氡气测量在沙基型浅埋煤层覆岩裂隙监测中的模型实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是我国乃至世界最重要的能源之一,提供了能源需求的绝大部分。随着国民经济的快速发展,对煤炭的需求量也越来越大,故加大煤炭资源的开采是缓解目前用煤紧张的主要方式。但是大规模的煤炭开采,特别是浅埋每层的开采,容易使地表塌陷或产生大的裂隙,造成地下水流失和地表植被破坏,如果能用某种监测方法掌握煤层采动过程中上覆岩层内裂隙的分布情况,那么就可以减少在煤炭资源开采过程中造成的环境破坏。虽然目前用于覆岩破断的探测方法有很多,但是还没有一种可靠、有效、易操作的,并且能够对覆岩采动裂隙进行连续监测的方法,因此,如能找到一种既可靠,又易操作的方法,将具有重要的现实意义。
     众所周知,氡气测量技术已经是一种成熟有效的技术,它在地质领域的应用已经相当广泛,常用于发现隐伏构造、寻找石油天然气、寻找铀矿床、地质填图、寻找地下水、解决有关工程地质问题、寻探煤田陷落柱、探测煤田地下火区,在这些实践中都获得了良好的效果;同时煤层中较周围岩层赋存着更多的氡气,在煤层采动过程中氡气能通过贯穿裂隙向上迁移而到底地表。这两个有利因素为利用氡气测量技术来监测煤层开采过程中上覆岩层的裂隙发育与分布创造了条件。
     但是要将氡气测量方法和煤层覆岩裂隙发育联系起来,有很多基础研究工作要做。为此,本论文以成都理工大学方方教授和中国矿业大学张东升教授的合作项目“氡气地面探测覆岩采动裂隙及其导水性的综合实验系统的开发”为依托,以国内的两大沙基型浅埋煤矿为原型,采用固气耦合模拟模型实验来监测氡气在模拟回采开始前和回采中的迁移情况,同时借助瓦斯在煤层覆岩中的迁移规律,探讨了煤层采动与煤层上覆岩层中的氡气浓度之间变化关系的数学模型,为后面监测系统的开发提供实验和理论依据。
     本论文在实验阶段建立了三个相似材料模拟模型,其中模型Ⅰ是以大柳塔矿1203工作面为原型,它含有一个关键层;模型Ⅱ是以补连塔煤矿32201工作面为原型,它含有两个关键层;模型Ⅲ的岩层结构和模型Ⅱ基本相同,只是模型Ⅲ上部的风化砂层的含水量较模型Ⅱ增大了很多。
     通过对三个相似材料模拟模型的数据监测与分析,可得出以下结论:
     (1)模型中监测点处氡气浓度的变化能较好的反映煤层采动时,模型中裂隙的发育变化情况。
     (2)模型中氡气浓度的变化情况和模型中上覆岩层的结构有关,并且模型内部的氡气浓度变化较表层明显。
     (3)从裂隙的发育到测氡仪捕捉到由裂隙发育引起的氡气浓度变化有一个时间延迟的过程。
     同时,本文针对前期实验中出现的一些问题,为以后进一步的实验提出了两点改进建议:
     (1)适当加长模拟实验的监测时间。
     (2)在模型中增加温湿度传感器和应力传感器,特别是应力传感器,只有知道煤层采动时覆岩中的应力情况,才能求解氡气迁移的数学模型。
     此外,本论文所涉及的所有实验都是本文作者在中国矿业大学张东升教授、成都理工大学方方教授的指导下,在中国矿业大学矿业工程学院和张玮博士、李翔硕士一起负责完成的。
Whether in China or in other countries ,Coal is one of the most important energy that provids most of the energy demand. With the rapid development of national economy, the demands for coal are getting more and more serious,So, Increasing exploitation of the coal resources are Main ways to easing the lack of Coal.But Large-scale coal mining , especially the shallow seam mining, is easy to Easy to cause surface subsidence or produce big fissure , cause groundwater erosion and surface damage to vegetation. If we can use some monitoring methods in coal mining process to master distribution of fissure in the overlying stratum,so can reduce the environmental destruction caused coal resources exploitation. Although currently there are many methods that used in detection of overburden rock breaking, but no one is a kind of very reassuring method characterized by effective and easy operation, and all can not be used to monitor the mining-induced fractures continuously.therefore,there will be the important practical significance ,if we can find a kind of both reliable and easy operation method.
     As is known to all, radon measurement technology has been a mature effective technology, it is applied widely to the geological field.we often use radon measurement technology to find concealed geological structures , oil and gas, groundwater and geothermal,uranium mine, coalfield depressed pillars ,burning area in the underground coal of coal field, map for geology, solve the relevant engineering geological problems etc,we have obtained good effect in practice;Meanwhile there are more the radon in coal seams than in the overlying stratums around the coal seams, In coal mining process,radon can move upward through the crack. These have created favorable conditions to monitor crack development and distribution of overlying stratum with the radon measurement techniques In coal mining process .
     But,in order to brought direct radon measurement technique relevance to fissure development in overlying stratum, there are many basic research work to do. Therefore, this paper rely on scientific research project“integrated experiment system development about detecting the mining-induced overlying stratums fractures and the hydraulic conductivity wit radon measurement technique”,This project was developed with professor ZhangDongSheng who has worked in China mining university and professor FangFang who comes from chengdu university of technology. With domestic two shallow coal field as the prototype, use the solid and gas coupling model experiments to monitor radon migration situation before and after simulation of stoping, at the same time, with the help of gas migration rule in coal seam, established the mathematical model of the relationship between coal mining and the radon concentration of overlying stratum to provide experimental and theoretical basis For the development of monitoring system.
     This paper established three similar material simulation models in the experimental stage, the 1203 mining face of DaLiuTa Coal mine was the prototype of modelⅠ,it contained a key strata; the 32201 mining face of BuLianTa Coal mine was the prototype of modelⅡ, it contained two key stratas; except that water content ofweathered sandstone increased a lot in the upper part, the strata structures of modelⅢwre the same as modelⅡ.
     Based on measurement and analysis to the three similar material simulation models , Conclusions are as follows:
     (1 )the changes of radon concentration can better reflect fissure development situation of models in mining process.
     (2 )the changes of radon concentration are associated with the overlying stratum Structure in the model.
     (3 )it takes several hours from the development of fissures to the changes of radon concentration caused by fissures and captured by emanometer.
     Meanwhile, based on some problems appeared in previous experiments, this paper put forward several Suggestions for future problems:
     (1 )to enhance the stability of radon source system
     (2 ) to extend monitoring time of simulation experiment properly
     (3 ) to increase temperature and humidity sensor ,and stress sensor in the model
     In addition, all the experiment involved in the paper wre completed jointly by the author,Dr ZhangWei,and LiXiang master ,with the guidances of professor ZhangDongSheng and professor FangFang.
引文
[1]张玉军.覆岩破坏规律探测技术的发展综述及评价[ J].煤矿开采,2005,63( 2 ):10- 13.
    [2] SHEMYAKIN I,FISENKO G L,KURLENYA M V,et al. Zonal disintegration of rocks around underground workings. I. data of insituobservations[J]. Soviet Mining Science,1986,22(3):157–168.
    [3] SHEMYAKIN I,FISENKO G L,KURLENYA M V,et al. Zonal disintegration of rocks around underground workings. III. Theoretical notions[J]. Soviet Mining Science,1987,23(1):1–6.
    [4] ADAMS G D ,JAGER A J. Etroscopic observations of rock fracturing ahead of the stope faces in deep-level gold mines[J].Journal of the South Africa Institute of Mining and Metallurgy,1980,(2):115–127.
    [5]方祖烈.软岩巷道维护原理与控制措施[C]//何满潮编.中国煤矿软岩巷道支护理论与实践.北京:煤炭工业出版社,1996:64–70.
    [6]李术才,王汉鹏,钱七虎等.深部巷道围岩分区破裂化现象现场监测研究[J].岩石力学与工程学报,2008,27(8):1545-1553.
    [7]张玉军,李凤明.采动覆岩裂隙分布特征数字分析及网络模拟实现[J].煤矿开采,2009,14(5):4-7.
    [8]康永华,等.覆岩破坏的钻孔观测方法[J].煤炭科学技术,2002(12):26-28.
    [9]官云章,等.瞬变电磁成像技术在冒落带探测中的应用[A].世纪之交煤矿地质学术论文集[C].西安:西安地图出版社,1999,463-465.
    [10]于克君,骆循等.煤层顶板“两带”高度的微地震监测技术[J].煤田地质与勘探2002 (1):47-51.
    [11] Luo X,Hatherly P,Mckavanagh B.Microseismic monitoring of longwall caving processes at Gordonstone Mine[M].Advences in Rock Mechanics,Australia;World Scientific Publishing Co.Pty Ltd,1998:67-79
    [12]刘伟韬,武强,李献忠等.覆岩裂缝带发育高度的实测与数值仿真方法研究[J].煤炭工程,2005(11):55-58.
    [13]熊晓英,杜广森,李俊斌.注水实验法探测导水裂隙带高度[J].煤炭技术,2004,23(2):77-79.
    [14]朱德明,等.井下仰孔探测导水裂隙带技术方法试验[ J] .煤炭科学技术, 1991.
    [15]穆桃根.氡射气探测采空巷道的应用[J].太原科技,2005,11(6):60-61.
    [16]郭崇光,李敬宇,刘君.氡气测量在山西采空区探测中的应用[J].科技情报开发与经济,2003,14(1):180-181.
    [17]周雄华,王小群,刘华军,魏云杰.氡气测量在工程地质中的应用——以西南某水电站右坝肩稳定性研究为例[J].2004,20(1):45-50.
    [18]韩许恒,郁春霞.氡射气测量在西安地裂缝勘察中的应用研究[J].工程地质学报,1997,5(1):65-70.
    [19]张骏,高秀君,李侠等.霍州矿区隐伏断裂(带)活动性氡气测试成果解释分析[J].高原地震,2000,12(1):16-21.
    [20]孙东,王道永,王运生等.缅甸拉泰-其培河段恩梅开江断裂带氡气测量[J].水文地质工程地质,2010,37(4):107-109.
    [21]谷懿,葛良全,王广西等.汶川地震震后大成都地区断裂带活动性氡气测量分析评价[J].工程地质学报,2009,17(3):296-300.
    [22]邵永新,杨绪连,李一兵.海河隐伏活断层探测中土壤气氡和气汞测量及其结果[J] .地震地质,2007,29(3):627-635.
    [23]方方,贾文懿,周蓉生等.利用α测氡技术寻找地下水[J].物探化探计算技术,1996,增(18):103-105.
    [24]李奕霖,原观军,彭东等.油气化探异常预测油气藏埋藏深度探讨[J].物探化探计算技术,28(4):367-371.
    [25]刘菁华,王兴泰,田钢等.放射性氡气测量动态监测煤炭地下气化燃空区[J].物探与化探,2000,24(2):92-99.
    [26]王正辉,刘国忠,宋艮珠,张启禄.采用地面测氡法探测井下火区分布实践[J].矿业安全与环保,2010,37(6):59-62.
    [27]泰峰,安海忠,亢俊健等.煤田陷落柱氡气场的数值计算及空间形态分布特征[J].地球物理学报,2004,47(1):171-177.
    [28]刘玉德,沙基型浅埋煤层保水开采技术及其适用条件分类[D].中国矿业大学,2008.
    [29]黄庆享.浅埋煤层的矿压特征与浅埋煤层定义[J] .岩石力学与工程学报,2002,21(8):1174-1177.
    [30]翁望.鄂尔多斯盆地早白垩世原始地层厚度恢复及后期改造对矿产成矿(藏)的影响[D].西北大学,2005.
    [31]张镇.薄基岩浅埋采场上覆岩运动规律研究与应用[D].山东科技大学,2007.
    [32]杨起.中国西北煤层气地质与资源综合评价[M].北京:地质出版社,2005.
    [33]吴慧山,章晔.核技术勘查[M].北京:原子能出版社,1998.
    [34]吴慧山等编著.氡测量方法与应用[M].北京:原子能出版社,1995.
    [35]孙凯男.土壤氡析出率的研究[D].清华大学,2004.
    [36]高万林等编著.放射性水文地球化学找矿[M].北京:原子能出版社,1980.
    [37]程业勋,王南萍,侯胜利编著.核辐射场与放射性勘查[M].北京:地质出版社,2005.
    [38]梁子荣.煤升温氧化过程中含断层上覆岩层对氡迁移影响的研究[D].太原理工大学,2009.
    [39]章晔.放射性方法勘查[M].北京:原子能出版社,1990.
    [40]李学军.α探测技术及其在煤矿地质中的作用[J].煤田地质与勘探,1991,19(6):58-61.
    [41]王俊峰.煤地下自燃时覆岩中氡气运移规律及其应用研究[D].太原理工大学,2010.
    [42]王平,熊盛青.油气放射性勘查原理方法与应用[M].北京:地质出版社,1997.
    [43]钱鸣高,许家林.覆岩采动裂隙分布的“O”形圈特征研究[J].煤炭学报,1998,23(5):466~469.
    [44]李青海.石屹台煤矿浅埋较薄煤层开采覆岩运动规律研究[D].山东科技大学,2009.
    [45]李鸿昌.矿山压力的相似模拟试验[M].徐州:中国矿业大学出版社,1988.
    [46]林韵梅.实验岩石力学[M].北京:煤炭工业出版社,1984.
    [47]林海飞.采动裂隙椭抛带中瓦斯运移规律及其应用分析[D].西安科技大学, 2004.
    [48]王旭.冲沟发育矿区浅埋煤层采动坡体活动机理及其控制研究[D].中国矿业大学,2009.
    [49]李凤仪.浅埋煤层长璧开采矿压特点及其安全开采界限研究[D].辽宁工程技术大学,2007.
    [50]谢大平.浅埋煤层长壁开采顶板结构稳定性分析[D].西安科技大学,2008.
    [51]迟国铭.补连塔煤矿过32201工作面空巷的理论分析与计算[J].陕西煤炭, 2005,(4):14-15.
    [52]马立强,张东升,乔京利,王少义,王晔.浅埋煤层采动覆岩导水通道分布特征试验研究[J].辽宁工程技术大学学报(自然科学版),2008,27(5) :650.
    [53]宋根祥等.综采工作面基本顶来压步距的数值模拟研究[J].中州煤炭,2009,第10期:3-5.
    [54] http://zhidao.baidu.com/question/218965026.html.
    [55]缪协兴,陈荣华,白海波.保水开采隔水关键层的基本概念及力学分析[J].煤炭学报,32(6):561-562.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700