利用ISSR和EST-SSR标记研究中国茶树资源的遗传多样性和遗传结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶树(Camellia sinensis(L.)O.Kuntze)属于山茶科(Theaceae)山茶属(Camellia)茶组(Sect.Thea(L.)Dyer)植物,原产于中国,是世界上最重要的饮料作物之一。在复杂多样的生态条件下,经过长期的自然演化和人工选择,形成了丰富多样的茶树种质资源,这其中蕴含着高抗、优质等重要优异性状的基因资源。充分了解和掌握茶树种质资源的遗传多样性和遗传结构,是开展茶树种质资源收集保存、有益基因发掘和品种选育的重要基础。由于DNA标记具有多态性高、鉴定准确快速等优点,故它已成为茶树遗传多样性研究的重要技术和手段。本研究利用微卫星相关标记ISSR或EST-SSR技术,分析了中国不同类型、不同地区茶树资源的遗传多样性和遗传结构,并基于EST-SSR标记的基因分型,分析了茶树分子标记与表型性状的关联性。
     1、ISSR和EST-SSR标记在茶树遗传多样性研究上的比较分析
     比较了ISSR和EST-SSR在多态性位点数、引物解析能力、多态性信息含量和标记系数等方面的差异,结果表明在位点检测能力上ISSR明显高于SSR,每条ISSR引物可检测的平均条带数(12.5)比每对EST-SSR引物(3.1)高3倍。ISSR标记的Rp值是EST-SSR标记的6.3倍,表现出较高的品种鉴别方面能力。ISSR标记多态性信息含量(PIC)和标记系数(MI)也明显高于EST-SSR,说明ISSR具较高的位点多态性和较高的标记效率。
     尽管两种标记在检测中国、日本和肯尼亚茶树资源的遗传多样性差异上表现出较一致的趋势,但基于ISSR估算的遗传多样性指数(H=0.21)低于EST-SSR(H=0.28),这可能是由于ISSR属显性标记,无法检测到等位位点的变异,遗漏了部分重要的遗传信息,导致对遗传多样性水平的估计出现偏差,进而影响到遗传距离的估算和聚类分析的结果。而EST-SSR可以检测到等位位点的变异,比ISSR能更准确地反映和揭示供试品种的遗传多样性水平。同时由于单个EST-SSR标记检测到的位点数量较ISSR标记少,且特异性较强,谱带较易分辨,因此EST-SSR比ISSR标记更适用于对大量样本的分析。
     2、中国无性系育成品种的遗传多样性和亲缘关系分析
     利用27个ISSR引物对36个无性系茶树育成品种的DNA进行了扩增,共获得了500条多态性条带,平均每个引物扩增的多态性条带为18.5条。ISSR引物的Rp值较高,平均为9.59(变异范围5.69-14.47),表明具备较强的品种鉴别能力。IR29和IR44单个引物扩增形成的DNA指纹即可辨别36个不同的茶树品种。遗传多样性分析表明,不同地区育成品种的遗传多样性水平略有差异,遗传多样性指数(H)和Shannon信息指数(Ⅰ)的变异范围分别是0.20-0.23和0.31-0.36。区域间茶树品种的遗传分化指数(Gst)的平均值为0.18,表明仅有18%的遗传多样性来源于区域间的差异,而82%的遗传多样性源自于区域内品种间的遗传差异。10个大面积主栽茶树品种的遗传多样性占供试品种总体多样性水平的88%。基于ISSR和EST-SSR标记的比较分析均表明,中国主栽茶树品种的遗传多样性明显高于日本和肯尼亚的茶树品种,表现出较广泛的遗传基础。聚类分析表明,茶树育成品种的亲缘关系不仅与其遗传背景有关,而且与地理来源有关。
     3、中国绿茶与乌龙茶适制品种遗传多样性差异的比较分析
     基于EST-SSR标记研究了31份绿茶和37份乌龙茶适制品种资源的遗传多样性差异,结果表明乌龙茶品种基因多样性指数(H)、多态性信息含量(PIC)和平均遗传距离(GD)均略高于绿茶品种。基于数学模型的聚类分析将供试品种分为两个亚类群,亚群A中67.9%的品种为乌龙茶适制品种;亚群B中71.0%的绿茶品种聚类其中。基于Nei遗传距离的聚类分析将供试品种分为三个类群,其中类群Ⅰ和Ⅱ中以乌龙茶品种为主,分别占69.6%和66.7%;而类群Ⅲ中包括了61.3%的绿茶品种。两种聚类方法均表明,大部分样本按品种适制类型聚类,但也有部分品种在群体结构中相互渗透,呈较明显的穿插分布,推测这与品种的地理来源和遗传背景有关。
     4、中国茶树初选核心种质的遗传多样性和遗传结构分析
     基于EST-SSR标记对272份初选茶树核心种质的遗传多样性和遗传结构进行了分析。结果表明供试种质的平均多态性信息含量(PIC)值为0.531,平均基因多样性(H)为0.562。依据PIC和H值的大小,对不同省区茶树资源的遗传多样性按由高到低的水平排序,依次为:广西>云南>广东>福建>浙江>湖北>江西>重庆>贵州>陕西>四川>安徽>湖南。我国茶树资源的遗传多样性的空间分布呈现的特点是,遗传多样性从茶树原产地由南向北,由西向东递减,并且沿海地区高于内陆地区,这为研究我国茶树遗传演化的地理路径提供了参考依据。
     对不同种质类型茶树的遗传多样性进行比较分析,发现野生茶树群体的遗传多样性(H=0.563,PIC=0.529)高于地方品种(H=0.550,PIC=0.520)和选育品种(H=0.556,PIC=0.523),说明在栽培驯化和人工选择压力下,导致部分等位位点丢失,使栽培茶树的遗传多样性水平略有下降。对EST-SSR位点间的连锁不平衡(LD)情况进行配对检测,结果表明地方品种和选育品种(系)的不平衡成对位点数高于野生茶树资源,推测栽培茶树中较频繁的异交以及对特定基因位点的人为选择使位点间的连锁不平衡程度增加。
     AMOVA分析表明,茶树的遗传多样性主要源于茶树群体内的遗传差异,群体间的遗传差异对整体遗传多样性的贡献较少(0.7%-1.2%),这主要是由于茶树作为异花授粉植物,其强大的基因流促进了不同群体间的基因交换,导致群体间的基因和基因型频率逐渐接近,分化系数降低,遗传距离较近。基于数学模型聚类将供试种质分为5个亚类群,而基于Nei遗传距离的聚类分析将供试种质分为4个群,其中亚群内的聚类品种基本与数学模型聚类的结果基本对应。两种聚类分析均表明,中国茶树资源存在明显的遗传结构,它与地理来源和种质类型均存在相关性。尽管多数地理来源相同的种质往往共聚在小类群中,但也有部分地理来源相同的种质分别在不同群中分散聚类的情况,说明中国初选茶树核心种质具有遗传多样性分布广泛的特点。
     5、基于基因分型初步鉴定与茶树表型性状关联的EST-SSR标记
     通过EST-SSR标记对112份材料进行基因分型,开展了分子标记与新梢一芽二叶长(BL)、一芽二叶百芽重(BW)、叶片长度(LL)、叶片宽度(LW)、咖啡碱含量(CAF)、氨基酸含量(AA)和茶多酚含量(TP)共7个茶树表型性状关联的初步分析。结果表明,在不考虑位点间的连锁不平衡(LD)和供试群体的结构(SA)时,利用ANOVA方法可检测到三个EST-SSR位点CS185、CS121和CS153与五个表型性状显著相关,其中标记185同时与BL、BW、LL和LW等4个表型性状显著相关,标记CS121同时与BW、LL和LW等3个表型性状显著相关,而骠CS153仅与AA显著相关。但在考虑位点间的连锁不平衡和供试群体结构的情况下,通过回归分析仅鉴定出2个EST-SSR标记CS153和CS84与两个表型性状显著关联,其中标记CS153与性状LL显著关联,对表型变异的解释率为0.07,而标记CS84与性状TP显著关联,对表型的解释率为0.35。
     两种检测方法中,仅有一个标记CS153被同时检出,但与之关联的性状却不同。在不考虑供试样本群体结构的情况下,亚群的混合使整个群体所估计的LD强度增强,可能导致多态性位点与性状的相关性并非由功能性等位基因引起,从而可能提供了假阳性结果。因此在关联分析前有必要对群体结构进行分析和调节。
Tea (Camellia sinensis (L.) O. Kuntze) is an important non-alcoholic beverage crop which originated from China where there has diverse and abundant tea genetic resources. It is necessary to understand genetic variation and population structure in tea plant to guide germplsam collection, evaluation and breeding application. DNA markers are proved to be useful tools which have been broadly used in the study of accession identification, genetic diversity, genetic relationships of tea plant.
     In this paper, the marker capability and efficiency were compared between ISSR and EST-SSR, and the genetic diversity and population structure were evaluated among tea genetic resources in China. Meanwhile, a preliminary study was carried out to analyze the relationship between EST-SSR markers andphenotypic traits .
     1. Comparison of capability and efficiency between ISSR and EST-SSR marker
     The capability and efficiency between ISSR and EST-SSR markers were compared based on parameters including polymorphic loci, resolving power (Rp), polymorphic information content (PIC) and marker index (MI). The results showed that the numbers of polymorphic bands amplified by each ISSR primer were 12.5, being three times higher than that of EST-SSR primers (3.1). Higher values of Rp, PIC and MI were obtained by ISSR marker than EST-SSR marker. These results indicated that ISSR has stronger capability for detecting polymorphic bands and higher marker efficiency than EST-SSR.
     The study showed that ISSR and EST-SSR are both effective to reveal the level of genetic diversity among tea caltivars from China, Kenya and Japan. However, the average Nei's gene diversity (H) revealed by ISSR (H=0.21) was lower than EST-SSR (H=0.28), which could be ascribed to incapability for alleles detection by ISSR, leading to missing of some important genetic information. This will further influence the estimation of genetic distance and clustering analysis. While EST-SSR markers may be more accurate to evaluate genetic diversity than ISSR markers because of the former can reveal the alleles variation on a locus. Additionally, EST-SSR markers are more suitable for large-scale samples analysis than ISSR because the rare and clear bands are easily distinguished and recorded by EST-SSR.
     2. Genetic diversity and relationship of clonal tea cultivars in China
     The genetic diversity and relationship among 36 clonal tea cultivars were studied using ISSR makers. The total numbers of 500 polymorphic ISSR bands were produced, with average of 18.5 polymorphic bands per primer. The resolving power (Rp) of each primer varied from 5.69-14.47, with an average at 9.59. All of clutivars were discriminated by ISSR fingerprint amplified with primers IR29 and IR44, respectively. The polymorphism information content (PIC) of primers ranged from 0.79 to 0.95, with an average at 0.91. The Nei's gene diversity (H) and the Shannon's information index (I) varied from 0.20 to 0.23 and 0.31 to 0.36 in different region, respectively. The Gst was estimated to be 0.18, which indicated that most of genetic diversity came from the variation among cultivars (82%) rather than among regions (18%). And ten popular clonal cultivars which have planting area over 50 kha in China represented 88% of total genetic diversity. Comparing to Japan and Kenya, more abundant diversity were found in widely planted tea cultivars in China based on ISSR and EST-SSR markers. The clustering analysis showed that the genetic relationship was not only related to genetic background, but also to geographic origin.
     3. Comparison of genetic diversity between green tea and Oolong tea cultivars
     The genetic diversity between 31 green-tea cultivars and 37 Oolong-tea cultivars were studied by EST-SSR markers. The results showed that higher level of Nei's gene diversity (H), polymorphic information contents (PIC) and average genetic distance (GD) were estimated among Oolong-tea cultivars comparing to those among green-tea cultivars. Based on mathematic simulation model, the 68 accessions were classified into two populations A and B. In population A, Oolong-tea accessions accounted for 67.9% of clustering samples; while 71% of tested green cultivars were clustered into the population B. Based on the Nei's genetic distance, the 68 accessions were clustered into three populationsⅠ,ⅡandⅢ. In the populationsⅠandⅡ, Oolong tea cultivars occupied 69.6% and 66.7%, respectively, while 61.3% of tested green tea accessions were clustered into the populationⅢ. Both the above two kinds of clustering analysis showed that most of accessions were culstered into the same population according to theirs processing suitability. However it is exceptive for some cultivars, which may be attributed to theirs origin and genetic background.
     4. Genetic diversity and population structure of primary core germplasm of tea in China
     The genetic diversitiy and population structure were studied based on the 272 primary tea core germplasm in China using EST-SSR markers. The average values of PIC and H were estimated to be 0.531 and 0.562 among all 272 accessions, respectively. The level of genetic diversity was ranged from high to low in different provinces as following order as Guangxi>Yunnan>Guangdong>Fujian>Zhejiang>Hubei>Jiangxi>Chongqing>Guizhou>Shaanx i>Sichuan>Anhui>Hunan. The genetic diversity among tea plants showed decreasing tendency from original centers to noirh and east region, and higher level of genetic diversity existed in coastal region than that in inland region..
     Wild tea plants showed higher level of genetic diversity than traditional landraces and bred cultivars, which indicated that the genetic diversity was influenced by long-standing domestication and artificial selection. The linkage disequilibrium (LD) between pairs of EST-SSR loci was ubiquitously found in different types of tea accessions. And lower level of LD was found in wild tea population comparing to traditional landraces and bred cultivars. It could be explained that frequent out-crossing and long-standing selection for special loci lead to the increase of LD degree among cultivated tea plants.
     The analysis of molecular variance revealed that the variance component among accessions in same group was far higher than that among groups according to geographic origin and accession type. Strong gene flowing may gradually lead to similar frequency of gene and genotype among different populations for cross-pollinate crops like tea, resulting in low genetic differentiation and close genetic distance among populations. The 272 accessions were grouped into five populations by structure analysis based on mathematic simulation model, which was confirmed by N-J methods based on Nei's genetic distance. It is confirmed that the population structure was not only related with geographic origin, but accession types. Though a few of accessions from a same region were usually clustered together in small sub-population, most of tested accessions with a same origin and a same type were dispersedly distributed in different populations. It suggested that there had a broadly genetic variation among Chinese tea germplasm.
     5. Association analysis for EST-SSR and tea phenotypic traits
     The association between EST-SSR markers and phenotypic traits were studied by SSR genotyping. Three EST-SSR loci were detected to be correlated to five penotypic traits of tea by ANOVA methods if the LD between the loci and the population structure were not considered. Marker no.CS185 were significantly related to the length of fresh shoots with one bud and two leaves (BL), the weight of 100 fresh shoots with one bud and two leaves (BW), leaf length (LL) and leaf width (LW) and amino acid contents (AA). Marker no.CS121 was significantly related to BW, LL and LW while no.CS153 related to AA. However, the results were different if the LD between loci and population structure were considered. Only two loci were identified to be associated with leaf length and tea polyphenols contents (TP), respectively, by regression method. Only one marker (no.CS153) was detected in both of the above two method, but the related trait varied. The mixture of population could make high degree of LD among the tested populations, and it might lead to pseudo association between markers and traits. So it is necessary to consider LD and population structure during association analysis.
引文
Balasaravanan T, Pius PK, Kumar RR, Muraleedharan N, Shasany AK, (2003). Genetic diversity among south Indian tea germplasm (Camellia sinensis, C. assamica and C. assamica spp. lasiocalyx) using AFLP markers. Plant Science, 165:365-372
    Botstein D, White RL, Skolnick M, David RW, (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics. 32:314-331
    Bradbury PJ, Zhang ZW, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES, (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics Application Note. 23:2633-2635
    Breseghello F, Sorrells ME, (2006). Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 172:1165-1177
    Chen J, Wang PS, Xia YM, Xu M, Pei SJ, (2005). Genetic diversity and differentiation of Camellia sinensis L. (cultivated tea) and its wild relatives in Yunnan province of China, revealed by morphology, biochemistry and allozyme studies. Genetic Resources and Crop Evolution, 52:41-52
    Chen L, Yamaguchi S, (2002). Genetic diversity and phylogeny of tea plant (Camellia sinensis) and its related species and varieties in the section Thea genus Camellia determined by randomly amplified polymorphic DNA analysis. Journal of Horticultural Science and Biotechnology, 77(6):729-732
    Chen L, Zhou ZX, (2005). Variations of main quality components of tea genetic resources preserved in China national germplasm tea repository. Plant Foods and Human Nutrition, 60:31-35
    Chen L, Zhou ZX, Yang YJ, (2007). Genetic improvement and breeding of tea plant (Camellia sinensis) in China: from individual selection to hybridization and molecular breeding. Euphytica. 154:239-248
    Dellaporta SL, Wood J, Hicks JB, (1983). A plant DNA minipreparation, version II. Plant Molecular Biology Report, 1:19-21
    Excoffier L, Laval G, Schneider S, (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1:47-50
    Fernandez ME, Figueiras AM, Benito C, (2002). The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theoretical Applied Genetics, 104:845-851
    Freeman S, West J, James C, Lea V, Mayes S, (2004). Isolation and characterization of highly polymorphic microsatellites in tea (Camellia sinensis). Molecular Ecology Notes,4:324-326
    Gupta M, Chyi YS, Romero-Severson J, Owen JL, (1994). Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theoretical Applied Genetics, 89:998-1006
    Gupta PK, Rustgi S, Kulwal PL, (2005). Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Molecular Biology, 57:461-485
    Hackett CA, Wachira FN, Paul S, Powell W, Waugh R, (2000). Construction of a genetic linkage map for Camellia sinensis (tea). Heredity, 85:346-355
    
    Hajra NG, (2001). Advances in selection and breeding of tea - a review. Journal of plantation crops, 29(3):1-17
    
    Hansen M, Kraft T, Ganestam S, Sall T, Nilsson NO, (2001). Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genetical Research, 77:61-66
    Hantula J, Dusabenyagasani M, Hamelin RC, (1996). Random amplified microsatellites (RAMS)- a novel method for characterizing genetic variation within fungi. EuropeanJoumal of Forest Pathology, 26:159-166
    Hung CY, Wang KH, Huang CC, Gong X, Ge XJ, Chiang TY, (2008). Isolation and characterization of 11 microsatellite loci from Camellia sinensis in Taiwan using PCR-based isolation of microsatellite arrays (PIMA). Conservation Genetics, 9:779-781
    Jun TH, Van K, Kim MY, Lee SH, Walker DR, (2008). Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica. 162:179-191
    Kato F, Taniguchi F, Monobe M, Ema K, Hirono H, Maeda-Yamamoto M, (2008). Identification of Japanese tea (Camellia sinensis) cultivars using SSR markers. Nippon Shokuhin Kagaku Kogaku Kaishi. 55(2):49-55
    Katoh Y, Katoh M, Takeda Y, Omori M, (2003). Genetic diversity within cultivated teas based on nucleotide sequence comparison of ribosomal RNA maturase in chloroplast DNA. Euphytica. 134:287-295
    Kaundun SS, Matsumoto S, (2002). Heterologous nuclear and chloroplast microsatellite amplification and variation in tea, Camellia sinensis. Genome, 45:1041-1048
    Kaundun SS, Matsumoto S, (2003). Development of CAPS markers based on three key genes of the phenylpropanoid pathway in Tea, Camellia sinensis (L.) O. Kuntze, and differentiation between assamica and sinensis varieties. Theoretical Applied Genetics, 106:375-383
    Kaundun SS, Park YG, (2002). Genetic structure of six Korean tea populations as revealed by RAPD-PCR markers. Crop Science, 42:594-601
    Kaundun SS, Zhyvoloup A, Park YG, (2000). Evaluation of the genetic diversity among elite tea (Camellia sinensis var.sinensis) accessions using RAPD markers. Euphytica, 115:7-16
    Kraakman ATW, Niks RE, Van-den-Berg PMMM, Stam P, Van-Eeuwijk FA, (2004). Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 168:435-446
    Laurie CC, Chasalow SD, LeDeaux JR, McCarroll R, Bush D, Hauge B, Lai C, Clark D, Rocheford TR, Dudley JW, (2004). The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics, 168:2141-2155
    Li YC, Korol AB, Fahima T, Nevo E, (2004). Microsatellites within genes: structure, function, and evolution. Molecular Biology and Evolution, 21 (6):991-1007
    
    Liu K, Muse SV, 2005. Integrated analysis environment for genetic marker data. Bioinformatics, 21: 2128-2129
    Magoma GN, Wachira FN, Imbuga MO, Agong SG, (2003). Biochemical differentiation in Camellia sinensis and its wild relatives as revealed by isozyme and catechins patterns. Biochemical Syatematics and Ecology, 31:995-1010
    Magoma GN, Wachira FN, Obanda M, Imbuga M, Agong SG, (2000). The use of catechins as biochemical markers in diversity studies of tea (Camellia sinensis). Genetic Resources and Crop Evolution, 47:107-114
    Matsumoto S, Kiriiwa Y, Takeda Y, (2002). Differentiation of Japanese green tea cultivars as revealed by RFLP analysis of phenylalanine ammonia-lyase DNA. Theoretical Applied Genetics, 104::998-1002
    Meyer W, Mitchell TG, Freedman EZ, Vilgays R, (1993). Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. Journal Clinical Microbiol, 31:2274-2280
    Mishra RK, Sen-Mandi S, (2004). Molecular profiling and development of DNA marker associated with drought tolerance in tea clones growing in Darjeeling. Current Science, 87(1):60-66
    Mondal TK, (2002). Assessment of genetic diversity of tea (Camellia sinensis (L.) O. Kuntze) by inter-simple sequence repeat polymerase chain reaction. Euphytica, 128:307-315
    Nei M, (1973). Analysis of gene diversity in subdivided populations. Proceeding of the NationalAcademy of Science of the United States of America, 70:3321-3323
    Ni S, Yao MZ, Chen L, Zhao LP, Wang XC, (2008). Germplasm and breeding research of tea plant based on DNA marker approaches. Frontiers of Agriculture in China, 2: 200-207
    Park YG, Kaundun SS, Alexander Z, (2002). Use of the bulked genomic DNA-based RAPD methodology to assess the genetic diversity among abandoned Korean tea plantations. Genetic Resources and Crop Evolution, 49(2):l59-165
    Paul S, Wachira FN, Powell W, Waugh R, (1997). Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theoretical Applied Genetics, 94:255-263
    Powell W, Machray GC, Provan J, (1996a). Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1(7):215-222
    Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A, (1996b). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Moleculur Breeding, 2:225-238
    Prevost A, Wilkinson MJ, (1999). A new system of comparing PCR primers applied to 1SSR fingerprinting of potato cultivars. Theoretical Applied Genetics,98:107-112
    Pritchard JK, Stephens M, Donnelly P, (2000). Inference of population structure using multilocus genotype data. Genetics, 155:945-959
    Reddy MP, Sarla N, Siddiq EA, (2002). Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica, 128:9-17
    Rohlf P, (1998). NTSYSpc: numerical taxonomy and multivariate analysis system, version 2.1. Exeter software, Setauket, New York, USA: 16-29
    Salvi S, Tuberosa R, (2005). To clone or not to clone plant QTLs: present and future challenges. Trends in Plant Science 10(6):297-304
    
    Seurei P, (1996). Tea improvement in Kenya: a review. Tea, 17:76-81
    
    Shannon C, Weaver W, (1949). The mathematical theory of communication. University of Illinois Press, Urbana Takeo T, You XQ, Wang HF, Kinukasa H, Li MJ, Chen QK, Wang HS, (1992). One speculation on the origin and dispersion of tea plant in China-One speculation based on the chemotaxonomy by using the content-ration of terpen-alcohols found in tea aroma composition. Journal of Tea Science, 12(2):81-86
    Tong QQ, Lu DB, Lou YP, Xu HR, (1992). Enzyme parameters for screening drought resistance in tea germplasms. Acta Agriculturae Universitatis Zhejiangensis, 18(S): 108-111
    Varshney RK, Chabane K, Hendre PS, Aggarwal RK, Graner A, (2007). Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. Plant Science, 173:638-649
    Varshney RK, Graner A, Sorrells ME, (2005). Genic microsatellite markers in plants: features and applications. Trends in Biotechnology 23(1):48-55
    Wachira F, Tanaka J, Takeda Y, (2001). Genetic variation and differentiation in tea (Camellia sinensis) germplasm revealed by RAPD and AFLP variation. Journal of Horticultural Science and Biotechnology, 76(5):557-563
    
    Wachira FN, (1994). Triploidy in tea(CameIlia sinensis): effect in yield attributes. Journal of Horticultural Science and Biotechnology, 69:53-60
    Wachira FN, Powell W, Waugh R, (1997). An assessment of genetic diversity among Camellia sinensis L. (cultivated tea) and its wild relatives based on randomly amplified polymorphic DNA and organelle-specific STS. Heredity, 78:603-611
    Wachira FN, Waugh R, Hackett CA, Powell W, (1995). Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome, 38:201-210
    Wang G, Mahalingan R, Knap HT, (1998). (C-A) and (G-A) anchored simple sequence repeats (ASSRs) generated polymorphism in soybean, Glycine max (L.) Merr. Theoretical Applied Genetics, 96:1086-1096
    Weising K, Winter P, Huttel B, Kahl G, (1998). Microsatellite markers for molecular breeding. Journal of Crop Production, 1(1): 113-143
    Wu K,Jones R,Dannaeberger L,Scolnik PA,(1994).Detection of microsatellite polymorphisms without cloning.Nucleic Acids Research,22:3257-3258
    Yang JB,Yang J,Li HT,Zhao Y,Yang SX,(2009).Isolation and characterization of 15 microsatellite markers from wild tea plant(Camellia taliensis) using FIASCO method.Conservation Genetics,10:1621-1623
    Yeh FC,Boyle TJB,(1997).Population genetic analysis of codominant and dominant markers and quantitative traits.Belgian Journal of Botany,129:157
    Zhao LP,Liu Z,Chen L,Yao MZ,Wang XC,(2008).Generation and characterization of 24 novel EST derived microsatellites from tea plant(Camellia sinensis) and cross-species amplification in its closely related species and varieties.Conservation Genetics,9:1327-1331
    Zietkiewicz E,Rafalski A,Labuda D,(1994).Genome fingerprinting by simple sequence repeat(SSR) - anchored polymerase chain reaction amplification.Genomics,20:176-183
    陈华才,许宁,陈雪芬,陈宗懋,虞富莲,(1996).茶树对茶橙瘿螨抗性机制的研究.植物保护学报,23(2):137-142
    陈华才,许宁,陈宗懋,(2000).游离氨基酸含量与茶树抗蜻性的关系.植物保护学报,27(4):338-342
    陈亮,山口聪,王平盛,许玫,宋维希,童启庆,(2002).利用RAPD进行茶组植物遗传多样性和分子系统学分析.茶叶科学,22(1):19-24
    陈亮,童启庆,高其康,束际林,虞富莲,(1997).山茶属8种1变种花粉形态比较.茶叶科学.17(2):183-187
    陈亮,童启庆,庄晚芳,(1992).茶树花粉形态及其模糊聚类的研究.浙江农业大学学报,18(2):29-36
    陈亮,杨亚军,(2009).优良茶树品种与我国茶产业发展.中国农业科学院茶叶研究所编:技术创新与茶产业可持续发展研讨会论文集,pp40-48
    陈亮,杨亚军,虞富莲,(2004).中国茶树种质资源研究的主要进展和展望.植物遗传资源学报,5(4):389-392
    陈亮,杨亚军,虞富莲,高其康,陈大明,(1998).15个茶树品种的遗传多样性的RAPD分析.茶叶科学,18(1):21-27
    陈亮,杨亚军,虞富莲主编,(2005,).茶树种质资源描述规范和数据标准.北京:中国农业出版社,pp41-46
    陈亮,虞富莲,童启庆,(2000).关于茶组植物分类与演化的讨论.茶叶科学,20(2):89-94
    陈亮,虞富莲,杨亚军,(2006).茶树种质资源与遗传改良.北京:中国农业科学技术出版社,pp42-151
    陈伦林,邹小云,李书宇,邹晓芬,张建模,宋来强,(2008).SSR和SRAP标记揭示甘蓝型油菜遗传多样性的差异分析,分子植物育种,6(3):511-516
    陈士炎,叶大鹏,(1989).多倍体茶树的细胞学研究(一).茶叶科学,9(2):117-126
    戴素贤,谢赤军,李启念,陈栋,郑如钦,(1998).凤凰单枞5个名枞乌龙茶香气组分分析.茶叶科学,18(1):39-46
    段红星,邵宛芳,王平盛,许玫,庞瑞华,张亚萍,崔文锐,(2004).云南特有茶树种质资源遗传多样性的RAPD研究.云南农业大学学报,19(3):246-254
    封槐松,王国庆,(2007).2006年我国茶叶产销创历史最好成绩.中国茶叶,29(2):4-5
    郭春芳,唐玉海,孙云,陈常颂,陈荣冰,张木清,(2008).茶树种质资源遗传多样性的ISSR分析.热带作物学报,29(2):181-186
    郭吉春,叶乃兴,何孝延,张文锦,杨如兴,陈志辉,(2000).乌龙茶品种资源研究进展.福州:海峡两岸茶叶科技学术研讨会论文集,pp35-38
    何丽卿,(1989).茶树花粉形态的研究.茶叶科学,9(1):39-48
    侯渝嘉,何桥,李品武,梁国鲁,彭萍,邓敏,(2007b).应用ISSR分子标记研究茶树种质资源遗传多样性.西南农业学报,20(3):462-465
    侯渝嘉,何桥,李中林,李品武,梁国鲁,徐进,(2007a,).应用ISSR分子标记对茶树种质资源进行分子鉴定.西南农业学报,20(6):1272-1276
    胡志敏,(1988).浙江省十二个茶树良种光合特性的研究.浙江农业大学学报,14(2):155-160
    黄福平,梁月荣,陆建良,陈荣冰,(2006).应用RAPD和ISSR分子标记构建茶树回交1代部分遗传图谱.茶叶科学,26(3):171-176
    黄福平,梁月荣,陆建良,陈荣冰,Mamati GE,孙庆磊,(2004).乌龙茶种质资源种群遗传多样性AFLP评价.茶叶科学,24(3):183—189
    黄华涛,刘祖生,庄晚芳,(1986).茶树抗寒生理的研究-酶和细胞膜透性与茶树抗寒性.茶叶科学,6(1):41-48
    黄建安,李家贤,黄意欢,罗军武,龚志华,刘仲华,(2005),茶树AFLP分子连锁图谱的构建.茶叶科学,25(1):7-15
    黄亚辉,张觉晚,张贻礼,杨阳,王沅江,(1998).茶树抗假眼小绿叶蝉的叶片解剖特征.茶叶科学,18(1):35-38
    季鹏章,蒋会兵,黄兴奇,张俊,梁名志,王平盛,(2009).古茶园、台地茶园遗传多样性的AFLP分析.遗传,31(1):101-108
    季鹏章,张俊,王平盛,黄兴奇,许玫,唐一春,梁名志,(2007).云南古茶树(园)遗传多样性的ISSR分析.茶叶科学,27(4):271—279
    姜绍丰,(2008).中国乌龙茶产业发展现状.中国茶叶,30(9):6-9
    金基强,崔海瑞,陈文岳,卢美贞,姚艳玲,忻雅,龚晓春,(2006).茶树EST-SSR的信息分析与标记建立.茶叶科学,26(1):17-23
    金基强,崔海瑞,龚晓春,陈文岳,忻雅,(2007).用EST-SSR标记对茶树种质资源的研究.遗传,29(1):103—108
    李斌,陈兴琰,陈国本,王建国,(1986).茶树染色体组型分析.茶叶科学,6(2):7-14
    李光涛,梁涛,(1990).中国山茶属4种2变种核型研究.广西植物,10(3):189-197
    李明芳,郑学勤,(2004).开发SSR引物方法之研究动态.遗传,26(5):769-776
    李素芳,(1996).茶种质资源中的非整倍体和三倍体鉴定初报.茶叶科学,16(1):73-74
    李永祥,李斯深,李立会,杨欣明,李秀全,(2005).披碱草属12个物种遗传多样性的ISSR和SSR比较分析.中国农业科学,38(8):1522-1527
    梁月荣,刘祖生,(1988).五个茶树无性系品种染色体数目和核型的研究.茶叶科学,8(2):37-41
    林智,(2009).绿茶与中国茶产业发展.中国农业科学院茶叶研究所编:技术创新与茶产业可持续发展研讨会论文集,pp187-194
    刘振,(2008).茶树资源核心种质的构建策略研究与EST-SSR标记的初步验证.中国农业科学院研究生院硕士学位论文:pp5-30
    刘振,王新超,赵丽萍,姚明哲,王平盛,许玫,唐一春,陈亮,(2008).基于EST-SSR的西南茶区茶树资源遗传多样性和亲缘关系分析.分子植物育种,6(1):100-110
    刘振,姚明哲,王新超,陈亮,(2009).基于EST-SSR的福建地区茶树资源遗传多样性和亲缘关系分析.中国农业科学,42(5):1720-1727
    鲁成银,李名君,刘维华,(1991).茶酯酶同工酶的研究.中国农业科学院茶叶研究所编:茶叶科学研究所论文集.上海:上海科学技术出版社,pp132-139
    陆德彪,童启庆,络耀平,须海荣,(1995).茶树种质资源抗旱性的综合评价.浙江农业大学学报,21(5):447-450
    吕文明,罗亨文,楼云芬,胡宏基,彭萍,曾莉,李正超,陈笑蓉,(1991).茶树种质资源抗病虫鉴定.中国农业科学院茶叶研究所编,茶叶科学研究所论文集.上海:上海科学技术出版社,pp70-76
    罗军武,施兆鹏,沈程文,刘春林,龚志华,黄意欢,(2002).茶树品种资源遗传亲缘关系的RAPD分析.茶叶科学,22(2):140-146
    罗军武,施兆鹏,沈程文,刘春林,龚志华,黄意欢,(2004).茶树种质资源遗传多样性的RAPD分析.作物学报,30(3):266-269
    罗军武,唐和平,黄意欢,龚志华,肖文军,(2001).茶树不同抗寒性品种间保护酶类活性的差异.湖南农业 大学学报(自然科学版),27(2):94-96
    闵天禄,(1992).山茶属茶组植物的订正.云南植物研究,14(2):3-20
    农业部种植业管理司,(2008).中国茶叶生产与消费.中国茶叶,30(6):4-6
    彭萍,(1990).茶树品种抗跗线螨初步鉴定.植物保护,16(6):12-13
    祁建民,周东新,吴为人,林荔辉,方平平,吴建梅,(2004).RAPD和ISSR标记检测黄麻属遗传多样性的比较研究.中国农业科学,37(12):2006-2011
    阮建云,杨亚军,马立锋,(2007).茶叶氟研究进展:累积特性、含量及安全性评价.茶叶科学,27(1):1-7
    邵宛芳,庞瑞华,王平盛,许玫,段红星,张亚萍,李家华,(2003).云南茶树种质的RAPD研究.中国农业科学,36(12):1582-1587
    沈程文,黄意欢,黄建安,罗军武,刘春林,刘德华,(2007).湖南典型茶树地理种群遗传多样性.农业生物技术学报,15(5):855-860
    沈程文,罗军武,施兆鹏,龚志华,唐和平,刘富知,黄意欢,(2001).安化云台山茶树品种种群内遗传多样性的RAPD分析.湖南农业大学学报(自然科学版),28(4):320-325
    沈金雄,傅廷栋,杨光圣,(2004).甘蓝型油菜SSR、ISSR标记的遗传多样性及其与杂种表现的关系.中国农业科学,37(4):477-483
    束际林,陈亮,(1996).茶树花粉形态的演化趋势.茶叶科学,16(2):115-118
    王平盛,虞富莲,(2002).中国野生大茶树的地理分布多样性及其利用价值.茶叶科学,22(2):105-108
    王荣焕,王天宇,黎裕,(2007).关联分析在作物种质资源分子评价中的应用.植物遗传资源学报,8(3):366-372
    王新超,刘振,姚明哲,马春雷,陈亮,杨亚军,(2009).中国茶树初级核心种质取样策略研究.茶叶科学,29:(2)159-167
    王新超,杨亚军,(2002).茶树营养遗传育种学发展前景.中国茶叶,24(3):12-14
    王新超,杨亚军,陈亮,阮建云,(2004).不同品种茶树氮素效率差异研究.茶叶科学,24(2):93-98
    文自翔,赵团结,郑永战,刘顺湖,王春娥,王芳,盖钧镒,(2008a).中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析Ⅱ.优异等位变异的发掘.作物学报,34(8):1339-1349
    文自翔,赵团结,郑永战,刘顺湖,王春娥,王芳,盖钧镒,(2008b).中国栽培和野生大豆农艺品质性状与SSR标记的关联分析Ⅰ.群体结构及关联标记.作物学报,34(7):1169-1178
    吴觉农,(1981).略谈茶树原产地问题.茶叶,1981(4):1、7
    吴觉农,(1987).茶经述评.北京:农业出版社,pp168-190
    杨小红,严建兵,郑艳萍,余建明,李建生,(2007).植物数量性状关联分析研究进展.作物学报,33(4):523-530
    杨亚军,虞富莲,陈亮,曾建明,杨素娟,李素芳,束际林,舒爱民,章志芳,王玉书,王海思,王平盛,许玫,宋维希,郭吉春,杨如兴,张文锦,陈志辉,(2003).茶树优异资源评价与遗传稳定性研究.茶叶科学,23(S):1—8
    杨阳,刘振,赵洋,梁国强,赵熙,(2009).利用EST-SSR标记研究黄金茶群体遗传多样性及遗传分化.茶叶科学,29(3):236-242
    姚明哲,郭华伟,王新超,肖强,陈亮,(2008).福建武夷山地区茶树种质的茶橙瘿螨抗性变异及高抗优质资源的发掘.中国农学通报,24(9):127-130
    姚明哲,黄海涛,余继忠,陈亮,(2005).ISSR在茶树品种分子鉴别和亲缘关系研究中的适用性分析.茶叶科学,25(2):1276-1280
    姚明哲,刘振,陈亮,王新超,马春雷,梁月荣,(2009).利用EST-SSR分析江北茶区茶树资源的遗传多样性和遗传结构.茶叶科学,29(3):243-250
    姚明哲,王新超,陈亮,杨亚军,(2004).茶树ISSR-PCR反应体系的建立.茶叶科学,24(3):172-176
    叶大鹏,陈士炎,(1990).多倍体茶树的细胞学研究(二).茶叶科学,10(2):37—45
    叶乃兴,(2006).乌龙茶种质资源的利用与品种创新.福建茶叶,2006(3):2-4
    叶乃兴,陈兴琰,陈国本,王建国,(1990).茶树净光合速率的遗传分析.茶叶科学,10(2):65-69
    游小清,李名君,(1991).茶树种质资源萜烯指数分析.中国农业科学院茶叶研究所编,茶叶科学研究所论文集.上海:上海科学技术出版社,pp140-145
    虞富莲,(1986).论茶树原产地和起源中心.茶叶科学,6(1):1-8
    虞富莲,王海思,韩志福,钟渭基,王云霞,许宁,王平盛,张文文,覃秀菊,侯渝嘉,魏芳华,李强,陈树尧,(1991).茶树种质资源的农艺性状、加工品质和抗寒性鉴定.中国农业科学院茶叶研究所编,茶叶科学研究所论文集.上海:上海科学技术出版社,pp29-34
    虞富莲,俞永明,李名君,束际林,刘维华,吕文明,王海思,韩志福,钟渭基,(1992).茶树优质资源的系统鉴定与综合评价.茶叶科学,12(2):95-126
    詹梓金,林朝清,池玉洲,(1993).四个茶树不孕品种的细胞学及遗传背景.茶叶科学,13(2):115-120
    张宏达,(1981).茶树的系统分类.中山大学学报,1981(1):87-99
    张宏达,(1984).茶叶植物资源的订正.中山大学学报,1984(1):1-12
    张军,赵团结,盖钧镒,(2008).大豆育成品种农艺性状QTL与SSR标记的关联分析.作物学报,34(12):2059-2069
    中华人民共和国国家质量监督检验检疫局,(2002).GB/T 8312-2002,茶 咖啡碱测定.北京:中国标准出版社,pp2-3
    中华人民共和国国家质量监督检验检疫局,(2002).GB/T 8313-2002,茶 茶多酚测定.北京:中国标准出版社,pp1-2
    中华人民共和国国家质量监督检验检疫局,(2002).GB/T 8314-2002,茶 游离氨基酸总量测定.北京:中国标准出版社,pp1-2
    周巨根,梁月荣,夏桂,(1993).茶树品种间叶绿素含的遗传参数分析.福建茶叶,1993(1):10-13
    朱俊庆,(1992).不同茶树品种对假眼小绿叶蝉抗性的初步研究.植物保护学报,19(1):29-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700