广元千佛崖摩崖石质文物保护的环境地质问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
按照石质文物病害的不同表现,大体可分为两大类型:石窟岩体的失稳问题和风化问题。失稳问题是指石质文物所依托的岩(山)体出现岩体结构不稳定和局部危石等问题。风化问题是指在文物表面毫米到厘米级的范围内,文物外观的破坏。稳定性问题与地质结构条件有关系。岩石材料是地质作用的产物,岩石的变形和破坏性质不但与岩石的复杂成因和结构密切相关,而且还受温度、围压、孔隙水等环境因素的影响。因此,对病害机理的分析首先应当对地质环境进行勘察,了解它所依存的地质环境以及当地的气候环境条件与石质文物病害的关系。
     四川广元千佛崖窟区属亚热带湿润季风气候区,在大地构造上位于扬子地台西缘北段,龙门山造山带和前陆盆地区,东侧与大巴山造山带及其前陆盆地相邻,属于地震多发区。
     广元千佛崖摩崖造像分布区域地层出露单一,岩层为中厚层夹薄层侏罗系千佛崖统泥质砂岩。主要矿物为长石、石英,也含有绿泥石、蒙脱石等粘土矿物和硬石膏等成分。岩层产状210-240°<23-29°。千佛崖摩崖造像的泥质石英砂岩,结构疏松、干抗压强度范围值在29.9-4.763MPa之间,湿抗压强度范围值在10.467-11.079MPa之间,抗压强度值低、软化系数仅为0.33。
     千佛崖窟区岩体深部构造完整,但在岩质边坡上纵横交错分布有多次构造运动形成的区域性构造节理,其中较为发育节理有三组,其产状分别为:26°-76°<62°-82°、100°-122°<63-77°、315°-336°<65-78°。区域性构造节理具有发育广泛,产状稳定,规模较大,延长较远,间距较宽,节理面平滑,多见羽列状和共轭“X”型节理系等特征。大量节理切割使千佛崖岩体具有多裂性,不仅为加速风化和风化向深部发展提供了界面条件,而且将岩体切割成菱形块状体或楔形体易产生拉裂式和滑移式崩塌进而坠落破坏。尤其是其中一组顺坡向的节理破坏性大。
     采用DT8380红外线温度测试仪先后对岩石不同部位和大小不同文物表面进行温度测试、岩石渗水的原位实验和日本NEC TH7700SP红外热像仪对部分窟龛佛像进行了含水率的全面热成像检测,揭示窟区岩石风化的机理。千佛崖窟龛造像表面的风化机理表现为三个方面,温差冻胀作用物理风化和水-岩相互作用的化学风化和微生物的生物风化作用:
     温差冻胀作用的破坏表现为:窟龛岩石的韵律层的层裂破坏;矿物膨胀系数不同造成矿物颗粒连接的破坏;暴雨浇淋的涨缩作用和吸水矿物的结晶压力对矿物晶体结构的破坏及冰劈作用等。
     水-岩相互作用:水-岩相互作用是水溶液与石雕中的矿物进行化学反应,不仅导致化学元素在岩石与水之间重新分配,而且导致岩石细微结构的改变。其作用的机理表现在四个方面:一是减小岩体内部粘结力,增加岩体孔隙度,促使长石、石膏和岩盐等溶解,使岩体内孔隙度增大;二是粘土矿物如蒙脱石等遇水即膨胀的特性,会给岩体内部增大压力而破坏岩石结构;三是裂隙水分迅速蒸发时,水中盐类结晶体积的膨胀将对岩壁产生强大压力,引起石雕的碎裂等;四是发生化学溶蚀,长石等矿物易于风化成高岭石、蒙脱石等在地表条件下稳定的新矿物,扩大岩体中的裂隙;同时可溶盐成分逐渐从岩体内部迁移到表层析出,形成表层粉化、彩绘起甲、空鼓、脱落等灾害现象。
     千佛崖石窟岩壁表层生长有大量的微生物,包括细菌、真菌、藻类、地衣、苔藓等。植物和细菌在新陈代谢中常常析出有机酸、硝酸、亚硝酸、碳酸和氢氧化铵等溶液,腐蚀石刻岩体并在石刻表面形成淀积物;表生风化环境中,微生物主要通过质子交换、配体络合、氧化还原生物膜等方式促进硅酸盐矿物(长石、粘土矿物等)溶解破坏。
     四川广元千佛崖紧邻公路,采用英国GURALP公司生产CMG-40T-1短周期速度型三分向地震计,对过往汽车产生的震动程度进行了现场测试。汽车单次在四川广元千佛崖石窟附近通过不会对完整石窟造成破坏性影响,但可能诱发处在临界稳定状态的文物或岩块失稳而破坏。虽然汽车单次行驶对不会对完整石窟造成破坏性影响,但汽车长期行驶产生的震动会对千佛崖石窟造成疲劳性损伤。提出的川陕公里改道对策已被有关部门采纳。
     对千佛崖石窟岩体的稳定性的评价,采用了根据地质特征的结构面、风化程度以及边坡岩体结构等对危岩体的地质稳态等级做出判断,以区划图的形式来标示千佛崖石窟危岩的危险性等级。提出在广元千佛崖窟区应该进行系统的全面的加固治理,对不稳定的岩体采用不锈钢全长胶结锚杆加固,窟室间岩体张裂缝和起壳病害采用微型碳纤维锚杆加固,设置边坡岩体应力应变监测系统,准确掌握其本构关系。锚杆加固的工程措施已被有关部门采纳。
     作好防水措施,提出的在山顶和山梁开挖排水沟槽,在降雨时迅速疏排水,对缝宽>1.5mm裂缝进行灌浆加固和嵌补,建议已被采纳。
     并且全面评价了千佛崖摩崖石窟的风化程度,通过调查、测量、照相、采样等,了解并记录各龛窟的主要病害特征,分析评估这些龛窟的风化程度,风化程度的指标选取不同种类病害的面积来表征。绘制了重点龛窟的病害图。风化病害的治理措施上鉴于目前无机和有机表面处理剂均存在不同程度的文物原貌改变,提出研制岩石文物表面防风化的生物膜,降低和减缓石质文物表面的风化速度。同时通过大环境的治理,降低人为因素的影响。
The disease of stone artifacts can be divided into two types:instability problem and weathering problem. The instability problem is the unstable of rock structure and stone local crisis of relying on the rock (hill) body of stone artifacts. The weathering problem is destruction of cultural appearance in millimeter and centimeter range of artifacts surface-Rock material is the product of geological rock that deformation and failure of rock is the closely related of not only the complex nature of the causes and structure, but also temperature,onfining pressure, pore water and other environmental factors. Therefore, the mechanism of disease should first survey the geological environment, and understand relationship between diseases of stone artifacts in dependencies of the geological environment and local climate conditions.
     The cave area of The thousand buddha cliff belonged to the subtropical humid monsoon climate zon, located in the tectonic western margin of the northern section of the yangze, the longmenshan orogenic belt and foreland basin area. adjacent the daba mountains orogenic belt and foreland basin in the east.
     The Single rock type expose in cave area of Qianfo Ya what is the thick layer and laminar shale argillaceous sandstone of The thousand buddha cliff system of Jurassic,t is J2-Q3. The major minerals are the feldspar, the quartz, and anhydrite and clay minerals, such as chlorite, montmorillonite. The stratigraphic occurrence is 210-240°<23-29°. The grains of argillaceous quartz sandstone of The thousand buddha cliff cliff are loose, the dry compressive strength range of values is in the 29.9-4.763 MPa, the wet compressive strength range is between 10.467-11.079MPa, the compressive strength value is low, softening coefficient is only 0.33.
     The deep structural is integrity in cave area of The thousand buddha cliff rock, however,the rock slope crisscross distribute regional structural joints with the formation of several tectonic movement. There are three groups of joints of more development, their occurrence are:26-76°<62-82°,100-122°<63-77°,315-336°<65-78°. The features of regional structural joints has wide range of occurrence, stability, the larger, extended farther, wider spacing, joint surface smooth, more feather-like and the conjugate "x"-type section of the faculty. The rock was cut into multiple cracking by large number of joints that not only provides the interface conditions to speed up the deep weathering and further weathering,but also easy to produce crack- sliding and falling damage collapse owing to diamond or wedge block in The thousand buddha cliff, the most serious along the slope direction of the joint.
     The mechanism of weathering of rocks was reveal by the temperature test in different parts of the surface of different cultural by using infrared temperature dt8380, and seepage of rock by situ experiments, and moisture detection by infrared imaging system in japan nec th7700sp.the mechanism of surface weathering of grotto express in two ways:temperature and frost weathering, water-rock interaction.
     The temperature and frost weathering shows in what way:rhythmic layer spallation of cave rock; mineral grains connected damaged by the different of mineral expansion coefficient; the expanding role by heavy rain poured over; crystal structure of the damaged by absorbent mineral crystallization pressure and splitting by the role of ice.
     The water-rock interaction is chemical reaction between solution and mineral in statue. The chemical reaction results not only redistribution between rocks and water re-allocation of chemical elements, but also diversification of rock microstructure.
     The mechanism of its role in four way:the first, its reduces the internal cohesive force, increases rock porosity, promotes feldspar, gypsum and rock salt dissolved, so that orosity increased in rock; the second, water swelling properties of clay minerals would increase pressure and damage the internal structure, such as montmorillonite, etc. The third, fissure water quickly evaporates, the expansion of salt crystals from water volume will generate strong pressure to the rock, causing stone fragmentation, etc. The chemical dissolution would expand the crack rock from feldspar and other minerals into kaolinite, montmorillonite, etc. At the same time, the soluble salts composition is gradually migrated to the surface from the joints,lead to disaster, such as powder of surface, painted crust, painted hollowing, and painting shed.
     There grow a large number of microorganisms surface of caves of Qian foya, including bacteria, fungi, algae, lichen, moss and so on. The metabolism of plants and bacteria often precipitates solution that have organic acid, nitric acid, nitrous acid, arbonic acid and ammonium hydroxide will corrode and deposit on surface of carves. The mechanism of microbial destruction is solution of silicate minerals (feldspar, clay minerals, etc.) by proton swap, ligand complexation, oxidation-reduction biofilm in supergene weathering environment.
     The vibration level of passing vehicles was field tested by one-third of the short period seismometer of speed-type cmg-40t-1. the results show that single vehicle through the caves in the vicinity not effect to integrity grotto, but may induce instability and destruction of artifacts or rock of the critical steady-state. While the single vehicle vibration is not a devastating effect on the integrity of caves, long-running vibration would cause fatigue damage on The thousand buddha cliff cave.
     The steady-state level of geological of rock caves of the The thousand buddha cliff was judged by the structure surface, weathering and other geological characteristics of rock slope, and marked form of the zoning map. Strengthening governance systems and comprehensive should be implemented in Guangyuan The thousand buddha cliff cave area, especially in dangerous areas as soon as possible. The degree of weathering was comprehensive evaluated by the diseases characterized of the size of different types, through surveys, surveying, photographic, sampling, etc. And a disease map of focus cave was drawn. The precaution measures of weathering disease should be developed wind of the biofilm of the surface, reduce and slow down the speed of weathering on stone artifacts, because inorganic and organic surface treatment agents are varying degrees of change of original cultural. The influence of human factors should be reduce through the governance environment.
引文
[1]李文军,王逢睿.中国石窟岩体病害治理技术[M].兰州:兰州大学出版社,2006
    [2]牟会宠,杨志法,伍法权.石质文物保护的工程地质力学研究[M].北京:地震出版社,2000.
    [3]李文军,北石窟寺地下水与石窟岩体潮湿渗水的关系及地下水治理措施[J].敦煌研究2006(4):109-115.
    [4]靳治良,陈港泉,钱玲,苏伯民,吕功煊.莫高窟壁画盐害作用机理研究(Ⅱ)[J]敦煌研究,2009(3):100-102
    [5]韦荃,贺晓东,谢振斌,宋艳.四川摩崖造像岩石的工程物理特性文物保护与考古科学[J].2009.(2):48-52
    [6]罗红,论文物环境对文物保护的影响[J].山西大同大学学报自然科学版,2008(5)30-37.
    [7]曾中懋.广元千佛崖千佛洞的加固和风化碑刻的处理[J].四川文物.1990,(3):79-80.
    [8]李黎,谷本瓶伯.龙游石窟砂岩的水稳定性研究[J].文物保护与考古科学,2005,17(4):28-33
    [9]李黎,谷本瓶伯.龙游石窟砂岩的泥质胶结物研究[J].工程地质学报,2005,13(2):189--194.
    [10]李黎,谷本规伯.龙游石窟地质环境及病害的初步调查[J].敦煌研究,2002,(4)92--96
    [11]李黎,谷本瓶伯.龙游石窟的环境特征[J].敦煌研究,2005,(4):93—107
    [12]任青文.岩体破坏分析方法的研究进展[J].岩石力学与工程学报,2001,20(增刊2):1303-1309.
    [13]李最雄.丝绸之路石窟的岩石特征及加固[J].敦煌研究,2002,(4):73-83.
    [14]李最雄.炳灵寺、麦积山和庆阳北石窟寺的风化研究[J].文博,1985,(3):66—75
    [15]巫锡勇,罗健,魏有仪。岩石风化与岩石化学成分的变化研究[J].地质与勘探,2004,40(4)85-88。
    [16]李忠生,等.国内外地震滑坡灾害研究综述[J].灾害学,2003,18(4):64-70.
    [17]石玉成.石窟围岩及其附属构筑物地震稳定性评价方法研究[J].西北地震学报,2000,22(1):83-89.
    [18]李最雄.丝绸之路古遗址保护[M].北京:科学出版社,2003
    [19]周跃飞,陆现彩,王汝成,陆建军.长石微生物风化作用的研究现状与展望[J].地球科学进展,2008,23(1):17-23.
    [20]李海,石云龙,黄继忠.大气污染对云冈石窟的风化侵蚀及防护对策[J].环境保护2003.(10):44-47。
    [21]任建光,黄继忠,李海.无损检测技术在石质文物保护中的应用[J].雁北师范学院学报,2006,22(5):58-62.
    [22]黄克忠.岩土文物建筑的保护[M].北京:中国建筑工业出版社,1998.
    [23]秋仁东,石玉成.地震荷载作用下石窟的震害特征及抗震加固[J].灾害学,2006,21(1)37-42.
    [24]马涛,孙渊和,Simon S.乾陵石刻内部裂隙的超声波探测研究[J].文物保护与考古科学.2002,14(2):9-20.
    [25]林华.浅谈石材的风化[J].石材.2002,(10):65-67.
    [26]付长华.地震荷载下石窟围岩动态损伤特性研究[D].兰州:中国地震局兰州地震研究所,2004.
    [27]何燕,李智毅.关于河南灵泉寺石窟地质病害及整治方法的研究[J].岩土力学,2000,21(3):56259.
    [28]殷跃平.三峡库区边坡结构及失稳模式研究[J].工程地质学报,2005,13(2):145—154.
    [29]李铁峰,潘懋,刘瑞殉.基岩斜坡变形与破坏的岩体结构模式分析[J].北京大学学报(自然科学版),2002,38(2):239—244.
    [30]刘传正,刘艳辉,连建发.长江三峡巴东复杂斜坡系统成因研究[J].地质评论,2006,52(4):510—521.
    [31]陈昌彦,张李节,王思敬,等.断裂构造研究进展对工程地质学的启示[J].地质评论,2002,48(5):487—494.
    [32]邓清禄.斜坡变形构造——巴东新县城斜坡剖析[M].武汉:中国地质大学出版社,2000.
    [33]张加桂,陈庆宣,蔡秀华.三峡地区泥灰质岩石中几种表生构造及其与地质灾害的关系[J].中国地质,2003,30(3):320—324.
    [34]曹信孚.我国大气污染已严重影响文化遗产[J].上海环境科学,1995,(2):40-43.
    [35]黄继忠.煤尘对云冈石窟石雕的影响(D).上海:复旦大学文博学院,1996.
    [36]马在平,黄继忠,张洪.云冈石窟砂岩中碳酸盐胶结物化学风化及相关文物病害研究[J]中国岩溶,2005,24(1):71-76.
    [37]陈永明.天水麦积山石窟地震构造环境评价敦煌研究2005,(5):78-82.
    [38]陈庚龄,马清林.潮湿环境下壁画地仗修复材料与技术.敦煌研究2005(4)51-56.
    [39]陈卉丽.大足北山石窟环境监测分析[J],华夏考古2008(1):139-142.
    [40]张志国,彭华.超声波无损探伤检测在现代出土石质文物保护中的应用[J].地质力学学报,2005,11(3):278-285.
    [41]李树一,张克燮.岩石文物地质病害保护技术研究与实践[J].岩土工程,200811(10):30-33.
    [42]方云,魏海云,王金华.隧洞排水法治理大足石刻渗水病害[J].现代地质,2001,(3):351-353.
    [43]聂王焰,周艺峰.石刻保护有机硅涂料的研究[J].涂料工业,2008(8):16-18.
    [44]奈晓霞,许淳淳,王紫色,吉静.改性水性环氧树脂乳液对石质文物的保护效果[J]腐蚀与防护.2008(8):451-453.
    [45]李汶国,张晓鹏,钟玉梅.长石砂岩次生溶孔的形成机理[J].石油与天然气地质。2005,26(2):220-223.
    [46]任建光,黄继忠,石云龙,李海,杨成全.地球物理电法勘探技术在云冈石窟保护中的应用[J]山西大同大学学报(自然科学版),2008(10):94-96.
    [47]任建光,黄继忠,阎宏彬,李海.天龙山石窟区域地质特性研究[J].太原师范学院学报:自然科学版,2009(1):123-125.
    [48]祝介旺,常中华,刘恩聪,张路青.杨志法龙游石窟1号洞破坏成因及加固对策研究[J].工程地质学报.2009,17(1):126-132.
    [49]王丽琴,党高潮,赵西晨,等.加固材料在石质文物保护中应用的研究进展[J].材料科学与工程学报,2004,22(5):778-782.
    [50]张成渝.洛阳龙门石窟岩体振动疲劳效应初析[J].北京大学学报(自然科学版).2002,(06)矿物学报2001(3):809-816.
    [51]张成渝.洛阳龙门石窟水的赋存对岩体稳定性的影响[J].北京大学学报(自然科学版),2003,16(2):829-834.
    [52]尚剑宝,上官学兵.山西大同云冈石窟防水保护方案探讨[J].山西建筑,2003,29(6):75-76.
    [53]马红梅,马国栋,速宝玉.大同云冈石窟文物渗水病害防治方案探讨[J].水文地质工程地质,2004(5):64-67.
    [54]万力,曹文炳,周训,等.包气带中温度变化对水分分布影响的实验研究[J].水文地质工程地质,2004(3):25-28.
    [55]马在平,黄继忠,张洪,等.山西大同云冈地区云冈组砂岩沉积成岩及石窟风化病害研究[J].中国石油大学学报,2003,23(4):22-26.
    [56]张秉坚,尹海燕,沈忠悦,卢唤明.草酸钙生物矿化膜的形成机理和化学仿制—种新型石质文物表面防护材料的开发研究[J].矿物学报,2001(3):319-321.
    [57]刘强,张秉坚.劣化石刻表层生物矿化加固材料的探索性研究[J].文物保护与考古科学,2008(1):01-06.
    [58]刘卫华,黄润秋,裴向军,董秀军,韩祥森.危岩体调查及稳定性工程地质分类方法探讨[J].2007,3(7):1269-1273.
    [59]刘强,张秉坚.石质文物表面生物矿化保护材料的仿生制备[J].化学学报,2006,(15):1601-1605.
    [60]张红梅,马国栋,速宝玉.大同云岗石窟文物渗水病害防治方案探讨[J].水文地质工程地质.2004,(5):64-67.
    [61]洪坤,詹予忠.石质文物表面二氧化硅仿生膜的探索[J].腐蚀与防护.2008(9):520-522.
    [62]阎宏彬,黄继忠,赵新春,郝临山,李海.温度、湿度的变化对云冈石窟保存的影响[J].山西大同大学学报(自然科学版).2007,23(3):25-29.
    [63]严绍军,方云,孙兵,高洪.渗水对龙门石窟的影响及治理分析[J].现代地质.2005,(03):475-478.
    [64]蒋青青,胡毅夫,赖伟明.层状岩质边坡遍布节理模型的三维稳定性分析[J].岩土力学,2009,30(3)712-716.
    [65]林杭,曹平,宫凤强.位移突变判据中监测点的位置和位移方式分析[J].岩土工程学报,2007,29(9):1433—1438.
    [66]徐恩存.中国石窟浙江人民出版社,1996.
    [67]陈祥,孙进忠,祁小博.石质文物风化程度的超声波CT检测[J].岩石力学与工程学报,2005,24(1):4970-4976.
    [68]陈从新, 黄平路,卢增木.岩层倾角影响顺层岩石边坡稳定性的模型试验研究[J].岩土力学,2007,28(3):476—481.
    [69]蒋良潍,黄润秋.层状结构岩体顺层斜坡滑移一弯曲失稳计算探讨[J].山地学报,2006,24(1):88—94.
    [70]丁梧秀,陈建平,冯夏庭,等1洛阳龙门石窟围岩风化特征研究[J]1岩土力学,2004,25(1):145-1481
    [71]孙儒僴.敦煌石窟保护与建筑[M].甘肃人民出版社.2007.
    [72]王旭东,李最雄.安西榆林窟的岩土工程问题及防治对策[J].敦煌研究,2000,(1):123-131
    [73]李最雄,王旭东等.榆林窟东崖的岩体裂隙灌浆及其效果的人工地震检测[J].敦煌研究,1994(2):156—172页.
    [74]王旭东,张明泉,张虎元等.敦煌莫高窟洞窟围岩的工程特性[J].岩石力学与工程学报.2000,19(6):756-761.
    [75]何燕,李智毅。关于河南灵泉寺石窟地质病害及整治方法的研究[J].岩土力学.2000(3),56-59.
    [76]王现国,彭涛,郭友琴,吴东民.龙门石窟变形破坏原因及保护对策[J].中国地质灾害与防治学报,2006,17(1):130-132.
    [77]黄继忠.云冈石窟地质特征研究[J].东南文化,2003,(5):91-93.
    [78]石玉成,王旭东.甘肃地区石窟文物保护中的地震危害性估计[J]敦煌研究,2005,93(5):83-88.
    [79]石玉成,徐晖平,王旭东.敦煌莫高窟地震安全性评价[J]敦煌研究.2000,63(1):49-55.
    [80]石玉成,付长华,王兰民.石窟围岩地震变形破坏机制的数值模拟分析[J]岩土力学.2006,27(4):543-548.
    [81]丁忠明,吴来明,孔凡公.文物保护科技研究中的X射线照相技术[J].文物保护与考古科学,2006,18(1):38-46.
    [82]石玉成,秋仁东.预应力锚索加固石窟围岩的地震响应的数值模拟分析研究[J].防灾减灾工程学报,2007,27(4)436-443.
    [83]丁梧秀,陈建平,冯夏庭,周辉,王士民.洛阳龙门石窟围岩风化特征研究[J].岩土力学2004,25(1):145-148.
    [84]李海波,蒋会军,赵坚,等.动荷载作用下岩体工程安全的几个问题[J].岩石力学与工程学报,2003,22(11):1887-1891.
    [85]李新坡,何思明,徐骏,等.层状岩质边坡临界高度极限分析上限解[J].四川大 学学报(工程科学版),2007,39(1):44—47.
    [86]赵海英,李最雄,王旭东,谌文武,韩文峰.西北干旱区石窟遗址保护[J]中国地质灾害与防治学报,2007,18(6):78-80.
    [87]冯君,周德培,李安洪.顺层岩质边坡开挖模型试验及稳定性影响因素分析[J].工程地质学报,2005,13(3):294—299.
    [88]林杭,曹平,李江腾,等.边坡临界失稳状态的判定标准分析[J].煤炭学报,2008,33(6):643—647
    [89]成永刚.边坡失稳的水岩相互作用机理分析[J].路基工程,2006(1):1-5.
    [90]孙进忠,田小甫,管旭东等.太原西山大佛松动岩体边坡稳定性分析[J].地学前沿,2008,15(4)227-238.
    [91]祁生文,伍法权,刘春玲,等.地震边坡稳定性的工程地质分析[J].岩石力学与工程学报,2004,23(16):2792-2797.
    [92]赵志曼,刘铮,杨大愚,吴大平.云南黑井镇石质文物现状分析及保护思考[J].石材,2009,(10)33-35.
    [93]NISHIURA T,LI Z. Experimental study on the consolidation fragile porous stone with potassium silicate for the conservation of cave temple in China[C].Conservation of Far Eastern Art,IIC 12thlnternational Congress. Kyoto,Japan:[S.n.],1999:168-172.
    [94]WH/TE A F, BLUM A E, BULLEN T D, et al. The efect of temperature on experimental and natural chemical weathering rates of granitoid rocks[J]. Geochimicaet Cosmochimica Acta,1999,63 (19):3277-3291.
    [95]W HITEA F,BLUM A E,SCHULZ M S,etal. Chemi cal weatheringin a tropical watershed,Luquillo M ountains,Puerto Rico:Ⅰ. long-termversus short-term weathering fluxes[J]. Geochimi ca et Cosmochimi caActa,1998,62(2):209-226
    [96]Fortin D,Farris F G,Beveridge T J. Surface mediated mineral development by bacteria [A]. Geomicrobiology:Interactions Between Microbes and Minerals[M]. Washington DC:Minera21ogical Society of America,1997:161-180.
    [97]Muentz A. Sur la decomposition des rochesetl aformation delaterrearable [J]. C. R. Acad. Sci. (hebd. seances) (Paris),1890,110:1370-1372.
    [98]Fitzner B, Heinrichs K, Labouchardiere D. Damage index for the stone monuments C]. Galan E, Zezza F. ed. Protection and conservation of the cultural heritage of the me diterranean cities, Pro2ceedings of the 5th International Symposium on the Conservation of Monuments in the Mediterranean Basin, Sevilla, Spain. Swets & Zeitlinger, Lisse; The Netherlands,2002:315-326.
    [99]Warke P A, Curran J M, Turkington A V, et al. Condition assess2ment for building stone conservation:a staging system app roach[J]. Build Envir,2003,38:1113-1123.
    [100]Grassegger G. Decaymechanisms of natural building stones on monuments:A review of the latest theories[M].Stumpp S, Kruger M & GroBe C. Ed:Werkstoffe und Werkstoffp rufung im Bauwesen. Institut fur Werkstoffeim Bauwesen, Universi3/4t Stuttgart, Stut-tgart,1999:54-81.
    [101]H. A kgiin, M. K. Kockar. design of ancho rage and assessmentof the stability of openings in silty, sandy limestone:a casestudy in Turkey [J]. International Journal of RockM echanics&M ining Sciences.2004,41:37-49.
    [102]Cnudde V, Jacobs P J S. Monitoring of weathering and conservation of building materials through nondestructive X-ray computed microtomo graphy[J]. Envir Geol, 2004,46:477-485.
    [103]Viles H A 1, TaylorM P, Yates T J S, et al. Soiling and decay of N. M. E. P. limestone tablets [J]. Sci Total Envir,2002,292(3):215-229
    [104]Grossi CM, Esbert R M, Diaz2Pache F, et al. Soiling of building stones in urban environments [J]. Build Envir,2003,38 (1):147-159.E Beloin N J, Haynie F H. Soiling of building surfaces[J]. AirPollu Contr Associ,1975,25:393-403.
    [105]hrlich H L. Geomicrobiology 3 rd edition [M]1 New York:Marcel Dekker,Inc.,1996.
    [106]Wallander H,Wickman T. Biotite and microcline as potassium sources in ectomycorrhizal and nonmycorrhizal Pinus sylvestris seedlings[J]1Mycorrhiza,1999。9:25-32.
    [107]Maurice P A,Vierkorn M A,Hersman L E,Fulghum J E,Fer2ryman A. Enhancement of kaolinite dissolution by an aerobic pseudomonas mendocina bacterium [J] Geomicro,2001,18:21-35.
    [108]Brantley S L,Liermann L,Bau M. Uptake of t race metals and rare earth elements from hornblende by a soil bacterium [J] Geomicrobiology Journal,2001.18:37-61.
    [109]Erhard M Winkler. Weathering and Weathering Rates of Natural Stone [J]. Environmental Geogy,1987,9(2):85-92.
    [110]Welch S A,Banfield J F. Modification of olivine surface mor2phology and reactivity by microbial activity during chemical weathering [J] 1 Geochim1 CosmochimlActa,2002,66:213-221.
    [111]W yllieDC. Foundations on rock (2nd ed) [M]. London:E & FN Spon,1999.401. H. A kgun,M. K. Kockar. design of anchorage and assessment of the stability of openings insilty,sandy limestone:a case study in Turkey [J]. International Journal of Rock Mechanics & Mining Sciences.2004,41:37-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700