变叶海棠(Malus toringoides Hughes)的遗传多样性及其进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变叶海棠(Malus toringoides(Rehd.)Hughes)属于蔷薇科(Rosaceae)苹果属(Malus Miller)陇东海棠系(Series Kansuenses Rehd.)。变叶海棠属于兼性无融合生殖种。作苹果砧木利用,具有抗逆性强、半矮化、丰产和提高果实品质等优良性状,是极重要的苹果砧木资源。变叶海棠的形态特征、种质特性(耐盐、耐旱、耐热、耐寒、耐涝、抗腐烂病和根腐病等)、分布的生态环境等均呈现出复杂的多样性;在不同的形态类型间其抗逆性呈现出明显的差异,也是苹果属植物中具有多种高抗性的种类,是极重要的苹果种质资源。本研究以变叶海棠马尔康、柯河和下阿坝3个居群的90个个体为材料,从表型、核基因ITS序列和叶绿体片段(TrnS-TrnG和TrnQ-rps16)序列三个方面检测了变叶海棠的遗传多样性。同时,利用对细胞核rDNA的ITS序列和叶绿体基因组的DNA序列变异,在DNA分子水平上揭示变叶海棠与陇东海棠和花叶海棠之间的亲缘关系,探讨变叶海棠的起源、ITS区进化和变叶海棠母系遗传系统。主要研究结果如下:
     1.以变叶海棠3个自然居群为研究对象,对其叶长、叶宽、叶形指数、刻距、刻基距、缺刻指数、每花序花朵数、每花朵花柱数、果实横径、果实纵径和果形指数等12个表型性状进行多样性分析。结果表明:变叶海棠表型性状的变异极其丰富,不同性状间表现出不同程度的多样性,叶形态变异最大。居群间和居群内均存在广泛的遗传变异,居群间的表型分化系数(Vst)为16.83%,居群内变异(83.17%)高于居群间变异。变叶海棠表型总多样性指数为2.034,居居群内多样性指数为1.699,居群间的多样性指数为0.335,表明居群内变异是变叶海棠表型性状的主要变异来源。
     2.以窄叶海棠(M.angustifolia Michx.)、草原海棠(M.ioensis Britt.)和台湾林檎(M.doumeri Chev.)作为外类群,对变叶海棠及其假定亲本的种间特异位点和系统进化关系进行了分析,并用软件RDP3beta27对变叶海棠的ITS序列进行了重组检测。结果表明,变叶海棠居群有三种ITS拷贝变异类型:(1)与陇东海棠相似的ITS拷贝;(2)与花叶海棠相似的ITS拷贝;(3)杂合的ITS拷贝。在ITS基因树上三类ITS拷贝分别与两个推测亲本单独聚在一支(自展值分别为100%和92%);杂合的ITS拷贝虽与花叶海棠聚在同一大支(B),但杂合的ITS拷贝在B支内形成具有94%自展值支持的次级分支。重组检测支持杂合ITS拷贝是假定亲本ITS重组进化的产物。上述结果为变叶海棠的杂种起源提供了进一步的分子证据。
     3.在变叶海棠的柯河(KH)和下阿坝(XB)两个居群中,找到了亲本之一(花叶海棠)的特异ITS拷贝,而陇东海棠特异的ITS拷贝未能被检测到。此外,在三个居群中发现的杂合的ITS拷贝类型,其变异式样介于两亲本之间,且呈现一定的连续性。这一结果表明变叶海棠的ITS序列存在致同进化现象,并且这种ITS致同进化属于定向致同进化。
     4.变叶海棠ITS核苷酸序列多样性(p=0.03359±0.00201,θ_w=0.03874±0.00943)均高于陇东海棠(p=0.01893±0.00128,θ_w=0.02174±0.00917)和花叶海棠(p=0.01518±0.00203,θ_w=0.01710±0.00773),表明变叶海棠遗传多样性丰富。陇东海棠大郎足居群与变叶海棠种间基因交流程度存在差异,与变叶海棠马尔康居群基因流(Nm=0.2662)大于与变叶海棠柯河居群基因流(Nm=0.1824)和与变叶海棠下阿坝基因流(Nm=0.1801)。花叶海棠与变叶海棠三个居群间存在较为频繁的基因交流,基因流Nm值都大于1。变叶海棠三个居群间遗传分化有限(Gst为0.00227-0.00988,Fst为0.01896-0.05329),基因交流强烈(Nm为3.7252-15.7688>3)。AMOVA分析结果显示变叶海棠遗传变异主要来源于居群内部(97.41%)。
     5.综合比较叶绿体两个片段所有6个信息位点和7个Indel,变叶海棠的在陇东海棠和花叶海棠这两个叶绿体片段的变异位点上,几乎和花叶海棠完全一致。以Prunus hortulana作为外类群,分别基于TrnS-TrnG和TrnQ-rps16叶绿体数据构建的MP树,同时构建了TrnS-TrnG和TrnQ-rps16序列的合并分析后的MP树,结果一致支持变叶海棠和花叶海棠二者亲缘关系较它们任何之一与陇东海棠的关系更密切。陇东海棠与变叶海棠的遗传距离大于花叶海棠与变叶海棠的遗传距离;变叶海棠种内3个居群的叶绿体缺乏变异。AMOVA分析结果表明,变叶海棠三个居群内的变异高达89.8%,居群间的遗传变异仅为10.2%,变叶海棠的变异主要存在于居群内。
Malus toringoides belongs to Series kansuenses Rehd.of the genus Malus Miller of the family Rosaceae.M.toringoides is a facultative apomictic species.It shows high diversities in morphology,germplasm characteristics,and ecological habitats.Used as rootstock,M.toringoides showed high resistance to various environmental stresses such as tolerances to salt,drought,heat,cold,water-logging,and resistance to valsa mail Miyabe et Yamada and Xylaria mali Fromme,and had important effects on the grafted trees including dwarfing,early-fruiting,fruit production and quality. Therefore,M.toringoides was considered as a very important apple germplasm resource in China.In the present study,the genetic diversity and population genetic structure of M.toringoides were analyzed using morphological characters,nuclear ribosomal DNA(nrDNA) internal transcribed spacer(ITS) and chloroplast DNA (cpDNA) sequence.A total of 90 accessions collected from three natural populations (Maerkang,Xiaaba and Kehe of Aba Zang Autonomous Region,Sichuan Province, China) of M.toringoides were used as plant materials.Based on the sequence variations of nuclear ribosomal DNA(nrDNA) internal transcribed spacer(ITS),and the intergenic spacer regions of chloroplast genome,trnG-trnS and rps16-trnQ,the phylogenetic relationship,between M.toringoides and its putative parents,M. transitoria and M.kansuensis were analyzed.In addition,the molecular evolutionary pattern of the ITS sequences of M.toringoides were analyzed,and the maternal evolutionary relationship of M.toringoides to its parents were discussed.The main results obtained are summarized as follows:
     1.An analysis of the phenotypic diversity including 12 morphological characters (leaf length,leaf width,leaf length/leaf width ratio,dent distance,dent base distance, leaf width/dent distance ratio,leaf length/dent base distance ratio,fruit longitudinal diameter,fruit transversal diameter,fruit longitudinal diameter/fruit transversal diameter ratio,number of flowers per inflorescence,numberof styles per flower) of M. toringoides were carried out using 90 accessions collected from three natural populations.The results showed that M.toringoides was rich in morphological variations and different characters showed a different degree of variations,among which the leaves had the highest coefficient of variation(CV=22.83%).Our data also revealed that rich phenotypic variation existed both within and between populations. The results indicated that extensive variation of phenotypic traits existed within populations and among populations of M.toringoides.The phenotypic differentiation coefficient Vst was 18.92%.The high variation of phenotypic traits in M.toringoides occurred within populations(71.08%).The Shannon's diversity index was 0.335 among populations and 1.699 within population.The genetic variation of phenotypic traits within population was the main sources of genetic diversity in M.toringoides.
     2.Using M.angustifolia Michx.,M.ioensis Britt.,and M.doumeri Chev.as outgroups,the species-specific nucleotides of M.kansuensis and M.transitoria and the phylogenetic relationship between M.toringoides and its putative parents were analyzed using the sequences obtained in this study and those deposited in GenBank.The recombination detection of M.toringoides sequences was also carried out using RDP3beta27 computer program.Three different types of ITS sequences were found in M.toringoides:(1) type one sequences were identical to those of M.kansuensis.(2) type two sequences were identical to those of M.transitoria,and(3) type three sequences were the mosaic sequences between M.kansuensis and M.transitoria.On the gene tree,three different types of ITS sequences clustered separately with M.kansuensis (CladeA) and M.transitoria(CladeB) with strongly statistical supports.All type three ITS sequences from M.toringoides formed a subbranch within the CladeB with a bootstrap value of 94%.Recombination detection suggested that all mosaic ITS sequences were the evolutionary products of a recombination event between ITS sequences of M.kansuensis and M.transitoria.These results provided new evidence for the hybrid origin hypothesis of M.toringoides on the basis of our previous work.
     3.The M.transitoria specific ITS copy was detected within KH population and XB populations of M.toringoides.The M.kansuensi specific ITS copy was not detected within the two populations of M.toringoides.In addition,the mosaic sequences which showed a continuous variation pattern between M.kansuensis and M.transitoria were detected within three natural populations of M.toringoides.These results suggested that the concerted evolution within M.toringoides was unidirectional toward M.transitoria
     4.The average number of nucleotide differences(κ=17.597) and nucleotide diversity of M.toringoides were p=0.03359±0.00201,θ_w = 0.03874±0.00943 respectively,which were s higher than those of M.kansuensis(p=0.01893±0.00128,θ_w =0.02174±0.00917) and M.transitoria(p=0.01518±0.00203,θ_w=0.01710±0.00773). These results suggested an abundant genetic diversity in M.toringoides.The different levels of gene flow were also detected between M.kansuensis and each of M. toringoides population.The value of gene flow between M.kansuensis and MK population(Nm = 0.2662) was higher than those between M.kansuensis and KH population(Nm = 0.1824),and between M.kansuensis and XB population of M. toringoides(Nm = 0.1801).Higher gene flow between M.transitoria and each population of M.toringoides were detected(Nm>1).Low level of inter-population genetic differentiation(Gst and Fst varied from 0.00227 to 0.00988 and 0.01896 to 0.05329,respectively ) and high gene flow(Nm ranged from 3.7252 to 15.7688>3) were detected among the three natural populations of M.toringoides.Moreover,an analysis of molecular variance(AMOVA) of the populations of M.toringoides showed that the genetic variation mainly occurred within populations(97.41%).
     5.An analysis of the sequence variation between M.toringoides and its putative parents based on trnG-trnS and rps16-trnQ revealed that the cpDNA sequences of M. toringoides were similar to M.transitoria sequence.Using Prunus hortulana as outgroup,phylogenetic relationship between M.toringoides and its putative parents were analyzed based on TrnS-TrnG and TrnQ-rps16 sequences.A combined analysis of TrnS-TrnG and TrnQ-rps16 sequences was also carried out.The results obtained strongly supported that there were close maternal relationships between M.toringoides and M.transitoria.Higher genetic distance between M.kansuensis and M.toringoides than that between M.transitoria and M.toringoides were detected.There was limited variation between M.toringoides populations.An analysis of molecular variance (AMOVA) of the populations of M.toringoides based on cpDNA data showed that the genetic variation mainly occurred within populations(89.81%).
引文
[1]陈灵芝.生物多样性保护现状及其对策.见:中国科学院生物多样性委员会编.生物多样性研究的原理与方法.北京:中国科学技术出版.1994,13-35
    [2]葛颂,洪德元.遗传多样性及其检测方法.见:中国科学院生物多样性委员会编.北京:中国科学技术出版社.1994,123-140
    [3]马克平,钱迎倩.生物多样性保护及其研究进展.应用与环境生物学报.1998,4(1):95-99
    [4]Stebbins GL Variation and Evolution in Plants.New York:Columbia University Press.1950
    [5]葛颂 同工酶和植物进化生物学研究 见植物进化生物学,武汉大学出版社,1994,153-208
    [6]马克平,试论生物多样性的概念,生物多样性,1993,1(1):20-22
    [7]Barbier E B,Schulz C E.Wildlife,biodiversity and trade.Environment and Development Econmics,1997,2(2):145-172
    [8]Ingrouille M.Diversity and evolution of land plants.London:Chapman& Hall,1992
    [9]沈浩,刘登义.遗传多样性概述.生物学杂志,2001,18(3):5-9
    [10]季维智,宿兵主编.遗传多样性研究的原理与方法,杭州:浙江科学技术出版社,1999
    [11]陈家宽,居群生物学与进化生物学,见植物进化生物学,武汉大学出版社,1994,1-48
    [12]杨继,植物的变异,见植物进化生物学,武汉大学出版社,1994,48-94
    [13]Nei M.Molecular population genetics and evolution.Amsterdam;North-Holland,1975
    [14]Meffe GK,Carroll CR,et al 1994.Principles of conservation biology.Sunderland:Sinauer Associates,Inc
    [15]夏铭.遗传多样性研究进展.生态学杂志,1999,18(3):59-65
    [16]陈东明.遗传标记及其在园艺植物研究中的应用.农业生物技术科学.2005,21(7):66-69
    [17]Rieseberg L H,Ellstrand N C.What can molecular and morphological markers tell us about plant hybridization? Critical Reviews in Plant Sciences.1993.12:213-241
    [18]钱迎倩,马克平.生物多样性研究的原理与方法北京:中国科学技术出版社,1994,123-140
    [19]葛会波,雷家军,郭振怀.草莓属植物杂色体观察及种间杂交研究初报.河北农业大学学报.1997,20(3):57-60
    [20]张国莉,龚洵,岳中枢.细胞学方法在木兰科杂交育种早期鉴定中的应用.云南植物研究.2002,24(5):659-662
    [21]Merrell D.J.Ecological Genetics.Longman,1981.London.(黄瑞复译。生态遗传学。科学出版社,北京.1991.
    [22]张献龙,唐克轩主编.植物生物技术.北京:科学出版社.204:406-416
    [23]Sharma,I.K.,Jones,D.L.,Young,A.G.,and French,C.J..Genetic diversity and phylogenetic relatedness among six endemic Pterostylis species(Orchidaceae;Series Grandiflorae) of Western Australia,as revealed by allozyme polymorphisms.Biochemical Systematics and Ecology,2001,29,697-710
    [24]Wang X R,Szmidt A E,Lewandowski A,Wang Z R.Evolutionary analysis of Pinus densata Masters,a putative tertiary hybrid 1.Allozyme variation.Theoretical and Applied Genetics.1990,80:635-640
    [25]张海英,许勇,王永健.分子标记技术概述(上).长江蔬菜,2001(2):4-6
    [26]冯夏莲,何承忠,张志毅,安新民,王冬梅.植物遗传多样性研究方法概述.西南林学院学报,2006,26(1):69-79
    [27]Rieseberg L H,Brunsfeld S J.Molecular evidence and plant introgression.Molecular Systematics of Plant.New York:Chapman and Hall.1992,151-176
    [28]刘世荣,蒋有绪,史作民,中国暖温带森林生物多样性研究,北京:中国科学技术出版社,1998
    [29]Williams J G K,Kubelik A R,Livak,K J et al.DNA polymorphism amplified by arbitray primers are useful as genetic markers.Nucleic Acids Research.1990,18:7213-7218
    [30]Crawford D J,Cosner M B,Stuessy T F.Use of RAPD markers to document the origin of the intergenetic hybrid X Marcggraceaena skottsbergii(Rosaceae) on the Juan Fernandez Islands.American Journal of Botany.1993,80:89-92
    [31]Zeitkewicz E,Rafalski A,Labuda D.Genome fmgerprinting by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification.Genomics.1994,20:176-183
    [32]钱韦,葛颂,洪德元.利用和标记探讨中国疣粒野生水稻的遗传性.植物学报,2000,4(7):741-750
    [33]Tsumura Y.Ohba K.Strauss S.H.,Diversity and inheritance of inter-simple sequence repeat polymorphisms in Douglas-fir(Pseudotsuga menziesii) and sugi(Cryptomeria Japonica).Theor.Appl.Genet.,1996,92:40-45
    [34]珊丹,赵萌莉,韩冰,韩国栋.不同放牧压力下大针茅种群的遗传多样性.生态学报,2006,26(10):3175-3183
    [35]Wolfe A D,Xiang Q Y,Kephart S R.Diploid hybrid speciation in Penstemon(Scrophulariaceae).Proceedings of the National Academy of Sciences USA.1998,95:5112-5115
    [36]Tautz D,Arctander P,Minelli A,Thomas RH,Vogler AP.A plea for DNA taxonomy.Trends in Ecology & Evolution.2003,18(2):70-74
    [37]Gerbi,S.A.Evolution of ribosomal DNA.IN:Macintyre,R.J.ed.Molecuar Evolution Genetics.New York:Plenum.1985.419-517
    [38]Baldwin B G,Sanderson M J,Porter J M,Wojciechowski MF,Campbell C S,Donoghue M J.The ITS region of nuclear ribosomal DNA:a valuable source of evidence on angiosperm phylogeny.Annals of the Missouri Botanical Garden.1995,82:247-277
    [39]Schaal B A,Learn G H Jr.Ribosomal DNA variation within and among plant populations.Annals of the Missouri Botanical Garden.1988,75:1207-1216
    [40]Campbell C S,Wojciechowski MF,Baldwin BG,Alice LA,Donoghue MA.Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex(Rosaceae).Molecular Biology and Evoluton.1997,14:81-90
    [41]Zimmer E A,Jupe E R,Walbot V C.Ribosomal gene structure,variation and inheritance in maize and its ancestors.Genetics.1988,120:1125-1136
    [42]Clegg MT,Gaut BS,Learn GH,et al,1994.Rates and patterns of chloroplast DNA evolution.Proc Natl Acad Sci USA,91:6795-6801
    [43]Ritland K,Clegg MT,1987.Evolutionary analysis of plant DNA sequences.Amer Naturalist,30S:74-100
    [44]Zurawski G,CleggMT,1987.Evolution of higher2plant chloroplast DNA-coded genes:Implications for structure-function and phylogenetic studies.Ann Rev P1 Phys,38:391-418
    [45]Kellogg EA,Juliano ND,1997.The structure and function of RuBisCO and their implications for systematic studies.Amer J Bot,84:41-428
    [46]Neuhaus,H,and G.Link,1987.The chloroplast tRNALys(UUU) gene from mustard (Sinapsis alba) contains a class Ⅱ intron potentially coding for a maturase-related polypeptide..Curr Genet,11:251-257
    [47]Wolfe KH,Protein-coding genes in chloroplast DNA:compilation of nucleotide sequences,data base entries and rates of molecular evolution,in Vasil I K[eds.],Cell culture and somatic Cell Genetics of Plants,Academic Press,San Diego,1991.Vol.7B,467-482
    [48]Kron KA,Phylogenetic relationships of Rhododendroideae(Ericaceae)..Amer J Bot,1997.84:973-980
    [49]Hu J-M,Lavin M,Wojciechowski MF,et al,Phylogenetic systematics of the tribe Millettieae(Leguminosae) based on chloroplast trnK/matK sequences and its implications for evolutionary patterns in Papilionoideae..Amer J Bot,2000.87:418-430
    [50]Ohsako T,Ohnishi O,Intra2and interspecific phylogeny of wild Fagopyrum(Polygonaceae)species based on nucleotide sequences of noncoding regions in chloroplast DNA..Amer J Bot,2000.87:573-582
    [51]Taberlet P,Gielly L,Pautou G,et al,Universal primers for amplication of three non-coding regions of chloroplast DNA..Plant Mol Biol,1991.17:1105-1109
    [52]Senjo M,Kimura K,Watano Y,Ueda K,Shimizu T.Extensive mitochondrial introgression form Pinus pumila to P.parviflora var.pentaphylla(Pinaceae).Journal of Plant Research.1999,112:97-105
    [53]Newton KJ,Plant mitochondrial genomes:organization,expression and varation..Ann Rev PI Phys PI Molec Biol,1988.39:503-532
    [54]Palmer JD,Contrasting modes and tempos of genome evolution in land plant organelles..Trends in Genet,1990.6:115-120
    [55]Wolfe KH,Li W-H,Sharp PM,Rates of nucleotide substitution vary greatly among plant mitochondrial,chloroplast,and nuclear DNAs..Proc Natl Acad Sci USA,1987.84:9054-9058
    [56]Duff RJ,Nickrent DL,Phylogenetic relationships of land plants using mitochondrial small2subunit rDNA sequences..Amer J Bot,1999.86:372-386
    [57]Hiesel R,Haeseler AV,Brennicke A,Plant mitochondrial nucleic acid sequences as a tool for phylogenetic analysis.Proc Natl Acad Sci USA,1994.91:634-638
    [58]Malek O,Latiig K,Hiesel R,et al,RNA editing in bryophytes and a mmolecular phylogeny of land plants..EMBO J,1996.15:1403-1411
    [59]Wang XQ,Tank DC,Sang T,Phylogeny and divergence times in Pinaceae:Evidence from three genomes..Mol Biol Evol,2000.17:773-781
    [60]徐炳声,顾德兴杂交在进化中的作用及杂种的识别和分类处理.武汉植物学研究.1986,4(4):385-397
    [61]Rieseberg LH,Ellstrand NC What can molecular and morphological markers tell us about plant hybridization? Critical Reviews in Plant Sciences,1993,12;21 3-241
    [62]SoltisD E,Sotis P S.Molecular data and the dynamic nature of polyploidy.Critical Review of Plant Science,1993 12:243-273
    [63]Riewberg LH Hybrid origins of plant species.Annual Review of Ecology And Systematics,1997,28:359-389
    [64]Abbott,R.J.,J.K.James,et al.Plant introductions,hybridization and gene flow Philos Trans R Soc Lond B Biol Sci 2003,358(1434):1123-32
    [65]洪德元.植物细胞分类学.北京:科学出版社,1990
    [66]McCarthy E M,Asmussen M A,Anserson W W.A theoretical assessment of recombinational speciation.Heredity.1995,74:502-509
    [67]Templeton A R.Mechanisms of speciation-a population genetic approach.Annual Review of Ecology and Systematics.1981,12:23-48
    [68]Anderson E,Stebbin G L.Hybridization as an evolutionary stimulus.Evolution.1954,8:378-388
    [69]Lewontin RC,Birch LC.Hybridization as a source of variation for adaptation to new environments.Evolution,1966,20:315
    [70]俞德浚.中国果树分类学.北京:农业出版社.1979,87-121
    [71]中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社.2000,36卷:392-393
    [72]Huckins C A.,Chromosome numbers of phanerogams.,Annals of the Missouri Botanical Garden,1977,64(1):142-143
    [73]Pratt C C,Chromosome number of Apple species,Cultivars and Sports.Journal of the American Society for Horticultural Science.1978,103(5):690-693
    [74]石荫坪,王强生.苹果与梨花粉母细胞减数分裂的研究.园艺学报.1980,7:1-7
    [75]林盛华,贾定贤,蒲言慎.我国苹果品种(系)染色体数目观察(1).中国果树.1985,3:33-34
    [76]陈瑞阳,宋文芹,李秀兰.中国苹果属植物染色体数目报告.武汉植物学研究.1986,4(4):337-342
    [77]蒲富慎,林盛华,李秀兰,宋文芹,陈瑞阳.中国苹果属植物核型研究.武汉植物学研究.1985,3(4):451-456
    [78]梁国鲁.中国苹果属植物的核型比较研究.西南农业大学报.1986,(1):106-117
    [79]梁国鲁,李晓林.中国苹果属植物染色体研究.植物分类学报.1993,31(3):236-251
    [80]李平,陈放,周桂梅.无融合生殖在植物育种中的应用及细胞胚胎学研究方法.四川大学学报(自然科学版),1992,29(2):288-293
    [81]伏军.无融合生殖及其在作物育种中的应用.作物研究.1990,4(4):42-45
    [82]Derman H.Aposporic parthenogenesis in a triploid apple,Malus hupehensis.Journal of the Arnold Artoretum.1936,17:90-105
    [83]吴梅君.辐射甜茶无融合生殖的特性的影响.中国果树.1985,3:15
    [84]胡适宜.被子植物胚胎学[M].北京:人民教育出版社.1982,216-225
    [85]于继洲.湖北海棠孤雌生殖特性研究.山东农业大学学报.1990,10(3):209-212
    [86]刘捍中,蒲富慎.无融合生殖苹果属植物的某些特性.园艺学报.1989,16(1):1-4
    [87]毛宝琴,成明昊.苹果属植物无融合生殖能力研究.西南农业大学学报.1995,17(3):220-223
    [88]周志钦,李育农.苹果属植物无融合生殖研究进展.园艺学报.1995,22(4):341-347
    [89]周志钦,安华明,杨方云,吴练荣.苹果属植物无融合生殖种内和种间差异性研究.西南农业大学学报.1998,20(2):113-116
    [90]廖飞雄,李育农.变叶海棠(Malus toringoides(Rehd.)Hughes)无孢子生殖的胚胎学观察.西南农业大学学报.1997,19(2):98-104
    [91]成明昊,李晓林,王玫,曾维光,吴福寿,金强.变叶海棠变异类型的研究.园艺学报.1992,19(3):233-239
    [92]Marshall D R and Weir B S.Maintenance of genetic variation in apomictic plant populations.I.Single locus models.Heredity.1979,42(2):159-172
    [93]梁国鲁,李育农,李晓林.苹果属植物染色体基数X=17起源的细胞遗传学研究.果树科学.1994,11(4):216-220
    [94]廖飞雄.变叶海棠无融合生殖的特性与结果.江西农业大学学报.1996,19(5):27-30
    [95]成明昊,张云贵,李晓林,金强,谢晓黎.变叶海棠多样性的区系地理学研究.西南农业大学学报.1999,21(2):130-136
    [96]吴征镒.西藏植物志第二卷.北京:科学出版社.1985,598-602
    [97]成明昊,杨晓红,雷维光.变叶海棠的研究初报.西农科技.1987,16(3):104-111
    [98]王荷生.植物区系地理.北京:科学出版社.1982,96-104
    [99]成明昊,李晓林,张云贵.苹果优质种质-花叶海棠区系地理学研究.西南农业大学学报,2002,22(1):1-3
    [100]成明昊,石胜友,周志钦,李晓林.横断山区苹果属植物区系地理学研究.中国农业科学,2004.37(11):1666-1671
    [101]成明昊,李晓林,金强,谢晓黎,刘扬青,欧平贵.阿坝州苹果砧木资源的耐涝性研究.中国南方果树.1996,25(3):43-44
    [102]成明昊,李晓林,张云贵.苹果属植物的耐早性与耐热性.四川果树.1997,25(2):1-4
    [103]向碧霞,成明昊,李晓林,金强,刘杨青,谢晓黎.苹果砧木资源的抗旱性研究.西南农业大学学报.1995,17(5):381-385
    [104]李彰厚(王庸生译).几种苹果砧穗组合的耐涝性研究.国外农学.1984,4:1
    [105]苫名孝(章祖涵译).苹果砧木的抗涝性.国外农业科技.1984,9:43
    [106]成明昊,李晓林.苹果砧木资源的耐涝性.中国果树.1990,(2):9-13
    [107]石胜友.变叶海棠起源及其遗传多样性分化研究.西南大学博士论文.2006,1-94
    [108]李晓林,成明昊,金强,刘扬青,谢晓黎,欧平贵.阿坝州苹果资源的耐盐性研究.四川果树.1996,24(1):11-13
    [109]石胜友,成明昊,梁国鲁.苹果优良砧木资源-变叶海棠.西南农业大学学报(自然科学版).2004,26(1):51-54
    [110]李育农.苹果属植物种质资源研究.中国农业出版社,北京,2001,1-389
    [111]Zhou Zhiqin,The apple genetic resources in China:the wild species and their distribution,informative characteristics and utilization.Genetic Resources and Crop Evolution,46(6):1999,599-609
    [112]石胜友,梁国鲁,成明昊,郭启高,李晓林,周志钦.变叶海棠起源的AFLP分析.园艺学报,2005,32(5):802-806
    [113]邓洪平,成明昊,周志钦,李晓林.变叶海棠种群多样性的形成与分化研究.园艺学报,2002,29(2):95-99
    [114]邓洪平,成明昊,陈亚飞,黄琳.变叶海棠变异类型的形态多样性分化与陇东海棠关系的研究.西南师范大学学报,2002,27(1):78-182
    [115]成明昊,张云贵,周志钦,李晓林.变叶海棠居群分化与多毛海棠起源研究.西南农业大学学报,2002,24(6):515-517
    [116]成明昊,梁国鲁,石胜友,周志钦,李晓林.变叶海棠种群分化与马尔康海棠起源研究.西南农业大学学报,2003,250):1-3
    [117]俞宏,董绍珍,齐茉陵.苹果属植物染色体观察研究.果树科学,1985,1:20-22
    [118]徐炳声,张芝玉,陈家宽,洪德元.染色体研究的进展与植物分类学(上).武汉植物学研究,1996,14(2):177-187
    [119]李晓林,成明昊,金强,刘杨青,谢晓黎,欧平贵.四川阿坝州苹果属植物两种同工酶分析.西南农业大学学报,1995,17(1):12-17
    [120]石胜友,成明昊,梁国鲁,郭启高,李晓林,周志钦.变叶海棠遗传多样性的AFLP分析.园艺学报,2006,33(25):381-384
    [121]程家胜,刘捍中,韩礼星,邸淑艳.关于苹果属果树亲缘关系的初步探索一过氧化物酶同工酶分析.园艺学报,1986,13(1):1-7
    [122]张云贵,成明昊,变叶海棠变异类型的初步研究.西南园艺,1998,3:17-18
    [123]Cheng M H,Zhou Z Q,Deng H P,et al.Variation and differentiation among and within populations of Malus toringoides Hughes revealed by morphological evidence.Journal of Shandong Agriculture University,2002,(33):19-24
    [124]石胜友,成明昊,胡玉林,郭启高,梁国鲁,周志钦.用AFLP分析小金海棠的起源.园艺学报,2008,35(2):281-284
    [125]成明昊,江宁拱.苹果属一新种.西南农学院学报,1983,4:53-55
    [126]成明昊,梁国鲁,李晓林,吴福寿,袁必贤,曾维光,金强,艾德仁.苹果属一新种--马尔康海棠.西南农业大学学报,1992,14(4):317-319
    [127]陈家宽,王徽勤.居群概念和方法在植物分类学中的应用.武汉植物学研究,1986,4(4):377-38
    [128]李育农.世界苹果和苹果属植物基因中心的研究初报.园艺学报.1989,16(2)101-107
    [129]Robinson J P.et al.Taxonomy of the genus Malus Mill.(Rosaceae) with emphasis on the cultivated apple,Malus domestica Borkh.Plant Systematics and Evolution,2001,226:35-58
    [130]毛宝琴,李纯凡,罗世科,丁祖蓉,李晓伟.苹果属植物杂交亲和性研究.西南农业大学学报,1996,18(4):311-315.
    [131]Forte.A.V,Ignatov.A.N et al.Phylogeny of the Malus(Apple Tree) Species,Inferred from the Morphological Traits and Molecular DNA Analysis.Russian Journal of Genetics 38(10):1150-1161
    [132]邓洪平,变叶海棠遗传多样性起源研究:[博士学位论文].重庆:西南农业大学,2002,127
    [133]邹喻苹、葛颂、王晓东,系统与进化植物学中的分子标记.北京:科学出版社,2001,122-195
    [134]Baldwin,B.G.,D.W.Kyhos,et al.Chloroplast DNA Evidence for a North American Origin of the Hawaiian Silversword Alliance(Asteraceae).1991.88:1840-1843.
    [135]Baldwin,B.G..Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants:An example from the compositae.Molecular Phylogenetics and Evolution,1(1):1992.3-16.
    [136]Sang,T.,D.J.Crawford,et al.Documentation of Reticulate Evolution in Peonies(Paeonia)Using Internal Transcribed Spacer Sequences of Nuclear Ribosomal DNA:Implications for Biogeography and Concerted Evolution.1995.92:6813-6817
    [137]Baldwin,B.G.,Sanderson M.J,et al.The ITS Region of Nuclear Ribosomal DNA:A Valuable Source of Evidence on Angiosperm Phylogeny.Annals of the Missouri Botanical Garden.1995.82(2):247-277.
    [138]Hahn,W.J.A phylogenetic analysis of the Arecoid Line of palms based on plastid DNA sequence data.Molecular Phylogenetics and Evolution.2002.23(2):189-204
    [139]Alvarez,I.,Wendel.J.F.et al.,Ribosomal ITS sequences and plant phylogenetic inference.Molecular Phylogenetics and Evolution,2003.29(3):417-434.
    [140]Shaw,J.,E.B.Lickey,et al.The tortoise and the hare Ⅱ:relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis.American Journal of Botany.2005.92(1):142.-146
    [141]田欣、李德铢,DNA序列在植物系统学研究中的应用.云南植物研究,2002,24(2):170-184
    [142]汪小全、洪德元,植物分子系统学近五年的研究进展概况.植物分类学报,1997,35(5):465-480
    [143]戴波、顾红雅、瞿礼嘉、虞泓,韭不同倍性及其非整倍体的ITS序列变异研究.云南植物研究,2003,25(4):483-490
    [144]Chechowitz N,Chappell D M,Guttman S I,et al.Morphological,electrophoretic,and ecological analysis of Quercus macrocapa population in the Black Hills of South Dakota and Wyoming.Can J Bot.1990,68:2185-2194
    [145]Xie C Y,Ying C C.Genetic architecture and adaptive landscape of interior lodgepole pine (Pinus contorta ssp.Latifolia) in Canada.Canada Journal of Forest Research.1995,25:2010-2021
    [146]Volis S,Mendlinger S,Whittaker L O et al.Phenotypic variation and stress resistance in core and peripheral populations of Hordeum spontaneum.Biodiversity and Conservation.1998,7:799-813
    [147]Daehler C C,Yorkston M,Sun W,et al.Genetic variation and process of domestication of Stenocereus stellatus(Cactaceae) in central Mexico.American Journal of Botany.1999,86:522-533
    [148]Jonas C S,Geber M A.Variation among populations of Clarkia unguiculata(Orangraceae)along altitudinal and latitudinal gradients.American Journal of Botany.1999,86:333-343
    [149]Jenczewski E,Prosperi J M,Ronfort J.Evidence for gene flow between wild and cultivated Medicago sativa based on allozyne marker and quantitative traits.American Journal of Botany.1999,86:677-687
    [150]李文英,顾万春.蒙古栎天然群体表型多样性研究.林业科学.2005,41(1):49-56
    [151]张开春,吴禄平,李荣旗,毕晓颖,景士西.RAPD技术-检测平邑甜茶遗传一致性的有效方法.农业生物技术学报,1997,5(2):201-202
    [152]周志钦,成明昊,宋洪元,李晓林,杨天秀.苹果属小金海棠的遗传多样性初步研究.生物多样性,2001,9(2):145-150
    [153]李英慧,韩振海,许雪峰,鲁韧强,亓丽萍.苹果属小金海棠种的遗传一致性研究.园艺学报.2002,29(6):571-572
    [154]Schuster,M.,R.B(u|¨)ttner,et al.,1995.Chromosome numbers in the Malus wild species collection of the genebank Dresden-Pillnitz.Genetic Resources and Crop Evolution.42(4):353-361.
    [155]张春雨,陈学森,林群,苑兆和,张红,张小燕,刘崇祺,吴传金,新疆野苹果群体遗传结构和遗传多样性的SRAP分析。园艺学报,2009,36(1):7-14
    [156]Doyle J J,Doyle JL.A rapid DNA isolation procedure for small quantities of fresh leaf tissue.Phytochem.Bull.1987,19:11-15
    [157]THOMPSON,J.D,GIBSON,J.D.,PLEWNIAK,F.JEANMOUGIN,F.HIGGINS,D.G.The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools.1997,25:4876-4882.
    [158]TAMUR K,DUDLEY J,NEI M,KUMAR S MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0..Molecular Biology and Evolution,2007,24(8):1596-1599.
    [159]SWOFFORD,D.L.PAUP*;Phylogenetic analysisi using parsimony(* and related methods).Version 4.0b10[M].Sinaumer Associates.Sunderland,Mass.2002.
    [160]Martin DP,Williamson C,Posada D.RDP2:recombination detection and analysis from sequence alignments.Bioinformatics.2005,21:260-262.
    [161]MAYNARD S.J.Analyzing the mosaic structure of genes.J.Mol.Evol.1992,34:126-129.
    [162]POSADA D,CRANDALL KA.Evaluation of methods for detecting recombination from DNA sequences:Computer simulations.Proc.Natl.Acad.Sci.USA,2001,98:13757-13762.
    [163]SALMINEN,M.O.,CARR,J.K.,,BURKE,D.S.,MCCUTCHAN,F.E.Identification of breakpoints in intergenotypic recombinants of HIV type 1 by Bootscanning.AIDS Res.Hum.Retroviruses 1995,11:1423-1425.
    [164]BONI,M.F.,POSADA,D.,FELDMAN,M.W.An exact nonparametric method for inferring mosaic structure in sequence triplets.Genetics,2007,176:1035-1047.
    [165]TAJIMA,F..Evolutionary relationship of DNA sequences in finitepopulations.Genetics 1983.105:437-460.
    [166]NEI,M.Molecular Evolutionary Genetics.Columbia Univ.Press,New York.1987.
    [167]WATTERSON,G.A.On the number of segregating sites in geneticalmodels without recombination.Theor.Pop.Biol.1975.7:256-276.
    [168]ROZAS,J.,S(?)NCHEZ-DELBARRIO,J.C.,MESSEGUER,X.AND ROZAS,R.2003.DnaSP,DNA polymorphism analyses by the coalescent and other methods.Bioinformatics 19:2496-2497.
    [169]HUDSON,R.R.,M.SLATKIN and W.P.MADDISON..Estimation of levels of gene flow from DNA sequence data.Genetics 1992.132:583-589.
    [170]HUDSON,R.R.,BOOS,D.D.and N.L.KAPLAN.A statistical test for detecting population subdivision.Mol.Biol.Evol.1992.9:138-151.
    [171]Filatov D.A.ProSeq:A software for preparation and evolutionary analysis of DNA sequence data sets.Molecular Ecology Notes 2002.2,621-624
    [172]Excoffier L,Laval G,Schneider S.Arlequin ver.3.0:an integrated software package for population genetics data analysis.Evol Bioinformatics Online,2005.1:47-50.
    [173]Sang,T.,Crawford,D.J.,and Stuessy,T.F.Chloroplast DNA phylogeny,reticulate e volution,and biogeography of Paeonia(Paeoniaceae).Am.J.Bot.1997,84:1120-1136
    [174]Yang,Y.W.,Tai,P.Y.,Chen,Y,,and Li,W.H.)A study of the phylogeny of Brassica rapa,B.nigra,Raphanus sativus and their related genera using non-coding regions of chloroplast DNA.Mol.Phyl.Evol.2002,23:268-275
    [175]徐炳声.植物分类学中的繁育生物学问题.云南植物学研究,1985,7(4):457-467
    [176]张大勇,姜新华.遗传多样性与濒危植物保护生物学研究进展.生物多样性1999,7,31-37
    [177]Tatiana,C.T.,S.Svetlana,et al.Variation in nuclear DNA content in Malus species and cultivated apples.Genome 2005.48(5):924-930.
    [178]O'Kane S L,Jr,Schaal B A and Al-Shehbaz I A.The origins of Arabidopsis suecica (Brassicaceae)as indicated by nuclear rDNA sequences.Syst.Bot.1996,21:559-566
    [179]Emshwiller E.and Doyle J J.Origins of domestication and polyploidy in oca(Oxalis tuberosa:Oxalidaceae):nrDNA ITS data.American Journal of Botany.1998,85:975-985
    [180]Franzke A.and Mummenhoff K.Recent hybrid speciation in Cardamine(Brassicaceae)-conversion of nuclear ribosomal ITS sequences in statu nascendi.Theoretical and Applied Genetics.1999,98:831-834
    [181]Widmer A.and Baltisberger M.Molecular evidence for allopolyploid speciation and a single origin of the narrow endemic Draba ladina(Brassicaceae).American Journal of Botany.1999,86:1282-1289
    [182]Hodkinson T R,Chase M W,Takahashi C,Leitch I J,Bennett M D and Renvoize S A.The use of DNA sequencing(ITS and TrnL-F),AFLP,and fluorescent in situ hybridization to study allopolyploid Miscanthus(Poaceae).American Journal of Botany.2002,89:279-286
    [183]Siripun K C and Schilling E E.Molecular confirmation of the hybrid origin of Eupatorium godfreyanum(Asteraceae).American Journal of Botany.2006,93:319-325
    [184]Masterson J,Stomatal size in fossil plant:evidence for polyploid in majority of angiosperms.Science,1994.264:421-424
    [185]WENDEL,J.F.,A.SCHNABEL,SEELANAN,T.An unusual rebosommal DNA sequence from Gossypium gossypioides reveals ancient,cryptic,intergenomic introgression.Molecular Phylogenetics and Evolution,1995,4(3):298-313.
    [186]SITES,J.W.,and DAVIS,S.K.Phylogenetic relationships and molecular variability within and among six chromosome races of Sceloporus grammicus(Saura,iguanidae) based on nuclear and mitochondrial markers.Evolution,1989,43:296-317
    [187]Koch,M.A.,Dobes,C.and Thomas,M.O.Multiple hybrid formation in natural populations:concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA(ITS) in north Amedcan Arabis divaricarpa(Brassicaceae).Mol.Biol,Evol.2003.20(3):338-350
    [188]Popp,M.and Oxelman,B.Inferring the history of the polyploidy Silene aegaea (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences.Mol.Phylogenet.Evol.2001.20:474-481.
    [189]Wendel,J.F.,A.Schnabel,et al.Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton(Gossypium).Proc.Nati.Acad.Sci.1995,92:280-284.
    [190]Zhang,W.,Qu,L.J.,Gu,H.,Gao,W,Liu,M.,Chen,J.and Chen,Z Studies on the origin and evolution of tetraploid wheats based on the internal transcribed spacer(ITS) sequences of nuclear ribosomal DNA.Theor.Appl.Genet..2002.104:1099-1106
    [191]王超,王建波,施苏华,钟扬.山羊草属异源多倍体物种核rDNAITS区的进化.植物分类学报,2000,38(3):211-217 1992.
    [192]Buckler,E.S.IV.,Ippolito,A.and Holtsford,T.P.The evolution of ribosomal DNA:Divergent paralogues and phylogenetic implications.Genetics 1997,145:821-832
    [193]Wissemann,V.Genetic consuitution of Rosa sect.Caninae(R.canina,R.jundzillii) and sect.Gallicanae(R.gallica).Angew.Bot.73:191-196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700