泥岩收缩裂缝发育规律与形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着勘探难度的增加,泥岩裂缝性油气藏等非常规油气藏越来越受到人们的重视(张金功,袁政文, 2002;曾联波,肖淑蓉, 1999;甘秀娥, 2003;丁文龙,张博闻等, 2003;杨涛, 2007;徐福刚,李琦等, 2003)。泥岩裂缝可分为构造裂缝和非构造裂缝,非构造裂缝是指由非构造因素诱发形成的与构造应力无关或间接有关的裂缝类型(郭璇,钟建华等, 2004;赵澄林, 2001;姜在兴, 2003)。
     现代泥质沉积物非构造裂缝主要包括水下收缩裂缝和干燥裂缝两种,国内外学者已经对其进行了卓有成效的探索和研究,然而多数只针对其中一种裂缝展开讨论,且定量化程度低,尚缺乏综合性、定量化的研究。本文以黄河三角洲古河道为研究工区,分别针对水下收缩裂缝、干燥裂缝和首次提出的混合成因裂缝,进行了定量分级、分形特征、生长特征和形成模式等方面的研究,建立了不同种类现代泥质沉积物非构造裂缝的定量描述和对比标准。另外针对安徽巢湖凤凰山剖面石炭系高骊山组泥岩非构造裂缝,分析了其形态特征及可能的成因类型。
     黄河口现代泥质沉积物非构造裂缝可分为:水下收缩裂缝、干裂和混合成因的裂缝。本文详述了各个工区不同类型裂缝的形态特征,并且认为在沉积相无明显变化的研究区内能够发育如此多种多样的裂缝类型,其根本原因与原上覆水体体积和深度有关。
     通过对各个工区发育完全的裂缝最高级基块面积采取统一的标准进行定量分级,得到面积分布情况:水下收缩裂缝的面积分布最集中,干裂缝面积分布最广,而混和成因裂缝介于两者之间。选择覆盖法计算了裂缝分维度,发现裂缝的分形维值从水下收缩裂缝到暴露阶段和干裂随着发育程度有逐渐变大的趋势。
     观测发现干燥裂缝与水下收缩裂缝有相似的平面生长特征。文章通过选择合适的裂缝阶段,分别针对新开裂的裂缝和方向发生改变的裂缝,测量和统计了裂缝开裂和变化的角度,建立了相应的裂缝生长角度模式。利用收缩圆这种非线性模式解释裂缝的平面生长特征。剖面上可由收缩圆引申为收缩体来解释水下收缩裂缝,但是这与干裂的V字型成因有着本质的不同。
     通过综合分析,分别探讨了干燥裂缝、水下收缩裂缝及混合成因裂缝的形成模式,建立了某些裂缝间的相互联系、转化的关系。总的规律可以概括为对于不同深度的水体,由深至浅会发育水下收缩裂缝到混合成因裂缝到干裂,随着季节的变化,已有的裂缝类型也会发生一定程度的转化。可以预测在复杂的条件下会有更多不同成因类型的裂缝出现。
     论文第二部分研究了安徽巢湖凤凰山剖面石炭系高骊山组泥岩非构造裂缝。通过对安徽巢湖凤凰山剖面高骊山组岩性、地层及沉积环境进行了充分的调研总结,并对发育在高骊山组中段上部紫红色泥岩中的泥岩非构造裂缝的成因进行了分析,通过与以往国内外文献中记载的裂缝和黄河三角洲泥岩非构造裂缝考察成果的对比,否定了高骊山组泥岩裂缝的暴露干燥成因、地震成因和重荷构造压裂成因,认为该裂缝形成于表层沉积物。
     虽然对现代泥质裂缝的空间展布有了较多的认识,但是各种边界条件对于裂缝的发生、发育的控制作用,仍然没有细致可靠的研究。在接下来的研究工作中,如果能够进行裂缝模拟实验,通过控制单因素、多因素变化来分析裂缝发生、发育规律,将会取得更好的成效。
Unconventional reservoirs such as fractured mudstone reservoirs are drawing more and more attentions with the increasing difficulty of exploration. Mudstone cracks can be further divided into tectonic cracks and non-tectonic cracks. Non tectonic cracks can be defined as cracks which are induced by non-tectonic factors.
     Modern cracks of mud sediments contain mainly two types: desiccation cracks and synaeresis cracks. Abundant and effective researches have been done on them, however, most of which concentrated on only one type of cracks and lacked quantitative and comprehensive researches. This essay studied contemporary non-tectonic cracks in mud sediment of delta plain at Yellow River Delta. Subaqueous shrinkage cracks, desiccation cracks and mixed origin cracks are studied in detail at the aspects of quantitative classification, fractal features, planar and sectional growth pattern and development models. This essay has established the quantitative characterization and comparison standards of different non-tectonic cracks in modern mud sediment. Moreover, the formation mechanisms are studied for non-tectonic cracks in Gaolishan Formation of Carboniferous in Fenghuangshan profile in the city of Chaohu, Anhui, China.
     Non-tectonic cracks at Yellow River Delta can be divided into three types: Subaqueous shrinkage cracks, desiccation cracks and mixed origin cracks. Characteristics of each crack type in each typical work area are described in detail. The occurrence of many different crack types in this study area without significant microfacies changes can be attributed to the various volume and depth of overlying water body.
     Quantitative classification of first-grade crack unit area is applied to all study areas under the same criteria. The distribution of areas of subaqueous shrinkage cracks is the most centralized; desiccation cracks unit areas have the largest area span; while the mixed origin cracks fall in between the first two. Fractal dimensions are calculated for each crack area by the overlapping method. It is found that the fractal dimension rises from subaqueous shrinkage cracks to desiccation.
     Similar planar growth patterns of all kinds of cracks are observed: New crack bifurcating and original crack orientation changing angles are measured and angle development modes are established. A theory of shrinkage circle is adopted to demonstrate crack growth pattern. In vertical section, shrinkage sphere is used to illustrate the structure of bottom-up subaqueous shrinkage cracks, whereas there is a distinct difference from the V-shaped top-down desiccation cracks.
     Development models are established respectively for all types of cracks, in which relationships of mutual transformation of certain crack types are shown. Generally, from deep to shallow areas, subaqueous shrinkage cracks, mixed origin cracks and desiccation cracks develop in sequence, and some of them can transform if affected by weather. It is possible that more types of mixed origin cracks appear under more complicated conditions.
     The second part of this essay focuses on the non-tectonic cracks in Gaolishan Formation of Carboniferous in Fenghuangshan profile in the city of Chaohu, Anhui, China. Lithology, strata, and sedimentary environment are summarized. Then formation mechanism of Gaolishan Formation cracks is studied by analogy of those in documentation and researched at Yellow River Delta. The causes of desiccation, earthquakes activities and burthen are denied respectively, and finally, it is suggested that the Gaolishan Formation cracks are formed at the sediment-water interface.
     Although there seem to be numerous studies on spatial distribution of non-tectonic mud shrinkage cracks, convincing theories of factors affecting crack development is still yet to be discovered. It is recommended more studies of crack simulation experiment on certain crack development factor(s) to be done in order to gain a better understanding of non-tectonic shrinkage cracks.
引文
[1]张金功,袁政文.泥质岩裂缝油气藏的成藏条件及资源潜力.石油与天然气地质, 2002, 23 (4) : 336-338
    [2]曾联波,肖淑蓉.低渗透储集层中的泥岩裂缝储集体.石油实验地质, 1999, 21 (3) : 267-230
    [3]甘秀娥.低孔低渗砂泥岩储层裂缝发育程度与产能关系.天然气工业, 2003, 23 (5) : 4144
    [4]丁文龙,张博闻,李泰明.古龙凹陷泥岩非构造裂缝的形成.石油与天然气地质, 2003, 24 (1) : 50-54
    [5]杨涛.泥岩超压释放深度和次数及其主要影响因素.大庆石油地质与开发, 2007,26(04):1-4
    [6]徐福刚,李琦,康仁华,等.沾化凹陷泥岩裂缝油气藏研究.矿物岩石, 2003, 23 (1) : 74-76
    [7]郭璇,钟建华,徐小林,等.非构造裂缝的发育特征及成因机制.石油大学学报(自然科学版), 2004,28(2):6-11
    [8]赵澄林.沉积学原理.北京:石油工业出版社, 2001
    [9]姜在兴.沉积学.北京:石油工业出版社, 2003
    [10]赵振宇,周瑶琪,马晓鸣.泥岩非构造裂缝与现代水下收缩裂缝相似性研究.西安石油大学学报(自然科学版), 2008,23(3):6-11
    [11]周瑶琪,赵振宇,马晓鸣,等.水下收缩裂隙沉积模式及定量化研究,沉积学报, 2006, 24 (5) : 672-679
    [12]赵振宇,周瑶琪,马晓鸣,等.水下收缩裂隙天然实验研究中获得的新认识.地质论评, 2007,53(3):306-318
    [13]吴泰然,何国琦,韩宝福.一种罕见的泥裂现象.科学通报, 1998,43 (17) : 1903-1904
    [14] V Y Chertkov, RavinaI. Morphology of horizontal cracks in swelling soils. Theoretical and Applied Fracture Mechanics, 1999, 31 : 19-29.
    [15] Hallet P D, Dexter A R , Seville J P K. Identification of preexisting cracks on soil fracture surfaces using dye. Soil & Tillage Research, 1995, 33 : 163-184.
    [16] B. Velde. Structure of surface cracks in soil and muds. Geoderma, 1999, 93: 101-124
    [17] Jeffrey S K, Joseph F S J, Charles P S. Mud cracks and dedolomitization in the Wittenoom Dolomite, Hamersley Group, Western Australia. Global and Planetary Change, 1996, 14 :73-96
    [18] Karmakar S, Kushwaha R L, Stilling D S D. Soil failure associated with crack propagation for an agricultural tillage tool. Soil & Tillage Research, 2005, 84 : 119-126.
    [19] Parker P Anthony. Stability of arrays of multiple edge cracks. Engineering Fracture Mechanics, 1999, 62: 577-591
    [20] A.J. Ringrose-Voase, W.B. Sanidad. A method for measuring the development of surface cracks in soils: application to crack development after lowland rice, 1996, 71: 245-261
    [21] H.-J. Vogel, H. Hoffmann, K. Roth. Studies of crack dynamics in clay soil I. Experimental methods, results, and morphological quantification. Geoderma, 2005, 125: 203-211
    [22] Kindle, E. M. Some factors affecting the development of mud-cracks. Jour. Geology. 1917. 25: 135-144
    [23] P. D. Hallett, A. R. Dexter, J. P. K. Seville. Identification of pre-existing cracks on soil fracture surfaces. Soil & Tillage Research. 1995. 33: 163-184
    [24] J. Stolte, C. J. Ritsema, A. P. J. de Roo. Effects of crust and cracks on simulated catchment discharge and soil loss. Journal of Hydrology. 1997. 195: 197-290
    [25] Adam C. Maloof, James B. Kellogg, Alison M. Anders. Neoproterozoic sand wedges: crack formation in frozen soils under diurnal forcing during a snowball Earth. Earth and Planetary Science Letters. 2002. 204:1-15
    [26] Martin J. Shipitalo, Visa Nuutinen, Kevin R. Butt. Interaction of earthworm burrows and cracks in a clayey, subsurface-drained, soil. Applied Soil Ecology. 2004. 26: 209-217
    [27] J.U. Baer, T.F. Kent, S.H. Anderson. Image analysis and fractal geometry to characterize soil desiccation cracks. Geoderma. 2009. 154: 153-163
    [28] Lanschenbruch, A. H. Mechanisms of thermal contraction cracks and ice-wedge polygons in permafrost. Geol. Soc. American Spec. 1962: 69-70
    [29] Anderson, J. J. and Everett, R. Mudcrack formation studied by timelapse photography. Geol. soc. America Spec. paper. 1964. 82: 4-5
    [30] Shrock, R. R. Rectangular mud cracks in Wisconsin Silurian dolomitic limestone. Trans. Wisconsin Acad. 1940. 32: 229-232
    [31] MacCarthy, G. B. Mud cracks on steeply inclined surfaces. Jour. Geology. 1922. 30:702
    [32] Hastenrath, S. Observations on the periglacial morphology of Mts. Kenya and Kilimanjiaro, East Africa. Z. Geomorph. suppl. 1973. 16: 161-179
    [33] Donovan, R. N. and Archer, R. Sedimentological consequences of a fall in the level Haweswater, Cumbria. Proc. Yorkshire Geol. Soc. 1975. 40: 547-562
    [34]周瑶琪,赵振宇,马晓鸣,冀国盛. 2006.水下收缩裂隙沉积模式及定量化研究.沉积学报, 24 (5) : 672-679
    [35] Minter, W. E. L. Origin of mud polygons that are concave downward. Jour. Sed. Petrology. 1970. 40: 755-756
    [36] Bradley, W. H. Factors that determine the curvature of mud-cracked layers. Am. Jour. Sci., Ser. 1933. 5(26) : 55-71
    [37] Ram Weinberger. Evolution of polygonal patterns in stratified mud during desiccation:The role of flaw distribution and layer boundaries. GSA Bulletin. 2001. 113(1): 20-31
    [38] Walker, J. Cracks in a surface look intricately random but actually develop rather systematically. Scientific American, December. 1986. 178-183
    [39] Müller, G. Starch columns: Analog model for basalt Columns. Journal of Geophysical Research. 1998. 103: 15239-15253
    [40] Groisman, A. and Kaplan, E. An experimental study of cracking induced by desiccation. Europhysics Letters, 1994. 25: 415-420
    [41] Corte, A. E.and Higashi, A. Experimental research on desiccation cracks in soil. US Army Snow, Ice and Permafrost Research Establishment Report. 1960. 66:48
    [42] Kindle, E. M. and Cole, L. H. Some mud crack experiments. Geol. Meere Binneng. 1938. 2: 278-283
    [43] Dow, D. B. The effect of salinity on the formation of mudcracks. Compass of Sigma Gamma Epsilon. 1964. 41: 162-166
    [44] Baria, L. R. Desiccation features and the reconstruction of paleosalinities. Jour. Sed. Petrology. 1974. 47: 908-914
    [45] Harris, S. A. The gilgaied and bad-structured soils of Central Iraq. Jour. Soil Sci. 1958. 9: 169-185
    [46] Jüngst, H. Zur geologischen Bedeutung der Synarese. Geol Rundschau. 1934. 15: 312-325
    [47] Wheeler, H. E. and Quinlan, J. J. Per-Cambrian sinuous mud cracks from Idaho and Montana. Jour. Sed. Petrology. 1951. 21: 141-146
    [48] Fenton, C. L. and Fenton, M. A. Belt series of the north stratigraphy, sedimentation, paleontology. Geol. soc. American Bull. 1937. 48: 1873-1969
    [49] Donovan, R. N. and Foster, R. J. Subaqueous shrinkage cracks from the Caithness Flagstone series (Middle Devonian) of Northeast Scoland. Jour. Sed. Petrolgy. 1972.42: 309-317
    [50] Richter, R. Risse durch Innesscrumpfung und Risse durch Luftrochnung. Senchenberg. 1941. 23: 165-167
    [51] Shrock, R. R. Rectangular mud cracks in Wisconsin Silurian dolomitic limestone. Trans. Wisconsin Acad. Sci. , Arts, Letters. 1940. 32: 29-232
    [52] Rich, J. L. There critical environments of deposition, and criteria for recongnition of rocks deposited in each of them. Geol. Soc. American Bull. 1951. 62: 1-20
    [53] Glaessner, M. F. Trace fossils from the precambrian and basal Carnbrian. Lethaia. 1969. 2: 369-393
    [54] Kuenen, PH. H. Value of experiments in geology. Geologie en Mijinbouw. 1965. 44: 22-36
    [55] Glaessner, M. F. Trace fossils from the Precambrian and basal Cambrian. Lethaia. 1969. 2: 369-393
    [56] Plummer, P. S. The upper Brachina Subgroup. A Late Precambrian intertidal deltaic andsandflat sequence in the Flinders Ranges, South Australia [Unpub. Ph. D. thesis]. Univ. Adel. 1978
    [57] Kuenen, PH. H. Significant features of graded bedding. Am. Assoc. Petroleum Geologists Bull. 1953. 37: 1044-1066
    [58] Wilde, V., 1990. Ril3strukturen in Ablagerungen der Wealden-Fazies (Unterkreide, Berrias) im Bereich der Rehburger Berge (Niedersachsen, NW-Deutschland). Neues Jahrb. Geol. Paliontol.Abh. 181,225-239
    [59] Picard, M.D., 1966. Oriented, linear-shrinkage cracks in Green River Formation (Eocene), Raven Ridge area, Uinta Basin, Utah. J. Sediment. Petrol. 36, 1050-1057
    [60] Plummer, RS., Gostin, V.A., 1981. Shrinkage cracks: desiccation or synaeresis. J. Sediment. Petrol. 51, 1147-1156.
    [61] Snavely, RD., Pearl, J.E., 1979. Clastic dykes: a key to Tertiary regional stress fields in the Northwest Olympic Peninsula. U.S. Geol. Surv. Prof. Pap. 1150-1237
    [62]赵振宇,周瑶琪,马晓鸣,等.水下收缩裂隙形成过程及裂缝充填模式研究[J].地学前缘, 2007, 14(4): 215-221
    [63] Armstrong A C, Matthews A M , Portwood A M . 2000. Crack-up: a pesticide leaching model for cracking clay soils [J]. Agricultural Water Management, 44: 183-199
    [64] Adam C M, James B K, Alison M Anders. 2002. Neoproterozoic sand wedges: crack formation in frozen soils under diurnal forcing during a snowball Earth [J]. Earth and Planetary Science Letters, 204: 1-15
    [65] Hallet P D, Dexter A R , Seville J P K . 1995. Identification of pre-existing cracks on soil fracture surfaces using dye [J]. Soil & Tillage Research, 33: 163-184
    [66] Shuichiro Yoshida, Kazuhide Adachi. 2004. Numerical analysis of crack generation in saturated deformable soil under row-planted vegetation [J]. Geoderma, 120: 63-74
    [67] Velde B . 1999. Structure of surface cracks in soil and muds [J]. Geoderma, 93: 101-104
    [68] Vogel H , Hoffmann J H , Roth K . 2005. Studies of crack dynamics in clay soil:Ⅰ. Experimental methods, results, and morphological quantification [J]. Geoderma, 125: 203-211
    [69] Silva, A.J., Jordan, S.A., 1984. Consolidation properties and stress history of some deep sea sediments. In: Denness, B. (Ed.), Seabed Mechanics. Graham and Trotman, London, pp. 25-39
    [70] Eslinger. E.V., Sellars, B., 1981. Evidence for the formation of illite from smectite during burial metamorphism in the Belt Supergroup, Clark Fork, Idaho. J. Sediment. Petrol. 51, 203-216
    [71] Winston, D., 1986. Sedimentation and tectonics of the Middle Proterozoic Belt Basin and their influence on Phanerozoic compression and extension in western Montana and northern Idaho. In: Peterson, J.A. (Ed.), Paleotectonics and Sedimentation in the Rocky Mountain Region, United States. Am. Assoc. Pet. Geol. Mem. 41, 87-118
    [72] White, W. A. Colloid phenomena in sedimentation of argillaceous rocks. Jour. Sed. Petrology. 1961. 31: 560-570
    [73] Dangeard, L. Migniot, C. Larsonneur, C. and Baudet, P. Figures et structures observees au cours dutassement des vases sous I eau. C. R. Acad. Sci. Paris. 1964. 258: 5935-5938
    [74] Burst, J. F. Subaqueously formed shrinkage cracks in clay. Jour. Sed. Petrology. 1965. 35: 348-353
    [75] Van Straaten, L. M. J. U. Composition and structure of recent marine sediments in the Netherlands. Leidse Geol. Meded. 1954. 19: 1-110
    [76]张晓龙,李培英.现代黄河三角洲的海岸侵蚀及其环境影响.海洋环境科学, 2008,27(5):475-479
    [77] Carl N .Drummond, Damon N, Sexton, Yang Minghui, Tian Yudong Translated. Fractal texture of suture. World Geology, 1999, 18(3):29-31
    [78]易顺民.膨胀土裂隙结构的分形特征及其意义.岩土工程学报, 1999, 21(3) : 294-298
    [79]李玮,闫铁,毕雪亮.基于分形方法的水力压裂裂缝起裂扩展机理.中国石油大学学报(自然科学版), 2008,32(5):87-91
    [80]王自明,宋文杰,戴勇,等.利用分形模拟建立裂缝型碳酸盐岩储层渗透率变异函数.天然气工业. 2007,27(11):73-77
    [81] Horgan G W, Young I M. An empirical stochastic model for the geometry of twodimensional crack growth in soil. Geodema, 2000, 96: 263-276
    [82]侯明金,齐敦伦,金义祥.安徽巢湖凤凰山石炭纪岩石特征及沉积环境分析.安徽地质. 1998. 8(3): 30-3
    [83]李双应,金福全.安徽巢北石炭系的成岩作用.石油实验地质.1996.18(4):393-401
    [84]钱峥,李淳,马在平.安徽巢北地区下石炭统高骊山组风暴沉积.石油大学学报(自然科学版). 1996. 20(5): 8-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700