岩土介质非饱和渗流分析及工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饱和非饱和渗流现象是岩土介质中普遍客观存在的地下水运动规律,由于其对岩土体稳定性、地下水资源利用、污染控制、石油天然气开采等工程问题均具有重要影响,同时近十来年由于国内外在上述领域工程需求增加,使饱和非饱和渗流研究正成为岩土工程的热点问题。本文首先对岩土体饱和非饱和渗流、渗流场与应力耦合作用和降雨入渗条件下边坡稳定性方面研究情况进行了介绍,在总结前人研究成果的基础上对岩土介质饱和非饱和渗流理论及非饱和渗透试验、饱和非饱和渗流有限元模拟、降雨入渗及其对边坡岩体稳定性影响、渗流与变形耦合等几个方面进行了分析,主要研究和探讨的内容有:
     1.对多孔介质饱和渗流基本理论进行了简要论述,给出了多孔介质饱和渗流基本微分方程。阐述了非饱和土水势、多孔介质土水特征曲线和各种经验公式及非饱和渗透系数的影响因素等。研究了不同特征裂隙的渗透特性,并在此基础上分析了裂隙岩体的渗透特性,介绍了裂隙岩体REV的概念。基于已有的裂隙非饱和渗流试验资料,研究了岩石裂隙开度分布规律,进行了裂隙非饱和水力参数拟合及理论分析,同时对岩石裂隙非饱和渗流机理作了初步探讨。
     2.根据渗流基本理论分析推导了连续介质三维饱和非饱和渗流问题微分方程以及渗流基本边界条件,在此基础上给出了饱和非饱和渗流方程Galerkin有限元格式。推导的饱和非饱和渗流有限元求解中以压力水头为基本未知量,将稳定与非稳定、饱和与非饱和渗流场统一起来进行研究,整个渗流场采用一个支配方程,自由面只是正压区与负压区的分界面,计算中不须进行自由面迭代。饱和非饱和渗流有限元求解相应的缺点有:非饱和参数不易确定、计算精度不易控制、由于负区与正区方程类型不同导致求解和收敛困难。针对上述问题讨论了求解中材料非饱和参数选取及逸出面的处理、非线性迭代技术及收敛标准和初始压力水头边界的确定等问题。
     在三维饱和非饱和渗流有限元程序进行验证的基础上,对某库区边坡岩体库水位升降条件下的渗流场进行了模拟计算,计算结果反映:随着水位的上升,渗流场总体变化规律为,负压区范围逐渐变小,正压区压力水头变大,部分岩体由非饱和状态变为饱和状态,零压线上升明显滞后于库水位的上升。由于边坡初始压力水头(对应含水量)和岩土材料非饱和渗透参数的差异性,使负压区水头和零压面的变化较复杂。水位下降时,零压面随库水位下降而迅速下降,负压区也随之增大,正、负压区压力水头均逐渐变小。地下水流速矢量方向总体为斜坡倾斜方向,且零压面附近流速最大。
Saturation-unsaturated seepage is the widespread and objective regularity of groundwater movement. Because its significant influence on rock and soil slope stability, the use of groundwater resources, pollution control, the exploitation of petroleum and hydrocarbon gases, as well as last ten years domestic and international engineering demands increase greatly in the above realms, the saturation-unsaturated seepage research becomes a hot-spot problem of geotechnical engineering. At first the saturation-unsaturated seepage, coupling problem between stress field and seepage field, the stability analysis of slope under the condition of rain infiltration etc are introduced in the paper. Base on the former research, the theory of saturation-unsaturated seepage about porous media and rock, the test of single fracture unsaturated penetration, FEM simulation of saturation-unsaturated seepage, rain infiltration and its influence on the stability of slope and coupling interaction of seepage field and stress field are analyzed. Its major contents are as follows:1. The theory of saturated seepage of porous media and its differential equation are introduced. The unsaturated soil-water potential theory, the soil-water characteristic curve of porous media, various empirical equations and the influencing factor of unsaturated permeability coefficient are formulated. The permeability characteristic of various fractures are analyzed and jointed rock mass also are presented. The conception of REV about fractured rock is also introduced and expression of REV is deduced. Based on the laboratory measurement data of capillary pressure-saturation relationships in rock fracture, the distribution function of fracture apertures is studied. The imitation of fracture unsaturated permeability parameters and theoretics analysis are carried out; the mechanism of unsaturated flow in fracture is discussed.2. Basing on basic seepage theory, the differential equation of the 3D saturated-unsaturated seepage of continuous medium and the basic boundary conditions are deduced. The Galerkin FEM formation regarding pressure water head as basic unknown quantity is presented. Unifying the saturated-unsaturated, stable-unstable seepage problems and saturated-unsaturated seepage field, a uniform governing equations is applied in the whole seepage field. The free surface is only the interface of positive water pressure and
    negative water pressure, so it is unnecessary to adjust seepage free surface in computation. But there are some disadvantages in saturated-unsaturated Galerkin FEM. For example, the unsaturated permeability parameters are not easy to confirm, it is not easy to control calculating precision and hard to gain the solution and convergence because the type of different control equations is not unified in the plane between positive water pressure and negative water pressure. The selection of the unsaturated permeability parameters, the disposal of the overflow surface, the nonlinear iteration technology and the convergence standard and to confirm the initial pressure waterhead conditions are discussed.Based on the verification by the 3D saturated-unsaturated seepage FEM program, simulation computation on seepage field is done as the water level lowering and rising. The results show that negative pressure zone become reduced and pressure head in positive pressure zone become raised and partial rock become saturated from unsaturated. The rising of the zone-pressure line lags behind the rising of the reservoir level can also be seen. Owing to the differences of initial pressure head in slope and the unsaturated permeability coefficient of rock, the negative head pressure and the zone-pressure plane vary complicated. As the water level lowering, the zone-pressure plane fall rapidly and the negative zone become lager and the pressure head in positive and negative zone fall gradually. The vector of groundwater velocity directs the dip direction of the slope as a whole. The velocity adjacent to the zone-pressure is greatest. The rapider the water level fall, the greater the hydraulic slope become, the greater the flowing pressure along slope becomes. So the stability of the slope becomes worse. The computing results show the regularity of the pressure head and velocity during the variation of the water level are reasonable.3. According to the principle of soil hydro-dynamics, the general mechanism of rain infiltration is presented. It includes that the flow regulation of groundwater at the condition of rain infiltration, the boundary condition of ground surface infiltration and one dimension infiltration model such as experience formation, Green-Ampt model and Richards equation.The simulating method is presented base on saturated-unsaturated FEM calculation and the methods of handling boundary of rain infiltration and calculating seepage flux are analysed. At the same time, some examples about rain infiltration are calculated, including the regulation of infiltration, redistribution and drainage of groundwater at rain infiltration condition in one dimension sand column. The affect of the intensities, duration of rainfall, the change of initial pressure waterhead and the permeability coefficient on the saturated-unsaturated seepage field is analyzed. The variation process of the
    saturated-unsaturated seepage field of one slope is simulated at the conditions of rain infiltration.The seepage field considering the atomizing rainfall is simulated aiming at Jinping first hydropower project high slope on the side of left bank. The results show that the pressure head is raised at superficial place in the high slope by atomizing rainfall and temporary saturated zone can exist at gentle base of slope. Without regard to drainage facility, the pressure head raise about 140m at the base of the slope because of the atomizing rainfall, the other way round, about 60m. The moisture content and the increase of pressure head in the slope surface are affected by the strength of rainfall. Without regard to drainage facility, the cumulative infiltration rate in the atomizing region is 27.62%, the other way round, 5.00%. The waterproof and drainage work can suppress effectively the increase of pressure head and the appearance of temporary saturated zone because of the surface infiltration. So slope protection and the effective drainage for the surface flow and the rational layout of drainage outlet in superficial layer can enhance markedly the stability of the slope.Base on unsaturated material strength theory and the limited balance analysis method, the slope stability analysis method considering the material strength variance in the unsaturated region is studied according to the variance of saturated-unsaturated seepage field during rainfall, taking the Jinping first hydropower project high slope on the side of left bank as the example. The computation results of VI-VI section show the stability factor decrease as the infiltration of the surface water reduce and when rain is over, after a period of time the stability factor recover. The atomizing rainfalls have a great effect on superficial layer slide (the stability factor decrease at most 14%) and a slight effect on deep layer slide (the stability factor decrease at most 14%). The waterproof measure in the slope surface and the drainage measure in the slope body play an important role on the control of infiltration and improvement of slope stability.4.The FEM equation of unstable seepage considering the variety of porosity ratio is deduced base on the differential equation of saturated unstable seepage field and the stress-strain FEM method is discussed. The coupling mathematical model and FEM calculating formation are presented considering the interaction between seepage field and stress field. And the coupling mechanism of the interaction between seepage field and stress field is studied and computation method to calculate seepage force in FEM is analyzed. The influence of the stress field of the two kinds of material on permeability character is discussed.
    Taking Maopingxi earth dam project in TGP as an example, utilizing the mathematical model of seepage field coupling with stress field and its FEM equation, the deformation field during construction period and the coupling of steady seepage field and stress field at 135.0m and 175.0m water level are calculated. The result shows that the deformation of dam body by computation can be uniform with the measured deformation and the whole regularity of stress field is rational. At 135.00m water level, the deformation field considering the seepage have some obvious characteristic. For example, both the horizontal displacement and vertical displacement of dam increase, but the vertical displacement increase more, the vertical displacement increases along gravity direction. The deformation and seepage regularity of earth dam gained by computation accord with the factual regularity, so the selection of computation model and parameters are reasonable. At 175.00m water level, the computation result considering the coupling shows the water head of the rock mass of upstream core wall at base of dam lower slightly, and that the water head of bottom and downstream core wall rise slightly, the total leakage increase slightly, both the horizontal displacement and vertical displacement increase respectively, the influence of coupling is limited.5. At last, conclusions and prospects are drawn from the studies of saturated-unsaturated seepage and the tentative ideas about this domain are presented.
引文
1 毛昶熙,段祥宝,李祖饴等.渗流数值计算与程序应用[M].南京:河海大学出版社,1999.
    2 毛昶熙,陈平等.裂隙岩体渗流计算方法研究[J].岩土工程学报.1991,13(6):1~5.
    3 毛昶熙.渗流计算分析与控制[M].北京:水利电力出版社,1988.
    4 刘洁,毛昶熙.堤坝饱和与非饱和渗流计算的有限单元法[J].水利水运科学研究,1997(9).
    5 毛昶熙,李吉庆,段祥宝.渗流作用下土坡圆弧滑动有限元计算[J].岩土工程学报,2001,23(6).
    6 周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量[J].岩石力学与工程学报.1996,15(4):338~344.
    7 周创兵,熊文林.岩体节理的渗流广义立方定理[J].岩土力学.1996,17(4):1~7.
    8 周创兵,熊文林.不连续面的分形维数及其在渗流分析中的应用[J].水文地质工程地质,1996,23(6):1~5.
    9 周创兵,熊文林.论岩体的渗透特性[J].工程地质学报.1996,4(2):69~74.
    10 周创兵,叶自桐,韩冰.岩石节理非饱和渗透特性初步研究[J].岩土工程学报,1998,20(6):1~4.
    11 韩冰,叶自桐,周创兵.单裂隙岩体非饱和临界状态渗流特性初步研究[J].水科学进展,2000,11(1):1~7.
    12 韩冰,叶自桐,周创兵.岩体裂隙饱和/非饱和渗流机理初步研究[J].水科学进展,1999,10(4):375~381.
    13 周创兵,叶自桐,炬林,张辉.岩石节理张开度的概率模型与随机模拟[J].岩石力学与工程学报,1998,17(3):267~272.
    14 周创兵,叶自桐,韩冰.岩石节理面形态与水力特性研究[J].水科学进展,1997,8(3):233~239.
    15 周创兵,於三大.论岩体表征单元体积REV—岩体力学参数取值的一个基本问题[J].工程地质学报,1999,17(4).
    16 盛金昌,速宝玉.裂隙岩体渗流应力耦合研究综述[J].岩土力学.1998,19(2):92~98.
    17 仵彦卿,张倬元.岩体系统渗流场与应力场耦合的广义双重介质模型的应用研究[J].工程地质学报,1996,4(3):40~46.
    18 柴军瑞,仵彦卿.考虑动水压力裂隙网络岩体渗流应力耦合分析[J].岩土力学,2001,22(4).
    19 仵彦卿.岩土体系统渗流场与应力场耦合的连续介质模型[J].西安公路交通大学学报,1996(1).
    20 王嫒.单裂隙面渗流与应力的耦合特性[J],岩石力学与工程学报,2002,21(1).
    21 王嫒,速宝玉,徐志英.三维裂隙岩体渗流耦合模型及有限元模拟[J].水文地质工程地 质,1995(3).
    22 王嫒,速宝玉,徐志英.粗糙裂隙渗流及其受应力作用的计算机模拟[J].河海大学学报,1997,25(6).
    23 王嫒,徐志英,速宝玉.裂隙岩体渗流与应力耦合分析的四自由度全耦合法[J].水利学报,1998(7).
    24 张家发.三维饱和非饱和稳定非稳定渗流场的有限元模拟[J].长江科学院院报,1997,14(3):35-38.
    25 陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,13(4):299~308.
    26 杨松延,俞茂宏.孔隙液体的可压缩性对非饱和孔隙介质弹塑性分析影响[J].岩土力学,1998,19(3):20~25.
    27 张金才,张玉卓.应力对裂隙岩体渗流影响的研究[J].岩土工程学报.1998,20(2):19~22.
    28 王恩志,王洪涛,孙役.双重裂隙系统渗流模型研究[J].岩石力学与工程学报,1998,17(4):400~406.
    29 肖裕行.裂隙岩体水力行为的数值模拟研究[J],岩石力学与工程学报.1997,17(3):347~347.
    30 杨太华,孙钧.岩体裂隙非规则几何水力学特性研究[J].岩土工程学报.1997,19(4):10~14.
    31 张有天,刘中.降雨过程裂隙网络饱和非饱和非恒定渗流分析[J].岩石力学与工程学报,1997,16(2):104~111.
    32 耿克勤 等.节理岩体裂隙渗流水力特性的实验研究[J].清华大学学报.1997,(1):102~106.
    33 速宝玉,詹美礼等.交叉裂隙水流的模型研究[J].水利学报,997,(5):1~6.
    34 速宝玉,詹美礼.充填裂隙渗流特性试验研究[J].岩土力学,1994,15(4):46~51.
    35 速宝玉,詹美礼.天然岩体裂隙渗流的实验研究[J].岩土工程学报,1995,17(5):19~24.
    36 杜延龄,许国安.渗流分析的有限元法和电网络法[M].北京:水利电力出版社,1992.(第一版)
    37 柴军瑞.混凝土坝渗流场与稳定温度场耦合分析的数学模型[J].水力发电学报,2000(1).
    38 Remson, I., Hornberger, G. M., Molz, F. J., Numerical methods in sub surface hydrology. Wiley-Interscience, 1971.
    39 Desai, W. C., Finite Element Methods for Flow in Porous Media in Fluids. New Youk: Wiley, 1975.
    40 孙役,王恩志,陈兴华.降雨条件下的单裂隙非饱和渗流实验研究[J].清华大学学报,1999,39(11):14~17.
    41 田开铭,万力 著.各向异性裂隙介质渗透性的研究与评价[M].北京:学苑出版社,1989.
    42 王洪涛,王恩志.各向异性裂隙岩体渗透系数计算方法探讨[J].武汉水利电力大学学报,1997,30(2):49~53.
    43 叶自桐,韩冰,杨金忠等.岩石裂隙毛管压力饱和度关系曲线的试验研究[J].水科学进展,1998,9(2):112~117.
    44 张有天,王镭,陈平.有地表入渗的岩体渗流分析[J].岩石力学与工程学报,1991,10(2): 103~108.
    45 张有天,陈平,王镭.有自由面渗流分析的初流量法[J]_水利学报,1988,8:16~18.
    46 赵阳升 等.气液二相液体裂缝渗流规律的模拟实验研究[J].岩石力学与工程学报,1999,18(3):354~356.
    47 汪自力,张俊霞,李莉.饱和—非饱和渗流模型在多层自由面渗流分析中的应用[J].人民黄河,1997(1).
    48 龚玉峰.裂隙岩体多场广义耦合分析及工程应用研究[D]:[武汉大学博士学位论文]2003.
    49 张华,陈善雄,陈守义.非饱和土入渗的数值模拟[J].岩土力学,2003,24(5).
    50 龚壁卫,吴昌瑜.堤防非饱和边坡稳定分析方法探讨[J].长江科学院院报,2003,20(3):39~46.
    51 谭新,陈善雄,杨明.降雨条件下土坡饱和-非饱和渗流分析[J].岩土力学,2003,24(3):381~384.
    52 吴宏伟,陈守义,庞宇威.雨水入渗对非饱和土坡稳定性影响的参数研究[J].岩土力学,1999,20(3):1~13.
    53 陈善雄,陈守义.考虑降雨的非饱和土边坡稳定性分析方法[J].岩土力学,2001,22(4):447~450.
    54 陈守义.考虑入渗和蒸发影响的土边坡稳定性分析方法[J].岩土力学,1997,18(2):8~12.
    55 姚海林.考虑雨水入渗影响的膨胀土边坡稳定性分析[D]:[中科院武汉岩土所博士论文]2000.
    56 柴军瑞.大坝及其周围地质体中渗流场与应力场耦合分析[J].岩石力学与工程学报,2000,19(6).
    57 赤井浩一,大西有三,有限要素法对饱和—非饱和渗流问题的解析.土木学会论文报告集,No.264,1977:87~96.
    58 沈振中.三峡大坝坝基粘弹性应力场与渗流场耦合分析[J].工程力学,2000(1).
    59 胡云进,速宝玉,仲济刚.有地表入渗的裂隙岩体渗流数值分析及工程应用[J].岩石力学与工程学报,2000,19(增):1019-1022.
    60 Fredlund D.G and Rahardjo H.非饱和土土力学(Soil Mechanics for Unsaturated Soils)[M].中国建筑工业出版社,1997.
    61 王驹,郭永海.国外放射性废物深地质处置研究的一些进展[J].辐射防护,1998,18(4).
    62 杨天笑,郭永海,王驹.美国高放废物处置库总系统性能评价[J].铀矿地质,1999,15(1).
    63 郭永海,王驹,金远新,杨天笑.高放废物深地质处置及国内研究进展[J].工程地质学报,2000.
    64 郭永海,杨天笑,刘淑芬.高放废物处置库甘肃北山预选区水文地质特征研究[J].铀矿地质,2001,17(3).
    65 周远田.岩石应力与渗透率的关系[J].岩石力学与工程学报,1998,17(4):393~399.
    66 J·贝尔.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.
    67 薛禹群主编.地下水动力学原理[M].北京:地质出版社,1986.
    68 钱家欢,殷宗泽.土工原理与计算[M](第二版).北京:中国水利水电出版社,1996.
    69 王勖成,邵敏.有限单元法基本原理和数值方法[M].北京,清华大学出版社,1997.
    70 黄涛,杨立中.渗流应力温度耦合下裂隙围岩隧道涌水量的预测[J],西南交通大学学报(自然科学版),1999(5).
    71 张玉卓,张金才.裂隙岩体渗流与应力耦合的试验研究[J],岩土力学,1997(4).
    72 高海鹰,夏颂偌.三维裂隙渗流场与应力场耦合模型研究[J].岩土工程学报,1997,19(2):102~105.
    73 王嫒.多孔介质渗流与应力的耦合计算方法[J].工程勘察,1995(2).
    74 肖裕行,王泳嘉,王思敬,卢世家.裂隙岩体水力离散介质网络的建立[J].岩石力学与工程学报,1998,17(4):412~418.
    75 莫海鸿,林铨璋.裂隙介质网络水流模型的拓扑研究[J].岩石力学与工程学报,1997,16(2):97~103.
    76 耿克勤,刘光廷,陈兴华.节理岩体的渗流系数与应变应力的关系[J].清华大学学报(自然科学版),1996,36(1):107~112.
    77 宋惠珍.地下流体场与应力场耦合方程的有限单元法[J].石油勘探与开发,1998(4)
    78 刘继山.单裂隙受正应力作用时的渗流公式[J].水文地质工程地质,1987(2):22~27.
    79 徐则民.基于水-力耦合理论超深隧道围岩渗透性预测[J],成都理工学院学报,2001(2).
    80 罗晓辉.深基坑开挖渗流与应力耦合分析[J],工程勘察,1996(6).
    81 周志芳,钱孝星.坝基各向异性岩体内渗透力的三维边界元分析[J].岩土工程学报,1992,14(2):44~49.
    82 陈庆中,张弥,冯星梅,应力场.渗流场和流场耦合系统边值初值问题的变分原理[J],岩石力学与工程学报,1999(5).
    83 杜延岭,许国安.复杂三维渗流有限元分析研究[J].水利学报,1991(7):19~26.
    84 中国岩石力学与工程学会地面岩石工程专业委员会,中国地质学会工程地质专业委员会主编,中国典型滑坡[M],北京:科学出版社,1984.
    85 张有天等.裂隙岩体渗流的理论和实践[C].第二届全国岩石力学数值计算和模型实验学术研讨会论集,上海同济大学出版社,1990.
    86 黄俊,苏向明,汪炜平.土坝饱和非饱和渗流数值分析方法研究[J].岩土工程学报 1990,12(5):30~39.
    87 高骥,雷光耀,张锁春.堤坝饱和非饱和渗流数值分析[J].岩土工程学报,1990,10(6):28~37.
    88 雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    89 三峡地质灾害(OL),http://www.cigem.gov.cn/cy/homepage/dzzh/indexdzzh.htm.(中国地质环境信息网)
    90 张华.非饱和渗流研究及其在工程中的应用[D].[中国科学院武汉岩土力学研究所博士论文]2002.
    91 陈波,李宁,禚瑞花.多孔介质的变形场-渗流场-温度场耦合有限元分析[J],岩石力学与 工程学报,200(14).
    92 杨林德,杨志锡.各向异性饱和土体的渗流耦合分析和数值模拟[J].岩石力学与工程学报,2002,21(4).
    93 柴军瑞,仵彦卿.均质土坝渗流场与应力场耦合分析的数学模型[J].陕西水利发电,1997(3).
    94 平扬,白世伟.深基坑工程渗流-应力耦合分析数值模拟研究[J],岩土力学,2001,22(1).
    95 Or, D., Tuller, M., Flow in unsaturated fractured porous media: Hydraulicconductivity of rough surfaces. Water Resour. Res., 2000, 36(5): 1165~1177.
    96 李信,高骇,汪自力.饱和—非饱和土的渗流三维计算[J],水利学报,1992(11).
    97 吴良骥,Bloomaburg,G.L.饱和非饱和区渗流问题的数值模拟[J].水利水运科学研究,1985(6).
    98 金生,耿艳芬,王志力.利用饱和-非饱和渗流模型计算坝体自由面渗流[J].大连理工大学学报,2004(1).
    99 张培文,刘德富,黄达海,宋玉普.饱和—非饱和非稳定渗流的数值模拟[J].岩土力学,2003,24(6).
    100 邵龙潭,王助贫.水流入渗气体驱替过程二维问题耦合求解[J].水科学进展,2002(6).
    101 李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展A辑,2003(4).
    102 刘祖德.土石坝变形计算的若干问题[J],岩土工程学报,1983,5(5).
    103 张建强.心墙土石坝湿化变形计算与分析[D],大连理工大学硕士论文,1996.
    104 魏保义.用非饱和渗流理论研究降雨入渗的特性及对边坡稳定的影响[D].[河海大学硕士论文]2001.
    105 胡云进.裂隙非饱和试验研究及有地表入渗的裂隙岩体渗流数值分析[D].[河海大学博士论文]2001.
    106 朱珍德.裂隙岩体的渗流场与损伤场耦合分析模型及其工程应用[J].长江科学院院报,1999(5).
    107 吴梦喜,高莲士.饱和—非饱和土体非稳定渗流数值分析[J].水利学报,1999(12).
    108 祁庆和.水工建筑物[M].北京:水利电力出版社,1986.
    109 吴梦喜.土体非饱和渗流与变形耦合分析方法及在心墙坝中的应用[D].[清华大学博士论文]2000.
    110 吴林高等.渗流力学[M].上海,上海科学技术文献出版社,1996.
    111 龚晓南.高等土力学[M].杭州,浙江大学出版社,1996.
    112 彭华,陈胜宏.饱和—非饱和岩土非稳定渗流有限元分析研究[J].水动力学研究与进展,2002,17(6):253~259.
    113 朱军,刘光廷,陆述远.饱和非饱和三维多孔介质非稳定渗流分析[J].武汉大学学报(工学版),2001(6).
    114 朱京义,张丙印,张彦.非饱和土水气两相不相容不可压缩渗流有限元数值分析,武汉大 学学报(工学版),2002(4)
    115 朱岳明,龚道勇等.三维饱和非饱和渗流场求解及其逸出面边界条件处理[J].水科学进展,2003(1).
    116 朱岳明,黄文雄.碾压混凝土坝渗流场与应力场的非线性耦合作用研究[J].红水河,1997(3).
    117 陈慧远.土石坝有限元分析[M].南京:河海大学出版社,1988.
    118 龚道勇.三维非稳定饱和—非饱和渗流场的有限元分析及应用[D]:[河海大学硕士论文]2002.
    119 孙钧,汪炳鉴 编著.地下结构有限元法解析[M].上海,同济大学出版社,1988.
    120 殷宗泽,张金富.小浪底土坝坝料土的湿化变形试验研究[J].河海科技进展,1993(4).
    121 陈虹,陈彤 等.堤坝饱和—非饱和渗流数值模拟[J].水动力学研究与进展,1997(9).
    122 Kulatilake, P. H. S. W., Wang, S., Effect of finite size joints on deformability of jointed rock at the three-dimensional level. Int. J. Rock Mech. Min. Sci., 1993; 30(5): 479~501.
    123 Peters, R. R., Klavetter, E. A., A continuum model for water movement in an unsaturated fractured rock mass. Water Resour. Res., 1988, 23 (3): 416~430.
    124 Pruess, K., Narasimhan, J. S. Y., Tsang, Y. W., On thermohydrologic conditions near high level nuclear wastes emplaced in partially saturated fractured tuff, 2, Effective continuina approximation. Water Resour. Res, 1990, 26(6): 1249~1261.
    125 Barton, N., Bandis, S. C., Strength,deformation and conductivity coupling of rock joints. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1985, 22(3): 121~140.
    126 Pruess, K., Tsang, Y. W., On two phase relative permeability and capillary pressure of rough walled rock fractures [J]. Water Resour. Res., 1990, 26(9): 1915~1926.
    127 Wang, J. S. Y., Narasimhan, T. N., Hydrologic mechanisms governing flow in a partially saturated, fractured, porous medium. Water Resour. Res., 1985, 21 (12): 1861~1874.
    128 Ng, C. W. W., Shi, Q., A Numerical Investigation of the Stability of Unsaturated Soil Slopes Subjected Transient Seepage, Computers and Geotechnics, 1998, 22(1): 1~28.
    129 Li Xikui, Thomas, H. R., Fan Yiqun, Finite element method and constitutive modeling and computation for unsaturated soils, Computer methods in applied mechanics and engineering, 69(1999): 135~159.
    130 Birkholzer Jens, Li Guomin, Tsang Chin-Fu, Tsang Y., Modeling studies and analysis of seepage into drifts at Yucca mountain, Journal of Contaminant Hydrology, 38(1999): 349~384.
    131 Liu Hui-Hai, Haukwa Charles B., Ahlers, C., Fredrik, Bodvarsson Gudmundur S., Flint Alan L., Guertal William B. Modeling flow and transport in unsaturated fractured rock: an evaluation of the continuum approach, Journal of Contaminant Hydrology, 62-63 (2003): 173~188.
    132 Zhang Jianhong, Xu Qianjun, Chen Zuyu, Seepage analysis based on the unified unsaturated soil theory, Mechanics Research Communications, 28(2001): 107~112.
    133 Wang, J. S. Y., Bodvarsson, G. S., Evolution of the unsaturated zone testing at Yucca Mountain, Journal of Contaminant Hydrology,62-63(2003):337~360.
    134 Xu,Y.-Q.,Unami,K.,Kawachi,T., Optimal hydraulic design of earth dam cross section using saturated-unsaturated seepage flow model, Advances in Water Resources,26(2003):1-7.
    135 Tsaparas, I., Rahardjo, H.,Toll,D.G.,Leong,E.C, Controlling parameters for rainfall-induced Landslides, Computers and Geotechnics, 29(2002): 1-27.
    136 Bodvarsson, G. S.,Boyle, W.,Patterson,R.,Williams,D., Overview of scientific investigations at Yucca Mountain—the potential repository for high-level nuclear waste, Journal of Contaminant Hydrology,38(1999):3~24.
    137 Bandurraga, T. M, Bodvarsson, G.S., Calibrating hydrogeologic parameters for the 3-D site-scale unsaturated zone model of Yucca Mountain, Nevada. Journal of Contaminant Hydrology, 38(1999):25-46.
    138 Wu, Y. S.,Ritcey, A.C.,Bodvarsson,G.S., A modeling study of perched water phenomena in the unsaturated zone at Yucca Mountain, Journal of Contaminant Hydrology,38(1999):157~184.
    139 Averjanov, S. F., About permeability of subsurface soils in case of incomplete saturation. In Engineering Collect., vol.7,1950.
    140 Pruess, K.., Faybishenko, B.,Bodvarsson,G.S., Alternative concepts and approaches for modeling flow and transport in thick unsaturated zones of fractured rocks, Journal of Contaminant Hydrology,38(1999):281-322.
    141 Yuster.S. T., Theoretical considerations of multiphase flow in idealized capillary systems, Proc. World Pet. Congress.2,1951.
    142 Gangi, A. F., Variation of whole and fractured porous rock permeability with confining pressure. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 15 (1978), 249-257.
    143 Guvanasen, V, Chan Tin, A three-dimensional numerical model for thermohydromechanical deformation with hysteresis in a fractured rock mass, Int. J. Rock Mech. Min. Sci., 37(2000):89~106.
    144 Hsieh, P.A, Neuman,S.P., Field determination of the three dimensional hydraulic conductivity tensor of anisotropic media,l, theory. Water Resour. Res., 1985,21(11): 1655-1665.
    145 Hsieh, P. A., Neuman, S. P., Stiles, GK., Simpson, E.S., Field determination of the three- dimensional hydraulic conductivity tensor of anisotropic media,2, methodology and application to fractured rocks. Water Resour. Res., 1985, 21(11):1667~1676.
    146 Jing, L., Tsang, C.F., An international cooperative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 32(1995):399~408.
    147 Jing, L., Nordlund, E.,Stephansson, Experimental Study on the Anisotropy and Stress-Dependency of the Strength and Deformability of Rock Joints. Int. J. Rock Mech. Min. Sci.&Geomech. Abstract, 29(1992) 535-542.
    148 Jing, L., A review of techniques, advances and outstanding issues in numerical modelling for
     rock mechanics and rock engineering, Int. J. Rock Mech. Min.Sci., 2003(40):283~353.
    149 Noorishad, J., Ayatollahi, M. S., A finite element method for coupled stress and fluid flow analysis in fractured rock masses, Int.J.Rock Mech.Min.Sci. & Geomech.Abstr. 19(1982): 185~193.
    150 Olsson, R., Barton,N., An improved model for hydromechanical coupling during shearing of rock joints, Int. J. Rock Mech. Min. Sci.,38(2001):317-329.
    151 Pyrak-Nolte,L. J.,Morris,J.R, Single fractures under normal stress: The relation between fracture specific stiffness and fluid flow, Int. J. Rock Mech. Min. Sci., 37(2000):245-262.
    152 Reitsma, S., Kueper, B.H., Laboratory measurement of capillary pressure saturation relationships in a rock fracture. Water Resour. Res., 30 (1994): 865~878.
    153 Shapiro, A. M., Nicholas, J.R., Assessing the validity of the channel model of fracture aperture under field conditions . Water Resour. Res., 25(1989): 817~825.
    154 Tsang, Y.W., Tsang, C.F., Channel model of flow through fractured media. Water Resour. Res., 23(1987): 467-479.
    155 Wang, J.S .Y., Narasimhan, T. N., Hydrologic mechanisms governing flow in a partially saturated, fractured, porous medium. Water Resour. Res., 21(1985): 1861~1874.
    156 Rubin, J., Theoretical analysis of two-dimensional transient flow of water in unsaturated and partly unsaturated soils. Pros. Soil Sci. Soc. Am., 1968, vol.32.
    157 Van Genuchten,M.T., A closed form equation for prediction the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am., J. 44,1980:892-898.
    158 Forsyth, P. A., Comparison of the single-phase and two-phase numerical model formulation for saturated-unsaturated groundwater flow. Computer Methods Appl. Mech. Eng.1988.
    159 Oda, M., Permeability tensor for discontinuous rock masses, Geotechnique, 1985 (4).
    160 Oda, M., An equivalent continuum model for coupled stress fluid analysis in jointed rock masses, Water Resources Research, 1986(13).
    161 Fredlund, D. G, Xing,A., Equations for the soil-water characteristic curve, Canadian Geotechnical Journal,1994(31):521~532.
    162 Fredlund, D.G, Xing, A., Fredlund,M. O.,Barbour,S.L., The relationship of the unsaturated soil shear strength to the soil-water characteristic curve, Can. Geotech. 1996(33):440~448.
    163 Fredlund,D.G, et al. The shear strength of unsaturated soils. Can. Geotech. 1978, 15(3).
    164 Fredluun,M.D.,Wilson,GW.,Fredlund,D.G, Prediction of the Soil-Water Characteristic Curve from the Grain-Size Distribution Curve. Proceedings of the 3rd Symposium on Unsaturated Soil, Rio de Janeiro, Brazil, April 20, 1997.
    165 Freeze, R. A., Three-dimensional transient saturated-unsaturated flow in a groundwater basin. Water Resources Res. 1971(7):929~941.
    166 Lam, L., Fredlund, D.G, Saturated—unsaturated transient finite element seepage model for geotechnical engineering. Adv. Water Resources,7(1984):132~136.
    167 Neuman,S.R, Saturated—Unsaturated Seepage by Finited Elements, Journal of the Hydraulics Division, ASCE, Dec, 1973:2233-2250.
    168 Neuman, S. P., Galerkin approach to saturated-unsaturated flow in porous media. Finite elements in fluids, Viscous Flow and Hydrodynamical, 1974:201-217.
    169 Papagiannakis, A. T., Fredlund,D.G, A steady state model for flow in saturated-unsaturated soils. Can. Geotech.,1984,21(13):419~430.
    170 Neuman, S. P., Narasimhan,T.N.,Witherspoon,P.A., A pplication of Mixed Explicit-Implicit Finite Element Method to Nonliner diffusion-Type Problems, Finite Elements in Water Resources, Pentech Press,London,Plymouth,1977.
    171 Lam, L.,et al. Transient seepage model for saturated—unsaturated soil system: a geotechnical engineering approach. Can Geotech. 1987(24).
    172 Brooks, R. H., Corey, A.T., Hydraulic Propertics of Porous Media,Colorado State Univ.Hudrol. Paper, No. 3, 1964.
    173 Davidson, M.R., A Green-Ampt model of infiltration in a cracked soil. Water Rosour. Res., 1984,20.
    174 Irmay.S. On the hydraulic conductivity of unsaturated soils. Trans. Am. Geophys. Union, vol.35, 1954.
    175 Campbell, GS.,A simple method for determining unsaturated conductivity from moisture retention data, Soil Sci. 117,1974.
    176 Gardner, W. R., Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 85,1958:228-232.
    177 Mualem., A new model for prediction the hydraulic conductivity of unsaturated porous media. Water Resources Res. 1976,12 (3):513-522.
    178 Davidson, M. R., Numerical calculation of saturated-unsaturated infiltration in cracked soil. Water Resource. Res. 20,1985.
    179 Corey, A. T., Measurement of water and air permeability in unsaturated soil, Proc. Soil Sci. Soc. Amer. Vol.21, No.1, 1957:7-10.
    180 Fredlund, D. G, Xing, A., Huang, S., Predicting the permeability function for unsaturated soils using the soil-water characteristic curve, Canadian Geotechnical Journal, 1994(31): 533-546.
    181 Lam, L., Fredlund,D.G,Barbour,S.L.,Transient seepage model for saturated-unsaturated soil systerms: A Geotechnical Engineering Approach, Can. Geot. Jour., 1988, 24(4): 565-580.
    182 Wang, M., Kulatilake,P.H.S.W, Estimation of REV size and three-dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modeling, Int. J. Rock Mech. Min. Sci., Vol.39 (2002), 887-904.
    183 Witherspoon, P. A., Wang, J.S.Y.,Iwai,K.,Gale,J.E., Validity of cubic law for fluid flow in a deformable rock fracture.Water Resour. Res., 1980, 16(6):1016~1024.
    184 King, M.S., Elastic wave propagation in and permeability for rocks with multiple parallel fractures, International Journal of Rock Mechanics and Mining Sciences 39 (2002): 10333 -1043.
    185 Campbell, G. S. A simple method for determining unsaturated conductivity from moisture retention data, Soil Sci. 117,1974
    186 Rutqvist, J.,Wu,Y.-S.,Tsang,C.-F.,Bodvarsson,G.S., A modeling approach for analysis of coupled multiphase fluid flow,heat transfer,and deformation in fractured porous rock, International Journal of Rock Mechanics and Mining Sciences,39 (2002): 429-442.
    187 Doolin, D. M.,Mauldon, M.,Fracture permeability normal to bedding in layered rock masses, International Journal of Rock Mechanics and Mining Sciences, 38 (2001): 199~210.
    188 Hudson, J.A.,Stephansson, O.,Andersson,J.,Tsang,C.-F.,Jing, L.,Coupled T-H-M issues relating to radioactive waste repository design and performance, International Journal of Rock Mechanics and Mining Sciences,38 (2001): 143-161.
    189 Sun, J., Wang, S. J., Rock mechanics and rock engineering in china:developments and current state-of-the-art, International Journal of Rock Mechanics and Mining Sciences,37 (2000):447~465.
    190 Tsang, C.-F., Stephansson,O., Hudson J.A. A discussion of thermo-hydro-mechanical (THM) processes associated with nuclear waste repositories, International Journal of Rock Mechanics and Mining Sciences, 37 (2000):397~402.
    191 Pruess, K., On water seepage and fast preferential flow inheterogeneous, unsaturated rock fractures, Journal of Contaminant Hydrology 30(1998):333~362.
    192 Richards, L. A., Capillary conduction of liquids through porous medium. J. Physics., Vol.1, 1931:318-333.
    193 Kwicklis, E. M.,Healy, R.W., Numerical investigation of steady liquid water flow in a variably saturated fracture network,Water Resour. Res., 1993, 29(12): 4091-4102.
    194 Persoff, Pruess, K., Two-phase flow visualization and relative permeability measurement in natural rough-walled rock fractures,Water Resour. Res., 1995,31(5): 1175-1186.
    195 Fourar, M., et al. Two-phase flow in smooth and rough fractures: Measurement and correlation by porous-medium and pipe flow models. Water Resour. Res., 1993,29(11): 3699-3708.
    196 Nicholl, M. J., Wheatcraft, S.W., Gravity-driven infiltration instability in initially dry non-horizonta fractures. Water Resour. Res., 1994, 30(9): 2533-2546.
    197 Wan, J.,et al. Improved glass micromodel methods for studies of flow and transport in fractured porou media. Water Resour. Res., 1996, 32(7): 1955-1964.
    198 Amundsen, H.,et al. Slow two-phase flow in artificial fractures: Experiments and simulations. Water Resour. Res., 1999,35(9): 2619-2626.
    199 Tokunaga,T. K.,Wan,J., Water film flow along fracture surfaces of porous rock. Water Resour Res., 1997,33(6): 1287-1295.
    200 Sarma, S.K., Stability analysis of embankment and slopes[J]. Geotech. Eng. Div. ASCE. 1979 ,105 ,GT12:1511-1524.
    201 杨明成,郑颖人. 关于Sarma 法中条间剪力方向的研讨[J]. 地下空间, 2002, Vol.22(2): 142-144,160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700