. Kit/stem cell factor receptor-induced phosphatidylinos- itol 3'-kinase signalling is not required for normal development and function of interstitial cells of Cajal in mouse gastrointestinal tract. Neurogastroenterol Motil. 2003;15(6):643-53.
    1 1余跃,殷光甫,钱伟等.胃起搏对胃窦主要的兴奋性和抑制性神经的影响.中华消化杂志2005;25(9)569-70.
    2 Sanders KM, Ordog T, Ward SM. Physiology and pathophysiology of the interstitial cells of Cajal: From bench to bedside IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am J Physiol gastrointest liver physiol. 2002; 282: G747-56.
    3 Torihashi S, Nishi K, Tokutomi Y,et al. Blockade of kit signaling induces transdifferentiation of interstitial cells of cajal to a smooth muscle phenotype. Gastroenterology. 1999; 117: 140-8.
    4 Chang IY, Glasgow NJ, Takayama I, et al. Loss of interstitial cells of Cajal anddevelopment of electrical dysfunction in murine small bowel obstruction. J Physiol. 2001; 536(Pt 2): 555-68.
    5 Ordog T, Takayama I, Cheung WK, et al. Remodeling of networks of interstitial cells of Cajal in a murine model of diabetic gastroparesis. Diabetes. 2000; l49: 1731-9.
    6 Sandgren K, Larsson LT, Ekblad E. Widespread changes in neurotransmitter expression and number of enteric neurons and interstitial cells of Cajal in lethal spotted mice: an explanation for persisting dysmoyility after operation for Hischsprung's disease? Dig Dis Sci. 2002; 47: 1049-64.
    7刑仕歌,张英鸽.神经突触发育的影响因素及研究方法.中华神经医学杂志2005;14(6): 628-35.
    8 Liu J, Qiao X, Micci MA, et al. Improvement of gastric motility with gastric electrical stimulation in STZ-induced diabetic rats. Digestion. 2004; 70: 159-66.
    9 Song G, Hou X, Yang B, et al. Two-channel gastric electrical stimulation accelerates delayed gastric emptying induced by vasopressin. Dig Dis Sci. 2005; 50: 662-8.
    10 Beckett EA, McGeough CA, Sanders KM, et al. Pacing of interstitial cells of Cajal in the murine gastric antrum: neurally mediated and direct stimulation. J Physiol. 2003; 553(Pt 2): 545-9.
    11 Jaafari N, Khomitch-Baud A, Christen MO, et al. Distribution pattern of tachykinin NK2 receptors in human colon: involvement in the regulation of intestinal motility. J Comp Neurol. 2007;503(3):381-91.
    12 Liu M, Geddis MS, Wen Y, et al. Expression and function of 5-HT4 receptors in the mouse enteric nervous system. Am J Physiol Gastrointest Liver Physiol. 2005;289(6):G1148-63.
    13 Wang XY, Sanders KM, Ward SM. Relationship between interstitial cells of Cajal and enteric motor neurons in the murine proximal colon. Cell Tissue Res. 2000;302(3):331-42.
    14 Park SH, Min H, Chi JG, et al. Immunohistochemical studies of pediatric intestinal pseudo-obstruction: bcl2, a valuable biomarker to detect immature enteric ganglion cells. Am J Surg Pathol. 2005;29(8):1017-24.
    15 Chambonnière ML, Mosnier-Damet M, Mosnier JF. Expression of microtubule- associated protein tau by gastrointestinal stromal tumors. Hum Pathol. 2001;32 (11):1166-73.
    16 Faussone-Pellegrini MS, Fociani P, Buffa R, et al. Loss of interstitial cells and a fibromuscular layer on the luminal side of the colonic circular muscle presenting as megacolon in an adult patient. Gut. 1999;45(5):775-9.
    17 Sanders KM, Ward SM. Interstitial cells of Cajal: a new perspective on smooth muscle function. J Physiol. 2006;576(Pt 3):721-6.
    18 Ord?g T, Redelman D, Horváth VJ, et al. Quantitative analysis by flow cytometry of interstitial cells of Cajal, pacemakers, and mediators of neurotransmission in the gastrointestinal tract. Cytometry A. 2004;62(2):139-49.
    19 Beckett EA, Horiguchi K, Khoyi M, et al. Loss of enteric motor neurotransmission in the gastric fundus of Sl/Sl(d) mice. J Physiol. 2002;543(Pt 3):871-87.
    20 Wu JJ, Rothman TP, Gershon MD. Development of the interstitial cell of Cajal: origin, kit dependence and neuronal and nonneuronal sources of kit ligand. J Neurosci Res. 2000;59(3):384-401.
    1 Hou X, Song GQ, Yang B, et al. Effects of gastric electrical stimulation with short pulses and long pulses on gastric dysrhythmia and signs induced by vasopressin in dogs. Dig Dis Sci. 2008;53(3):630-5.
    2 Xu J, McNearney TA, Chen JD. Gastric/intestinal electrical stimulation modulates appetiteregulatory peptide hormones in the stomach and duodenum in rats. Obes Surg. 2007 ;17(3):406-13.
    3 Ouyang H, Chen JD. Long-pulse gastric electrical stimulation at tachygastrial frequency reduces food intake by inhibiting proximal gastric tone. Scand J Gastroenterol. 2007;42(6):702-7.
    4 Xing JH, Chen JD. Effects and mechanisms of long-pulse gastric electrical stimulation on canine gastric tone and accommodation. Neurogastroenterol Motil. 2006;18(2):136-43.
    5 Xu X, Brining DL, Chen JD. Effects of vasopressin and long pulse-low frequency gastric electrical stimulation on gastric emptying, gastric and intestinal myoelectrical activity and symptoms in dogs. Neurogastroenterol Motil. 2005;17(2):236-44.
    6 Liu J, Qiao X, Chen JD. Vagal afferent is involved in short-pulse gastric electrical stimulation in rats. Dig Dis Sci. 2004;49(5):729-37.
    7 Xu X, Qian L, Chen JD. Anti-dysrhythmic effects of long-pulse gastric electrical stimulation in dogs. Digestion. 2004;69(2):63-70.
    8 Liu J, Qiao X, Micci MA, et al. Improvement of gastric motility with gastric electrical stimulation in STZ-induced diabetic rats. Digestion. 2004; 70: 159-66.
    9余跃,殷光甫,钱伟等.胃起搏对胃窦主要的兴奋性和抑制性神经的影响.中华消化杂志2005; 25( 9) 569- 70.
    10 Beckett EA, McGeough CA, Sanders KM, et al. Pacing of interstitial cells of Cajal in the murine gastric antrum: neurally mediated and direct stimulation. J Physiol. 2003; 553(Pt 2): 545-9.
    11 Torihashi S, Nishi K, Tokutomi Y,et al. Blockade of kit signaling induces transdifferentiation of interstitial cells of cajal to a smooth muscle phenotype. Gastroenterology. 1999; 117: 140-8.
    12 Maria-Simonetta Faussone-Pellegrini . Maria-Giuliana Vannucchi . Oren Ledder . et al. Plasticity of interstitial cells of Cajal: a study of mouse colon. Cell Tissue Res. 2006;325(2):211-7.
    13 Menachem Hanani, Oren Ledder, Vladimir Yutkin, et al. Regeneration of Myenteric Plexus in the Mouse Colon after Experimental Denervation with Benzalkonium Chloride. The Journal of Comparative Neurology 2003;462:315–327.
    14 Liu M, Geddis MS, Wen Y, et al. Expression and function of 5-HT4 receptors in the mouse enteric nervous system. Am J Physiol Gastrointest Liver Physiol. 2005;289(6):G1148-63.
    15 Wang XY, Sanders KM, Ward SM. Relationship between interstitial cells of Cajal and enteric motor neurons in the murine proximal colon. Cell Tissue Res. 2000;302(3):331-42.
    1余跃,殷光甫,钱伟等.胃起搏对胃窦主要的兴奋性和抑制性神经的影响.中华消化杂志2005;25(9)569-70.
    2 Sanders KM, Ordog T, Ward SM. Physiology and pathophysiology of the interstitial cells of Cajal: From bench to bedside IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am J Physiol gastrointest liver physiol. 2002; 282: G747-56.
    3 Torihashi S, Nishi K, Tokutomi Y,et al. Blockade of kit signaling induces transdifferentiation of interstitial cells of cajal to a smooth muscle phenotype. Gastroenterology. 1999; 117: 140-8.
    4 Chang IY, Glasgow NJ, Takayama I, et al. Loss of interstitial cells of Cajal and development of electrical dysfunction in murine small bowel obstruction. J Physiol. 2001; 536(Pt 2): 555-68.
    5 Ordog T, Takayama I, Cheung WK, et al. Remodeling of networks of interstitial cells of Cajal in a murine model of diabetic gastroparesis. Diabetes. 2000; l49: 1731-9.
    6 Sandgren K, Larsson LT, Ekblad E. Widespread changes in neurotransmitter expression and number of enteric neurons and interstitial cells of Cajal in lethal spotted mice: an explanation for persisting dysmoyility after operation for Hischsprung's disease? Dig Dis Sci. 2002; 47: 1049-64.
    7刑仕歌,张英鸽.神经突触发育的影响因素及研究方法.中华神经医学杂志2005;14(6): 628-35.
    8 Liu J, Qiao X, Micci MA, et al. Improvement of gastric motility with gastric electrical stimulation in STZ-induced diabetic rats. Digestion. 2004; 70: 159-66.
    9 Liu M, Geddis MS, Wen Y, et al. Expression and function of 5-HT4 receptors in the mouse enteric nervous system. Am J Physiol Gastrointest Liver Physiol. 2005;289(6):G1148-63.
    10 Wang XY, Sanders KM, Ward SM. Relationship between interstitial cells of Cajal and enteric motor neurons in the murine proximal colon. Cell Tissue Res. 2000;302(3):331-42.
    11 Song G, Hou X, Yang B, et al. Two-channel gastric electrical stimulation accelerates delayed gastric emptying induced by vasopressin. Dig Dis Sci. 2005; 50: 662-8.
    12 Beckett EA, McGeough CA, Sanders KM, et al. Pacing of interstitial cells of Cajal in the murine gastric antrum: neurally mediated and direct stimulation. J Physiol. 2003; 553(Pt 2): 545-9.
    13 Jaafari N, Khomitch-Baud A, Christen MO, et al. Distribution pattern of tachykinin NK2 receptors in human colon: involvement in the regulation of intestinal motility. J CompNeurol. 2007;503(3):381-91.
    14 Park SH, Min H, Chi JG, et al. Immunohistochemical studies of pediatric intestinal pseudo-obstruction: bcl2, a valuable biomarker to detect immature enteric ganglion cells. Am J Surg Pathol. 2005;29(8):1017-24.
    15 Chambonnière ML, Mosnier-Damet M, Mosnier JF. Expression of microtubule- associated protein tau by gastrointestinal stromal tumors. Hum Pathol. 2001;32 (11):1166-73.
    16 Faussone-Pellegrini MS, Fociani P, Buffa R, et al. Loss of interstitial cells and a fibromuscular layer on the luminal side of the colonic circular muscle presenting as megacolon in an adult patient. Gut. 1999;45(5):775-9.
    17 Sanders KM, Ward SM. Interstitial cells of Cajal: a new perspective on smooth muscle function. J Physiol. 2006;576(Pt 3):721-6.
    18 Ord?g T, Redelman D, Horváth VJ, et al. Quantitative analysis by flow cytometry of interstitial cells of Cajal, pacemakers, and mediators of neurotransmission in the gastrointestinal tract. Cytometry A. 2004;62(2):139-49.
    19 Beckett EA, Horiguchi K, Khoyi M, et al. Loss of enteric motor neurotransmission in the gastric fundus of Sl/Sl(d) mice. J Physiol. 2002;543(Pt 3):871-87.
    20 Wu JJ, Rothman TP, Gershon MD. Development of the interstitial cell of Cajal: origin, kit dependence and neuronal and nonneuronal sources of kit ligand. J Neurosci Res. 2000;59(3):384-401.
    1 Sanders KM, Ordog T, Ward SM. Physiology and pathophysiology of the interstitial cells of Cajal: From bench to bedside IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am J Physiol gastrointest liver physiol. 2002; 282: G747-56.
    2 Nakahara M, Isozaki K, Vanderwinden JM, et al. Dose-dependent and time-limited proliferation of cultured murine interstitial cells of Cajal in response to stem cell factor. Life Sci. 2002;70(20):2367-76.
    3 Torihashi S, Kuwahara M, Kurahashi M. In vitro developmental model of the gastrointestinal tract from mouse embryonic stem cells. Nagoya J Med Sci. 2007;69(3-4):133-7.
    4 Torihashi S, Kuwahara M, Ogaeri T, et al. Gut-like structures from mouse embryonic stem cells as an in vitro model for gut organogenesis preserving developmental potential after transplantation. Stem Cells. 2006;24(12):2618-26.
    5 Torihashi S. Formation of gut-like structures in vitro from mouse embryonic stem cells. Methods Mol Biol. 2006;330:279-85.
    6 Torihashi S, Fujimoto T, Trost C, et al. Calcium oscillation linked to pacemaking of interstitial cells of Cajal: requirement of calcium influx and localization of TRP4 in caveolae. J Biol Chem. 2002;277(21):19191-7.
    7 Rich A, Miller SM, Gibbons SJ, et al. Local presentation of Steel factor increases expression of c-kit immunoreactive interstitial cells of Cajal in culture. Am J Physiol Gastrointest Liver Physiol. 2003;284(2):G313-20.
    8 Liu J, Qiao X, Micci MA, et al. Improvement of gastric motility with gastric electrical stimulation in STZ-induced diabetic rats. Digestion. 2004; 70: 159-66.
    9 Horváth VJ, Vittal H, L?rincz A, et al. Reduced stem cell factor links smooth myopathy and loss of interstitial cells of cajal in murine diabetic gastroparesis. Gastroenterology. 2006;130(3):759-70.
    10 Horváth VJ, Vittal H, Ord?g T. Reduced insulin and IGF-I signaling, not hyperglycemia, underlies the diabetes-associated depletion of interstitial cells of Cajal in the murine stomach. Diabetes. 2005;54(5):1528-33.
    11 Horváth VJ, Vittal H, L?rincz A, et al. Reduced stem cell factor links smooth myopathy and loss of interstitial cells of cajal in murine diabetic gastroparesis. Gastroenterology. 2006;130(3):759-70.
    12 Maria-Simonetta Faussone-Pellegrini . Maria-Giuliana Vannucchi . Oren Ledder . et al. Plasticity of interstitial cells of Cajal: a study of mouse colon. Cell Tissue Res. 2006;325(2):211-7.
    13 Ward SM, Sanders KM. Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. I. Functional development and plasticity of interstitial cells of Cajal networks. Am J Physiol Gastrointest Liver Physiol. 2001;281(3):G602-11.
    14 Ward SM, Ord?g T, Bayguinov JR, et al. Development of interstitial cells of Cajal and pacemaking in mice lacking enteric nerves. Gastroenterology. 1999;117(3):584-94.
    15 Wu JJ, Rothman TP, Gershon MD. Development of the interstitial cell of Cajal: origin, kit dependence and neuronal and nonneuronal sources of kit ligand. J Neurosci Res. 2000;59(3):384-401.
    1 Sanders KM, Ordog T, Ward SM. Physiology and pathophysiology of the interstitial cells of Cajal: From bench to bedside IV. Genetic and animal models of GI motility disorders caused by loss of interstitial cells of Cajal. Am J Physiol gastrointest liver physiol. 2002; 282: G747-56.
    2 Ordog T, Takayama I, Cheung WK, et al. Remodeling of networks of interstitial cells of Cajal in a murine model of diabetic gastroparesis. Diabetes. 2000; l49: 1731-9.
    3 Lecoin L, Gabella G, Le Douarin N. Origin of the c-kit-positive interstitial cells in the avian bowel. Development. 1996;122(3):725-33.
    4 Faussone-Pellegrini MS, Vannucchi MG, Alaggio R, , et al. Morphology of the interstitial cells of Cajal of the human ileum from foetal to neonatal life. J Cell Mol Med. 2007;11(3):482-94.
    5 Vanderwinden JM, Rumessen JJ, De Laet MH, , et al. CD34 immunoreactivity and interstitial cells of Cajal in the human and mouse gastrointestinal tract. Cell Tissue Res. 2000;302(2):145-53
    6 Vanderwinden JM, Rumessen JJ, Liu H, Descamps D, ,et al. Interstitial cells of Cajal in human colon and in Hirschsprung's disease. Gastroenterology. 1996;111(4):901-10.
    7于彬.人肠壁内Cajal细胞的发育、神经支配模式及其与疾病的相关性研究[D];第三军医大学; 2004年.
    8林智峰;小肠闭锁肠壁神经、平滑肌和肠间质细胞异常及临床意义[D];江西医学院; 2005年.
    9 Adeghate E, al-Ramadi B, Saleh AM, , et al. Increase in neuronal nitric oxide synthase content of the gastroduodenal tract of diabetic rats.Cell Mol Life Sci. 2003;60(6):1172-9.
    10 Peng X, Feng JB, Yan H, , et al. Distribution of nitric oxide synthase in stomach myenteric plexus of rats.World J Gastroenterol. 2001;7(6):852-4.
    11 Jarvinen MK, Wollmann WJ, Powrozek TA, et al. Nitric oxide synthase- containing neurons in the myenteric plexus of the rat gastrointestinal tract: distribution and regional density. Anat Embryol (Berl). 1999;199(2):99-112.
    12唐维兵,徐小群,耿其明等.无肛畸形儿直肠肠壁突触素和Cajal间质细胞的研究.南京医科大学学报(自然科学版)2007;04.
    13 Gockel I, Bohl JR, Eckardt VF, et al. Reduction of Interstitial Cells of Cajal (ICC) Associated With Neuronal Nitric Oxide Synthase (n-NOS) in Patients With Achalasia. Am J Gastroenterol. 2008;103(4):856-64.
    14 Kilic A, Luketich JD, Landreneau RJ, et al. Alterations in the Density of Interstitial Cells of Cajal in Achalasia. Dig Dis Sci. 2007; Nov 22.
    15 Zarate N, Wang XY, Tougas G, et al. Intramuscular interstitial cells of Cajal associated with mast cells survive nitrergic nerves in achalasia. Neurogastroenterol Motil. 2006;18(7):556-68.
    16 Vanderwinden JM, Liu H, De Laet MH, et al. Study of the interstitial cells of Cajal in infantile hypertrophic pyloric stenosis. Gastroenterology. 1996; 111(2): 279-88.
    17张海兰,王练英.先天性肥厚性幽门狭窄卡哈尔间质细胞和突触的免疫组织化学研究.中华小儿外科杂志.2003;24(1):20-2.
    18刘谦,胡晓丽.先天性巨结肠Cajal间质细胞的研究.中华小儿外科杂志.2003;24(2):116-8.
    19 Taniguchi K, Matsuura K, Matsuoka T, et al. A morphological study of the pacemaker cells of the aganglionic intestine in Hirschsprung's disease utilizing ls/ls model mice. Med Mol Morphol. 2005;38(2):123-9.
    20 Barshack I, Fridman E, Goldberg I, et al. The loss of calretinin expression indicates aganglionosis in Hirschsprung's disease. J Clin Pathol. 2004;57(7):712-6.
    21 Taguchi T, Suita S, Masumoto K, et al. Universal distribution of c-kit-positive cells in different types of Hirschsprung's disease. Pediatr Surg Int. 2003;19(4):273-9.
    22 Nemeth L, Maddur S, Puri P. Immunolocalization of the gap junction protein Connexin43 in the interstitial cells of Cajal in the normal and Hirschsprung's disease bowel. J Pediatr Surg. 2000;35(6):823-8.
    23 Torihashi S, Nishi K, Tokutomi Y,et al. Blockade of kit signaling induces transdifferentiation of interstitial cells of cajal to a smooth muscle phenotype. Gastroenterology. 1999; 117: 140-8.
    24贾后军.小鼠小肠Cajal间质细胞缺失模型的建立及SCF促其恢复研究.[D];第三军医大学; 2005年.
    25王广勇,李兆申,高峻等. Cajal间质细胞和肠神经元在急性坏死性胰腺炎豚鼠小肠组织中的改变.胰腺病学.2007;06.
    26刘勇,齐清会.多器官功能障碍综合征时胃肠Cajal间质细胞形态学的变化中华急诊医学杂志.2007;16(3):241-5.
    27龚斌,梅龙村.急性细菌性腹膜炎对豚鼠小肠Cajal间质细胞的影响.局解手术学杂志.2007;16(1):19-21.
    28 Chang IY, Glasgow NJ, Takayama I, et al. Loss of interstitial cells of Cajal and development of electrical dysfunction in murine small bowel obstruction. J Physiol. 2001; 536(Pt 2): 555-68.
    29梅峰.成年豚鼠小肠壁内Cajal细胞再生及细胞网络再形成实验研究[D];第三军医大学; 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700