典型微合金化钢板坯角部横裂纹产生机理与倒角结晶器技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以典型铌、钒、钛微合金化钢为研究对象,通过理论和试验研究分析了板坯表面角横裂的形成机理,建立了常规和带倒角结晶器内的流体流动、传热和宏观凝固以及矫直过程应力应变的数学模型,分析了常规和带倒角结晶器下板坯的凝固过程及其不同角部形状(包括倒角角度及倒角长度的变化)对铸坯角部钢水流动、温度变化、凝固过程和应力应变的相对影响。在此基础上,优化设计了倒角结晶器结构,采用带倒角的结晶器窄边铜板进行了工业试验,并考察了带倒角连铸坯对典型微合金化钢边部质量的影响。主要研究结果如下:
     (1)卧坯试验结果表明,结晶器内及垂直段铸坯角部无裂纹。在距弯月面3270mm处,即对应于弯曲开始后710mm铸坯即开始出现多处外弧横裂纹,因此外弧裂纹是弯曲过程产生的。
     (2)结晶器内的流体流动、传热和宏观凝固的数学模型分析表明,铸坯倒角形状的变化并不明显影响浸入式水口附近的总体流动模式。倒角形状的改变明显影响了弯月面位置处角部的流动分布,随着倒角角度的增加,弯月面角部的流动分离位置更靠近于铸坯的侧面,而且在铸坯宽面与窄面相交的角部附近的流动明显增强,流动对铸坯角部的冲击增加。随着倒角长度的增加,弯月面角部的流股对铸坯窄边的倒角部位冲击增加。在结晶器出口位置,随着倒角角度的增加,铸坯角部的表面温度近似呈线性增加,但是铸坯宽面与窄面的角部附近的流动增强。就不同倒角长度设计而言,较小的倒角长度如L=10mm就能将角部温度提高约102℃,随着倒角长度的增加,铸坯角部温度的提高幅值降低,当倒角长度从L=60mm增加到L=80mm时,铸坯角部的温度值提高幅度仅为26℃,而流动对铸坯倒角部位的冲击则明显增加,坯壳厚度变薄。因此,在优化结晶器倒角设计时,需要考虑铸坯倒角角度和倒角长度尺寸的改变对角部钢水流动、温度分布和凝固坯壳增长的综合影响。
     (3)矫直过程应力应变有限元模拟分析结果表明,当矫直(压下)速度一定时,铸坯温度的变化(700℃~1000℃)对铸坯截面切向等效应力应变影响比较小,但对等效应力影响比较大。最大的等效应力的位置发生在倒角斜面内,距角部约15mm~33mm。当矫直温度在900℃以上时,斜面内最大等效应力范围大幅下降。倒角角度对铸坯棱角部位切向应力应变影响很大,在等倒角长度条件下,30o和45o倒角铸坯棱角部位切向应力应变相对最小,只有同截面直角铸坯的40%~46%。不同倒角长度对铸坯棱角部位切向应力应变影响很大,在等铸坯角部倒角( 30o)一定条件下,当倒角长度控制在65mm~85mm之间时,铸坯棱角部位切向应力应变相对最小,当倒角长度为75mm时,铸坯棱角部位切向等效应变只有同截面常规铸坯的40%。
     (4)工业试验结果表明,倒角结晶器窄面铜板可用于首钢京唐公司板坯的规模化生产,其对液位波动、拉坯阻力没有明显的影响,在铸机矫直位置,大倒角的铸坯角部温度相比常规铸坯提高了100℃左右,提高了矫直段铸坯的高温延展性,有利于控制微合金钢板坯角横裂的发生;倒角结晶器在生产Q345B钢以及X65、L290等微合金钢板坯时,铸坯角横裂发生率得到了大幅度的降低,比现有技术降低了80%以上。
The formation mechanism of slab transverse corner cracks in typical niobium, vanadium, titanium micro-alloyed steels was investigated by the theoretical models and industrial experimental trials. The chamfered mold, which is used to minimize the cracks, was developed. A numerical simulation of the fluid flow, heat transfer and macro-solidification in the conventional mold and the chamfered mold, together with a finite element stress-strain model in the straightening process of both molds, were performed to analyze the relative influence of the conventional model and chamfered mold with different chamfer shapes (including the chamfer angle and the chamfer length) on the fluid flow, temperature distribution and solidification, and the stress and strain in the slab corner. Then the mould copper plate with an optimum chamfer shape is designed on the basis of the numerical results and is applied in industrial tests. The effect of the chamfered mold on the slab corner quality of the typical micro-alloyed steels is analyzed. The following conclusion can be drawn:
     (1) The results from the“lying slab”experiment show that there is no crack in the mold and the vertical segment below the mold. However, at the location of 3270mm from the meniscus, where the slab bending starts after the 710mm from the vertical segment, the transverse corner cracks frequently occur in the outside curved surface of the slab. Therefore, the cracks are formed in the slab bending process.
     (2) The predicted results from numerical simulation of fluid flow, heat transfer and macro-solidification in the conventional mold and the chamfered mold show that the variations of the chamfer shapes don’t significantly affect the overall flow pattern near the SEN in both molds, but change the flow features near the meniscus corner. With the increase of the chamfer angle, the flow separation location near the meniscus corner is closer to the narrow face of the slab. The fluid flow near the intersection of the width face and narrow face and its impingement on the slab corner are also stronger. With the increase of the chamfer length, it is found that the flow near the corner becomes intensive. At the mold exit, the increased chamfer angle leads to an approximately linear increase of the slab surface temperature, but it also causes the strong flow near the corner. As far as the chamfer length is concerned, very small length (e.g. L=10mm) can lead to the significant increase of the temperature near the slab corner. As the chamfer length increases fromL=60mmto L=80mm, the temperature of the slab corner increased slightly while the flow near the chamfered corner of the slab obviously enhances and the thickness of solidified shell becomes thinner. Therefore, in order to optimize the design of the chamfer angle and length, it is necessary to comprehensively consider their effects on the flow, heat transfer and solidification on the slab corner.
     (3) The calculated results from the finite element stress-strain analysis in the straightening process show that when the straightening (pressing) velocity is constant, the slab temperature (700℃~1000℃) has little effect on the equivalent stress and strain on the cross sections in the slab. Equivalent stress are concentrated within the incline position in the chamfer, from the corner about 15mm~33mm; When the straightening temperature is above 900℃, the range of maximum equivalent stress within the sloped drops significantly, which reduces the possibility of occurrence of cracks. The chamfer angle has great impact on the tangential stress-strain near the slab edges and corners. At the same slope width,if the chamfer angle are chosen as 30o and 45o , the tangential stress-strain on the slab edges and the corners is least, only 40% to 46% of rectangular slabs with the same cross-sectional area. The chamfer angle of 30°is better than 45°. Chamfer length on the part of the slab edges and corners have great impact on the tangential stress-strain. If chamfer angle(30°) on the part of the slab corners were constant, when the chamfer length is controlled between 65mm~85mm, the tangential stress-strain on the part of the slab edges and corners were least. It is only 40% of conventional slabs with the same cross-sectional area if the slop width is 75mm.
     (4) Industrial test results show that the copper narrow plate with the chamfer shape can be used for Shougang Jingtang's slab production. It hasn’t significant effect on the level fluctuations and mold withdrawal resistance. The service life of the mold plate is up to 236 furnaces. The slab corner temperature in the chamfered mold with the large chamfer increases by about 100℃, compared to the conventional molds. This increase corner temperature improves the high-temperature ductility of the slabs in the top bending section and the straightening section, and thus it is helpful for controlling of the transverse corner crack in the micro-alloy steel slabs. Using the chamfered mold for the production of X65, L290, SPA-H and other micro-alloy steel slabs, the slab transverse corner cracks have been reduced significantly, about 80% or more in comparison with those in the conventional mold.
引文
[1]东涛.近10年国外低合金高强度钢的新进展[J].国外低合金钢、合金钢, 1993, 13:6-14.
    [2]侯晶,王飞,赵国英,等.微合金钢的研究现状及发展趋势[J].材料导报, 2007, 21(6):91-95.
    [3]东涛,刘嘉禾.我国低合金钢及微合金钢的发展、问题及方向[J].钢铁, 2000, 35(11): 71-75.
    [4]王仪康.微合金钢回顾与展望[J].中国工程科学, 2000, 2(2):77-82.
    [5]东涛,曹铁柱.中国铌微合金化钢发展方向[J].钢铁, 2002, 37(7):68-72.
    [6]马范军,文光华,唐萍,等.含铌、钒、钛微合金钢连铸坯角部横裂纹研究现状[J].材料导报, 2010, 24(3):89-95
    [7]蔡开科.连铸技术的进展(一) [J].炼钢, 2001, 17(1):7-9.
    [8]蔡开科,程士富.连续铸钢原理与工艺[M].北京:冶金工业出版社, 2005:263-266.
    [9]贺景春,陈建军,梁志刚.连铸坯裂纹主要影响因素及对策研究[J].包钢科技, 2004, 30(5):8-9.
    [10] B. Mintz. The influence of composition on the hot ductility of steels and to the problem of transverse cracking[J]. ISIJ International,1999,39(9):833-835.
    [11] H. G. Suzuki,S. Nishimura,S.Yamaguchi. Characteristics of embrittlement in steels above 600℃[J]. Tetsu-to-Hagane,l979,65(14):2038-2040.
    [12] H. G. Suzuki, S. Nishimura,J.Imamura,et a1. Hot ductility in steels in the temperature range between 900 and 600℃[J]. Tetsu-to-Hagane,1981,67(8):1180-1182.
    [13] Y.J. Oh, S.Y.Lee, J.S.Byun,et a1. Non-metallic inclusions and acicular ferrite in low carbon steel[J]. Materials Transactions,2000,41(12):1663-1665.
    [14] H. H. Jin, J. H. Shim,Y. W. Cho,et a1. Formation of intra-granular acicular ferrite grains in a Ti-containing low carbon steel[J]. ISIJ International,2003,43(7): 1111-1114.
    [15] T. Kato, Y. Ito, M. Kawamoto,et a1. Prevention of slab surface transverse cracking by microstructure control[J]. ISU International,2003,43(11):1742-1745.
    [16] N. Baba, K.Ohta,et a1. Prevention of slab surface transverse cracking at Kashima No. 2caster with surface structure control cooling(SSC)[J].Revue de Metallurgy,2006,103(4):158-161.
    [17] H. T. Tsai, H. Yin, M. Lowry,S. Morales. Analysis of transverse corner cracks on slabs and countermeasures[J]. AISTechnology 2005 proceedings-volume II,2005:201-208.
    [18] N.A.McPherson,R.E.Mercer. BSC Ravenscraig工厂的板坯连铸[J].钢铁冶炼, 1980: 167-179.
    [19]温良英,张健,陈登福,董凌燕.低合金高强度钢连铸二冷制度优化及试验[J].重庆大学学报, 2008, 9(31):1008-1011.
    [20]陈永,杨素波,朱苗勇.攀钢低合金钢板坯角横裂缺陷的控制技术[J].钢铁钒钛, 2009, 29(3): 55-62.
    [21]马福昌,刘永龙,宋瑞甫,郑京辉. Nb、V、Ti微合金元素对连铸坯表面质量的影响[J].宽厚板, 2003, 9(4): 14-18.
    [22]刘永龙,李全刚,吕建会,车金锋. Nb微合金化钢的连铸工艺研究[J].宽厚板, 2002, 8(4):13-15.
    [23]李文兴,冯捷,翟晓毅. Nb微合金化高强度船板钢的生产实践[J].中国冶金, 2005, 15(9): 23-25.
    [24]苏东,庄汉洲,高吉祥,等. EAF-CSP流程Nb微合金化管线钢的连铸工艺研究[J].河南冶金, 2006, 14(9)增刊: 74-77.
    [25]王新华,王文军,刘新宇,等.减少含铌、钒、钛微合金化钢连铸板坯角横裂纹的研究[J].钢铁, 1998, 33(1):22-25.
    [26]黄海,吴德润.梅钢微合金钢板坯角裂的形成机理和控制措施[J].现代冶金, 2009, 37(1):39-42.
    [27] W.T.Lankford. Some considerations of strength and ductility in the continuous casting process[J]. Metallurgical Transaction1972,6,3: 1331-1356.
    [28] Hirowo G. Suzuki, Satoshi Nishimura, Jun Imamura, Yasushi Nakamura. Embrittlement of SteelsOccurring in The Temperature Range from 1000 to 600℃[J]. Transactions ISIJ, 1984,24:169-177.
    [29] Hirow G. Suzuki, Satoshi Nishimura,Yasushi Nakamura. Improvement of Hot Ductility of Continuously Cast Carbon Steels[J]. Transactions ISIJ, 1984,24:54-59.
    [30] Manfred M.Wolf.现代连铸理论与实践[M].中国金属学会连续铸钢学会,1987:315-320.
    [31] Manfred M.Wolf. Estimation of crack susceptibility for New Steel Grades[J]. Proceedings 1st European Conference on Continuous Casting, Volume 2,AIM,Florence,Italy,1991: 2489-2499.
    [32] B. MInternationalz,S.Yue,J.J.Jonas. Hot Ductility of Steels and Its Relationship to the Problem of Transverse Cracking during Continuous Casting[J]. InternationalMaterial Revue, 1991,36(5):187-196.
    [33] B.MInternationalz, S.Yue. The Hot Tensile Test for Assessing the Likelihood of Transverse Cracking During Continuous Casting of Steel[J]. 34th Mechanical Working and Steel Processing Conference,1992:391-398.
    [34] B.MInternationalz. Hot ductility of directly cast C-Mn-Nb-Al steel[J]. Materials Science and Technology. 1986,2:589-594.
    [35]殷碧群,杨菊娣,解宝荣,等.铌钒钛微合金钢连铸坯表面裂纹[J].钢铁钒钛, 1991, 1:39-45.
    [36] S.Tanaka,etal. Formation mechanism of surface cracks along the oscillation mark[J]. Transaction.ISIJ,1981,B350-351.
    [37] W.T.Lankford. Some considerations of strength and ductility in the continuous casting process [J]. Metallurgical Transactions,1972,6,3:1331-1356.
    [38] G. A.Wilber et al. The effects of thermal history and composition on the hot ductility of low carbon steels[J]. Metallurgical Transactions, 1975,6A:1727-1735.
    [39] Y.Yasumoto, et al. Effects of Sulphur on the hot ductility of low carbon steel austenite[J].Material Science and Technology,1985,1:111-116.
    [40] E.T.Turkdogan. Causes and Effects of Nitride and Carbonitride Precipitation in HSLA steels in Relation withContinuous Casting[J]. Steelmaking Conference proceedings(AIM E),1987,70:399-416.
    [41] J.R.Wilcox, R.W.K.Honeycombe. Hot ductility of Nb and Al microalloyed steels following high temperature solution treatment[J]. Metallurgical Technology,1984,11:217-225.
    [42] B.MInternationalz. The influence of composition on the hot ductility of steels and to the problem of transverse cracking[J]. ISIJ International,1999,39:833-855.
    [43] Y.Maehara et al. Surface cracking mechanism of continuously cast low carbon low alloy steel slabs[J]. Materials Science and Technology,1990,6:793-806.
    [44] B.MInternationalz. Hot-ductility behaviour of C-Mn-Nb-Al steels and its relationship to crack propagation during the straightening of continuously cast strand[J]. Materials Technology,1979,6:24-32.
    [45] C.Ouchi, K.Matsumoto. Hot ductility in Nb-bearing high strength low-alloy steels[J]. Transactions ISIJ,1982,22:181-189.
    [46] N.Baunenberg, et al. Procedures for successful continuous casting of steel microalloyed with Nb,V,Ti and N[J]. Microalloying, 1995, 95:83-94
    [47] D.N.Crowther, M.J.W. Green, P.S. Mitchell. The influence of composition on the hot cracking susceptibility during casting of microalloyed and steels processed to simulate thin slab casting conditions[J]. Microalloying in steels,Materials Science Forum,1998, 284-286: 469-476.
    [48] N.E. Haunerz. Critical hot plasticity and transverse cracking in continuous slab casting with particular reference to composition[J]. Transactions ISIJ,1985,25: 149-158.
    [49] B.Patrick,V.Ludlow. Development of casting practices to minimise transverse cracking in microalloyed steels[J]. Revue.Metallurgy,1994,91:1081-1089.
    [50] T.H.Coleman, J.R.Wilcox. Transverse cracking in continuously cast HSLA slabs-Influence of composition[J]. Materials Science and Technology,1985,1:80-83.
    [51] B.MInternationalz,R.Abushosa. Influence of Vanadium on hot ductility of steel[J]. Ironmaking and Steelmaking,1993,20:445-452.
    [52] B.MInternationalz, J.M.Arrowsmith. Influence of microalloying additions on hot ductility of steels[J]. Hot Working and Forming Processes. The Metals Society,1980,99-103.
    [53] J.Y. Fu,et al. Hot ductility of continuously cast microalloyed steels[J]. ProcessingMicrostructure and Properties of High Strength,Low Alloy Steels. Pittsburgh,1987:27-38.
    [54] E. Schmidtmann, M.Merz. Effect of cooling conditions and strain rate on high temperature properties of structural steels in continuous casting[J]. Steel Research,1987,58:191-196.
    [55] L.P.Karjalainen, H.Kinnunen,D.Porter. Hot ductility of certain microalloyed steels under simulated continuous casting conditions.Microalloying in Steels[J]. Materials Science Forum,1998,284-286:477-483.
    [56] J.R.Wilcox,R.W.K.Honeycombe. Hot ductility of Nb and Al microalloyed steels followinghigh temperature solution treatment[J]. Metallurgical Technology,1984,11:217-225.
    [57] G.Benard. Study of susceptibility to cracking of continuously cast steels using hot ductility tests[J]. Revue.Metallurgy,1978,75:467-480.
    [58] R.Abushosa,Vipond, B.MInternationalz. Influence of Sulphue and Niobium on hot ductility of as cast steels[J]. Materials Science and Technology,1991,7:1101-1107.
    [59] Zhen L,Zhongtao,W.Baorong. Effect of Niobium on hot ductility of low C-Mn-Steel under continuous casting simulation conditions[J]. Steel Research,1990,61:620-623.
    [60] P.Sricharoenchai,C.Nagasaki,J.Kihara. Hot ductility of high purity steels containing Niobium[J]. ISIJ International.1991,32:1102-1109.
    [61] H.G.Suzuki, S.Nishimura, S.Yamaguchi. Characteristics of hot ductility in steels Subjected to melting and solidification[J]. Trans.ISIJ,1982,22:48-56.
    [62] R.Abushosa,R.Vipond,B.MInternationalz. Influence of Titanium on the hot ductility of as-cast steels[J]. Materials Science and Technology,1991,7:613-621.
    [63] B.MInternationalz, J.R.Wilcox, D.N.Crowther. Hot ductility of directly cast steels[J]. Materials Science and Technology,1986,2:589-594.
    [64]李鸿美,曹建春,孙力军,等.含铌微合金钢碳氮化物析出行为研究的现状及发展[J].材料导报, 2010, 24(9):84-87.
    [65] B.MInternationalz, R.Abushosa. The hot ductility of V,Nb/V and Nb containing steels[J]. Microalloying in Steels,Materials Science Forum,1998, 284-286: 461-468.
    [66] O.Commineli, R.Abushosa,B.MInternationalz. Influence of Titanium and Nitrogen on hot ductility of C-Mn-Nb-Al steels[J]. Materials Science and Technology,1999,15:1058-1068.
    [67] B.MInternationalz, S.Yue. The hot tensile test for assessing the likelihood of transverse cracking during continuous casting of steel[C]. 34th Mechanical Working and Steel Processing Conference,1992:391-398.
    [68] B.MInternationalz, J.M.Stewart, D.N.Crowther. Effect of period temparature fluctuation on hot ductility and precipitation of C-Mn-Nb-Al steel[J]. Transaction Iron Steel Institution Japanese, 1987,27:366.
    [69]林建农,马富昌,赵向政.微合金化钢连铸坯高温延塑性研究[J].宽厚板, 2006, 12(5):21-24.
    [70]邓深.柳钢含铌钛及铌钒钛钢坯热塑性能研究[J].柳钢科技, 2010, 3: 17-20.
    [71] B.MInternationalz, R.Abushosha. Simulation on Hot Workability of Steels and Light-composites[M]. Edited by McQueen,Koopleva and Ryan, Metal Society of CIM. Montreal, 1996:399-410.
    [72] L.P. Karjailen, H.Kinnunen, D.Porter. Microalloying in Steels[M]. Edited by J. M. Rodriguez-lbabe, I. Gutierrez and B. Lopez,Transaction Technology Publications, Switzerland, 1998:477-483.
    [73] B. MInternationalz. R. Abushosha. S. Y. Ayyad, et al. Cardoso: HSLA'95. Process of the Conference on HSLA steels. China Science and Technology Press, China, 1995:342-345.
    [74] E.T.Turkdogan. AIMESteelmaking Conference Process. WarrendaleP.A,1987, 70:399-401.
    [75] R. Abushosha. S. Ayyad,B. MInternationalz. Material Science Technology, 1998,14: 346-354.
    [76] Y. Maehara, K. Nakai, K. Yasumoto,T. Hishima. Transactions Iron Steel Institution Jpn.1998,28:1021-1023.
    [77]赵沛,王新华.宝钢(GR)SS41连铸坯角横裂成因的研究[J].钢铁, 1996,31(2):21-24.
    [78]蔡开科,党紫九.连铸钢高温力学性能研究专辑[M].北京科技大学学报, 1993,15 (2):3-14.
    [79]彭胜堂,李国彬,程方武等.中厚板和连铸坯表面裂纹研究[J].钢铁, 2004,39(9): 342-345.
    [80]常桂华,吕志升,曹东,等.微合金化钢连铸板坯角横裂纹的影响因素[J].鞍钢技术, 2006, 6: 25-28.
    [81] B.Patrick. Development of Casting Practices to Minimise Transverse Cracking in Microalloyed Steels[J]. La Revue de Metallurgy. July-August 1994: 1081-1089.
    [82]王新华.张立等.含Nb、V、Ti钢连铸坯中碳、氮化物的析出及钢的高温塑性[J],钢铁, 1998, 10(6): 32-36.
    [83]何天科,谢永中. Q235(G)连铸坯角部横裂纹的影响因素及对策[J].连铸, 2002,4: 33-35.
    [84]吴薇.化学成分对连铸板坯横裂纹形成的影响[J].上海金属, 2004, 26(1):50-54.
    [85]杨海林,陈耀辉. 1900mm连铸板坯表面横裂纹成因的分析[J].特殊钢, 2003, 24(3):54-55.
    [86]许暿,吴国庆.浦钢连铸大板坯表面横裂成因及对策分析[J].上海金属, 2000, 22(1):26-30.
    [87]职建军.宝钢连铸板坯角横裂缺陷的改善[J].钢铁, 2001, 36(1):22-24.
    [88]庄万锦.攀钢连铸坯角横裂缺陷产生的原因与对策[J].四川冶金, 2004, 2: 14-17.
    [89]王新华,赵沛.中碳亚包晶成分钢连铸坯角横裂的防止对策[J].北京科技大学学报, 1995, 17(4):331-335.
    [90]王立来.减少厚板坯表面横裂纹的研究[J].鞍钢技术, 2004, 5: 13-16.
    [91]陈宏豫,岳尔斌.钢中Al含量对16Mn系列板坯表面裂纹的影响[J].连铸, 2006, 6:31-32.
    [92] R. Abushosha. Influence of Titanium on Hot Ductility of As Cast Steels[J]. Materials Science and Technology, 1991,7:613-621.
    [93] J. Brimacombe,K. Sorimachi. Crack Formation in the Continuous Casting of Steel[J]. Metallurgical Transactions B, 1977, 8B: 489-505.
    [94] N.A.McPherson,A.McLean. Continuous Casting/Transverse Cracking in Continuously Cast Products[J]. Iron and Steel Society of AIME,eds.Continuous Casting.Varrendale:Iron and Steel Society of AIME,1997, 8:65-68.
    [95] M.M.Wolf. Continuous Casting/Initial Solidification and Strand Surface Quality of Peritectic Steels[J]. Iron and Steel Society of AIME,eds.Continuous Casting.Varrendale:Iron and Steel Society of AIME,1997, 9:69-72.
    [96] E. S. Szekeres. A Review of Strand Casting Factors Affecting Transverse Cracking[C]. Sixth Internationalernational Conference on Clean Steel, Balatonfüred, Hungary, June10-12, 2002:324-338.
    [97] N.A.McPherson,R.E.Mercer. Continuous Casting of Slabs at BSC Ravenscraig Works[J]. Ironmaking and Steelmaking, 1980, 4: 167-179.
    [98] S. Harada, et al. A Formation Mechanism of Transverse Cracks on CC Slab Surface[J]. ISIJ International, 1990, 30(4):310-316.
    [99] H. Yasunaka, et al. Improvement of Transverse Corner Cracks in Continuously Cast Hypoperitectic Slabs[J]. Tetsu to Hagane, 1995,81(9): 26-31.
    [100] C. Cicutti, et al. Transverse Corner crack Formation in Continuously Cast Slabs[C]. 1997 Steelmaking Conference Proceedings, 1997:365-371.
    [101] B. Patrick,V.Ludlow. Development of casting practices to minimise transverse cracking in microalloyed steels[J]. La Revue de metallurgie-CIT Juillet-Aout, 1994:1081-1089.
    [102]斋藤忠,张红兵,邓志贤.连铸板坯表面裂纹的改善[J].重特技术, 1991, 3:47-52.
    [103] T. Nakano, M. Fuji, K. Nagano, S. Mizoguchi. T. Yamamotoand K. Asano. Influence of the Molten Powder Pool on the Longitudinal Surface Cracks in Continuously Cast Steel Slabs[J]. Tetsu-to-Hagané, 1981, 67(8): 1210-1219.
    [104] H. Nakato. M. Ozawa, K. Kinoshita, H. Habuand T.Emi. Factors Affecting the Formation of Shell and Longitudinal Cracks in Mold during High Speed Continuous Casting of Slabs[J]. Tetsu-to-Hagané, 1981, 67(8): 1200-1209.
    [105] H. T. Tsai, H. Yin, M. Lowry,S. Morales. Analysis of transverse corner cracks on slabs and countermeasures[C]. AISTech 2005 proceedings-volume II, 2005:201-208.
    [106] J. Nieto,H. T. Tsai. Continuous Improvement of Casting processes at Imexsa to Meet the Customer’s Quality Demand[C]. 13th IAS Steelmaking Seminar,Buenos Aires, 2001, Argentina,2001:41-48.
    [107] T. Wada(著),钟静(译).日本钢管公司福山5号板坯连铸机以3m/min的高速浇铸[J]. Iron and Steel maker, 1987, 9: 31-38.
    [108] Y.Sugitani.Studies of surface crack formation by spray cooling in continuous casting[C]. Concast Seminar. Zurich,1973: 168-172.
    [109] A. Diener,et al.Continuous Casting of microalloyed steels at Hoesch AG[C]. Concast Seminar, New York,1980: 57-60.
    [110]齐新霞.宽板坯连铸工艺与铸态组织特征研究[D].北京:北京科技大学博士论文, 2008:61-68
    [111] Toru KATO, Noriaki BABA, Yoshiki ITO, Akihiro YAMANAKA.利用铸坯表层组织控制预防横向裂纹发生[C]. 2005年中国钢铁年会论文集, 2005, 10: 21-25
    [112] Toru KATO,Yoshiki ITO,Masayuki KAWAMOTO,et al. Prevention of slab surface transverse cracking by microstructure control[J]. ISIJ International,2003,43(11):1742-1750.
    [113] N.Baba,K.Ohta,Y.Ito,et al. Prevention of slab surface transverse cracking at kashima No.2 caster with Surface Structure Control(SSC) cooling[J]. La Revue MetallurgieCIT,2006,4:174-179.
    [114] D.N.克劳瑟.微合金化元素对连铸裂纹的影响[J].钢铁钒钛, 2002, 23(1): 64-80.
    [115]朱国森,朱志远,王彦锋,等.含铌钢板坯角横裂纹的控制[J].钢铁, 2006, 41(12): 30-32.
    [116] T. Revaux, P. Deprez, J. P. Bricout et al. In situ solidified hot tensile test and hot diuctility of some plane carbon steels and microalloyed steels[J]. ISIJ International, 1994,34(6):528-535.
    [117]陈家祥.炼钢常用图表数据手册[M].北京:冶金工业出版社, 1984:815-920.
    [118] K.J.Irvine, F.B.Pickering, T.Gladman. Grain Refined C-Mn Steels[M]. JISI, 1967, 205: 161-182.
    [119] A. Mclean, D. A. R.Kay. Control of Inclusions in HSLA Steels[M]. Korchynsky M. eds, Microalloying’75. New York: Union Carbides Corporation, 1976: 215-221.
    [120] T.M.Hoogendoorn,M.J.Spanraft. Quantifying the Effect of Microalloying Elements on Structures During Processing. Korchynsky M. Microalloying’75[C]. New York: Union Carbides Corporation, 1976: 75-85.
    [121] H.Nordberg, B.Aronsson. Solubility of Niobium Carbide in Austenite[J]. JISI, 1968, 12: 1263-1266.
    [122] E.T.Turkdogan. Causes and Effects of Nitride and Carbonitride Precipitation During Continuous Casting[J]. ISS Transactions. 1990, 11: 39-48.
    [123]雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社, 2006: 487-495.
    [124]裴英豪. CSP生产无取向电工钢中MnS和AlN的析出行为研究[D].北京:钢铁研究总院博士学位论文,2006: 52-68.
    [125] B.MInternationalz. The influence of composition on the hot ductility of steels and the problem of transverse cracking[J]. ISIJ International, 1999, 39(9):833-855.
    [126] R.Abusbosa, R.Vipond, B. MInternationalz. Influence of sulphur and niobium on hot ductility of as cast steels[J]. Material Science and Technology, 1991,7:1101-1107.
    [127] O.Commineli, T.Abushosa,B. MInternationalz. Influence of titanium and nitrogen on hot ductility o C-Mn-Nb-Al steels[J]. Material Science and Technology, 1999,15:1058-1068.
    [128] W.D. Bennon,F. P. Incropera. A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems-I. Model Formulation[J]. International. Journal Heat Mass Transfer, 1987, 30(10): 2161-2170.
    [129] V.R.Voller,C.Prakash. A Fixed Grid Numerical Modelling Methodology for Convection-diffusion Mushy Region Phase-Change Problems[J]. International. Journal Heat Mass Transfer, 1987,30(8):1709-1719.
    [130]刘和平.基于连续模型的连铸板坯凝固过程传输行为的仿真研究[D].北京:钢铁研究总院博士学位论文, 2002:87-95.
    [131] S. K. Choudhary, D. Mazumdar, A.Ghosh. Mathematical modeling of heat transfer phenomena in continuous casting of steel[J]. ISIJ International, 1993, 33(7): 764-774.
    [132] S.A.Sai, J.Szekely. Turbulent flow and its Effect in Continuous Casting[J]. Ironmaking andSteelmaking, 1975,3: 205-213.
    [133] P.J.FlInternational. A three-dimensional Finite Difference Model of Heat Transfer, Fluid Flow and Solidification in the Continuous Slab Caster[J]. ISS, USA, 79th Steelmaking Conference Proceedings, Pittsburgh, ISS, USA, 1990: 481-490.
    [134] X.Huang, B.G.Thomas,F.M.Najjar. Modeling Superheat Removal during Continuous Casting of Steel Slabs. Metallurgical Transaction B, 23B, 1992,June, 1992: 339-356.
    [135] H.L.Yang, L.G. Zhao, X.Z.Zhang, etc. Mathematical Simulation on Coupled Flow, Heat and Solute Transport in Slab Continuous Casting Process[J]. Metallurgical and Materials Transactions B, 1998, 29B(12): 1345-1356.
    [136] M.D.Santis,A. Ferretti. Thermo-fluid-dynamics modeling of the solidification process and behavior of non-metallic inclusions in the continuous casting slabs[J]. ISIJ International, 1996,36 (6):673-680.
    [137] M.E.Aboutalebi, M.Hasan,R.I.L.Guthrie. Coupled Turbulent Flow, Heat, and Solute Transport in Continuous Casting Processing[J]. Metallurgical Transactions, 1995,26B: 731-744.
    [138] S.H.Seyedein, M.Hasan. A 3-D Numerical Prediction of Turbulent Flow, Heat Transfer and Solidification in a Continuous Slab Caster for Steel[J]. Canadian Metallurgical Quarterly, 1997, 17 (3): 213-228.
    [139] S.H.Seyedein,M.Hasan. A Three-dimensional Simulation of Coupled Turbulent Flow and Macroscopic Solidification Heat Transfer for Continuous Slab Casters[J]. International. Journal Heat Transfer, 1997, 40(18):4405-4423
    [140] W.Shyy, Y.Pang,G.B.Hunter etc. Modeling of Turbulent Transport and Solidification during Continuous Ingot Casting[J]. International. Journal Heat Mass Transfer, 1992, 35(5): 1229-1245.
    [141] M.Gupta,Y. Sahai. Modeling of Fluid Flow, Heat Transfer, and Solidification in Two-roll Melt Drag Thin Strip Casting of Steel[J]. ISIJ International, 2000, 40(2): 144-152.
    [142] K. Takatani. Effects of Electromagnetic Brake and Meniscus Electromagnetic Stirrer on Transient Molten Steel Flow at Meniscus in a Continuous Casting Mold[J]. ISIJInternational, 2003,43(6): 915-922.
    [143] M. R. R. Shamsi,S. K. Ajmani. Three Dimensional Turbulent Fluid Flow and Heat TransferMathematical Model for the Analysis of a Continuous Slab Caster[J]. ISIJ International, 2007,47(3), 433-442.
    [144] T. H. Shih, W. W. Liou, A. Shabbir, Z. Yang, J. Zhu. A New k-e Eddy Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation[J]. Computers & Fluids, 1995, 24(3): 227-238.
    [145]蔡开科.浇注与凝固[M].北京:冶金工业出版社, 1987:35-46.
    [146]小飒工作室.最新经典ANSYS及Workbench教程[M].北京: Publishing House of Electronics industry, 2004:5-15
    [147] MICHAEL R. HATCH. Vibration Simulation Using MATLAB and ANSYS/Michael R. Hatch. P. cm [M].CHAPMAN & HALL/CRC Boca Raton London New York Washington D.C:2000:18-25.
    [148]周宁,等. ANSYS-APDL高级工程应用实例分析与二次开发[M].中国水利水电出版社, 2007, 01:12-19.
    [149]张乐乐,等. ANSYS辅助分析应用基础教程[M].北京:北京交通大学出版社, 2006,3: 38-46.
    [150] E.Friedman. Thermo Mechanical Analysis of the Welding Process U-sing the Finite Element Method[J]. Transaction of the ASME, Journal of Pressure Vessel Technology, August, 1975: 206-208
    [151]曾攀编,等.有限元分析及应用[M].清华大学出版社. 2004.6:75-88.
    [152] I. V. Samarasekera, J. K.Brimacombe. The Thermal Field in Continuous-casting Moulds[M]. Canadian Metallurgical Quarterly, 1979, 18: 251-258.
    [153]李裕春,等. ANSYS 11.0/LS-DYNA基础理论与工程实践[M].中国水利水电出版社. 2008, 1:110-115.
    [154]何涛,等. ANSYS 10.0/LS-DYNA非线性有限元分析实例指导教程[M].北京:机械工业出版社. 2007,01:19-36.
    [155]刘立文.有限元法在连铸工艺中的应用[D].北京:钢铁研究总院博士后在站科研工作报告. 2000:45-59.
    [156] Sam Zhang. Materials characterization Techniques[M]. CRC PRESS, Taylor & Francis Group. 2008:116-128.
    [157]徐李军,李永林,等.大圆坯连铸带液芯矫直过程的应力、应变有限元模拟.钢铁研究学报,2006, 18(3):10-14.
    [158] D. Liao,H. Lin,R. Liu,L. Chen,C. Yang. Numerical simulation of casting thermal stresses using finite difference method.17th Internationalernational Conference on Compute r-aided Production Engineering, 2001:34 5-34.
    [159] J.Crank. Free and Moving Boundary Problems [M]. Oxford: Clarendon Press, 1984:37-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700