心理不应期效应的理论与实证研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们同时操作两种相继快速的反应任务且两个任务呈现的起点时间间隔不同步(Stimulus onset asynchrony,简称SOA)时,通常发现随着刺激呈现时间间隔的缩短,任务1(T1)和任务2(T2)在加工时间上有较高重叠时,T2的反应时(RT2)会显著延长(Pashler,1994)。SOA缩短导致RT2延迟的现象即心理不应期(Psychologicalrefractory period,PRP)效应。心理不应期效应描述了两个反应时任务在呈现时间上很接近的情境下,两个刺激任务被同时加工或继时加工的现象,它的存在说明了人在加工重叠的双任务时,人的信息加工系统受瓶颈机制或受有限中枢能量分配不足限制的过程,这种限制被广泛地应用心理不应期范式加以研究。
     当前对心理不应期效应解释的主要理论有Pashler提出的反应选择瓶颈模型(response—selection bottleneck model,简称RSB模型)和Tombu与Jolicoeur提出的中枢能量共享模型(central capacity sharing model,简称CCS模型)。RSB模型认为双任务干扰受一个全或无的中枢瓶颈机制的调节和制约,中枢瓶颈一次只允许一个刺激进行中枢加工,当瓶颈加工器忙于对一种任务进行中枢反应选择加工时,对另一任务的中枢反应选择加工必须延缓,直到中枢加工器得以释放后才可进行。而CCS模型认为双任务产生干扰是由于可用于认知加工的中枢能量有限,有限的能量按照双任务对能量需求的大小采用逐级分配的方式分配到两个任务中,使两个任务都得不到充足的中枢能量,从而导致两个任务的加工都受到SOA长短的影响。CCS模型认为,RSB模型是CCS模型的一个特例,即先把所有中枢能量分配给T1供其进行中枢反应选择,然后再把所有的中枢能量分配给T2供其进行反应选择。
     RSB模型和CCS模型尽管从不同的角度描述了PRP效应产生的过程,对双任务加工过程的预测亦不同,但两个模型对RT2的结果作出了相同的预测:在短的SOA条件下PRP效应的斜率为-1;随着SOA的变化,控制T2刺激难度的变化影响瓶颈前阶段的加工会产生SOA和T2刺激难度间的低加效应,当二者间存在低加效应时,不同难度的T2刺激难度效应消失;控制T2刺激难度的变化影响中枢阶段或中枢后阶段的加工会产生SOA和T2刺激难度间的相加效应,当二者间存在相加效应时,不同难度条件下的RT2产生与其难度相应的延长;在短SOA条件下,对T1的中枢前阶段或中枢阶段的控制导致RT2的延迟。但是,两个模型对任务1反应时(RT1)的预测结果却截然不同,RSB模型预测随着SOA的缩短RTl不发生变化,而CCS模型预测RT1将随着SOA的缩短而延长,并且RT1上的SOA斜率效应依赖于T2的难度大小。
     到目前为止,对瓶颈机制的研究仅仅局限于有限的知觉加工范围之内,要对重叠双任务加工中的那些加工任务受瓶颈机制限制的认知操作要做一些综合分析还为时太早,还需要用其他材料对PRP效应作更深入的探讨,因此,本研究采用表象的心理旋转为材料,通过传统的行为实验和ERP技术两种研究手段,对PRP效应作了进一步的研究。采用表象心理旋转为材料的主要目的在于心理旋转这种材料正好满足PRP效应研究中对T2刺激难度控制的需求,因为当前PRP效应研究的基本方法是:操纵一个不同难度和复杂度的特定的T2刺激集(S2),这个T2刺激集内部各刺激间具有显著的难度差异,然后考察在不同的SOA条件下,这个刺激集内部各刺激间的难度效应是消失还是难度效应独立于SOA的变化,同时也可考察这个刺激集中T2刺激难度对RT1是否产生显著的影响。另外,心理旋转的特定属性表明它在控制任务难度上有独特的效果。经典的心理旋转研究发现,随着旋转角度的增加,刺激的难度相应增加,被试的反应时呈线性递增。相比用其他材料来控制难度的方法,用心理旋转任务更加具有稳定性。
     本研究中14个反应时实验和2个ERP实验均采用心理不应期研究范式,以不同旋转角度的旋转刺激作为研究材料,检测了表象心理旋转是否受瓶颈机制制约的问题,即两种认知操作任务能否并行加工的问题。两种认知操作任务能否平行加工的问题不仅是RSB模型和CCS模型争论的焦点问题,同时也是当代认知心理学研究中十分关注的焦点问题。
     在本研究的每个实验中要求被试快速、系列地完成对高低音的辨别任务(T1)和不同旋转角度刺激的辨别任务(T2),T1和T2呈现的时间间隔运用变化的SOA,结果发现:
     1、在高度重叠的双任务加工中,T1的反应选择对T2的反应选择产生了显著的影响,PRP效应显著。SOA越短,在T2上心理旋转的操作成绩越差;任务难度越大,双任务对中枢能量的竞争越大,双任务的操作成绩越差。当两种高度重叠的任务同时竞争有限的心理资源时,在T2上可得到的中枢能量显著减少。
     2、在难度和复杂度较高的重叠任务中,T1上同样存在随着SOA长短变化而变化的趋势。T1显著受不同难度T2的影响。T2的反应选择对T1的中枢加工也产生显著的影响。当T1进行反应选择占据中枢瓶颈时,表象任务和其他认知操作任务在中枢瓶颈中并行得到了有效的加工。
     3、正反判断条件下T2的刺激难度效应依然存在,尽管在短SOA条件下T2的刺激难度效应稍微缩小,但难度效应并没有消失。即使两个任务在最大限度重叠时这种效应依然存在。在T2作类别判断的条件下,T2上旋转角度效应和正反像效应消失。类别判断条件下的旋转刺激已经失去了其表象的基本特征,此时被试对旋转刺激的加工模式等同于对知觉的加工。
     4、NoGo条件下并没有消除PRP效应,但NoGo条件下在一定程度上删除了T1和T2对反应通道的竞争,使NoGo条件下T2的反应潜伏期大大缩短。
     5、在T2需要操作表象加工的重叠任务范式中,表象心理旋转的操作成绩随着SOA的缩短而降低,当SOA短到足够使两个任务的中枢反应选择加工产生重合时,T2心理旋转的加工过程整体受到延迟。
     6、双任务相互干扰的原因主要在于中枢加工能量不足的限制导致两个任务同时竞争有限的能量资源造成的。任务转换亏损不是造成PRP效应的主要原因,PRP效应有其自身固有的特点,它反映了人类在认知—知觉—动作反应系统中的有限性和受某些加工特性的限制。这种限制同时也体现在当两个重叠的任务处于同一神经通道且两个任务执行同一操作时。
     7、ERP结果表明,在短SOA时,T1对T2加工的延迟阶段仍然处于T2加工阶段的中晚期,即处于中枢反应选择或反应选择后的加工阶段,它进一步证明了人对两个或两个以上信息的加工是可以平行进行的。ERP数据和行为数据的结果一致表明,即使对T1不反应的重叠双任务情境中,只要SOA缩短,那么在T2上就会出现显著的PRP效应,表明在重叠的双任务中PRP效应非常顽固且造成双任务操作成绩的下降。
When human are required to respond to two stimuli presented in rapid succession, The stimulus onset asynchrony(SOA) between the two stimuli is varied, Often found as the SOA is decreased, Task 1(T1) and Task 2(T2) overlapped highly, the reaction times to the second task (RT2) increased greatly, usually by several hundred milliseconds. This form of dual- task interference, known as the psychological refractory period (PRP) effect, has been found with a wide range of tasks, including very simple ones. PRP effect depicted when two tasks were presented with rapid succession, two tasks were processed simultaneously or serially. PRP effect means human beings are plainly subject to severe limitations in their ability to perform more than one task at the same time. Because the phenomena appear to reflect a severe limitation on human parallel task performance, it has been the subject of intensive empirical and theoretical interest.
     There are two general types of models have been proposed to account for these delays effect. One is Pashler's response—selection bottleneck model (RSB model). the other is Tombu and Jolicoeur's central capacity sharing model (CCS model). RSB model propose that some processing needed to perform each task requires access to one or more processors that can only act on one input at a time (Pashler, 1994a). If both tasks require one of these processors simultaneously, then only one can get access to it. While this processor is busy with one task, processing for the other task must be suspended until the processor is free. We refer to processors that can only operate on one task at a time as bottleneck processors or bottleneck stages. CCS model begins with the assumption that there are stages of processing that are not capacity limited and others that are. As in most bottleneck models, the present model assumes that capacity—limited stages occur centrally. Like previous capacity sharing models, the present model assumes that the capacity limitations of the central stages are not all or none. When two tasks overlapped, the limited capacity will be allocated between two tasks. When one task accepted more capacity, the other will have no sufficient capacity, which result two tasks delayed in short SOA. CCS model considered RSB model is a special case of the central capacity sharing model in which all capacity is allocated to Task 1 for response selection and than the other when both tasks require central processing.
     Although RSB model and CCS model depicted PRP effect from different aspect, both models predicted different processing. At the same time both models predicts all of the hallmark effects of the psychological refractory period paradigm on RT2. Such as—1 slope of the PRP effect at short stimulus onset asynchronies (SOA), underadditivity of precentral Task 2 manipulations, additivity of central or postcentral Task 2 manipulations with SOA, and carry forward to Task 2 of Task 1 precentral or central manipulations at short SOA. But the two models made different prediction on RT1. RSB model predicts that RT1 is constant across SOA, while the CCS model predicts that Task 1 response times increase with decreasing SOA, the slope of RT1 depends on the difficulty of T2.
     So far, the research of PRP effect is only a limited range tasks have been examined. It is too early to make precise generalizations concerning the cognitive operations for which this bottleneck mechanism is required. In the present research will use mental rotation paradigm material, through behavior data and ERP data to examine the PRP effect, because the mental rotation material is a useful tool to examine PRP effect. According to PRP model, RT2 is lengthened at short SOA because operations requiring the bottleneck mechanism have to wait until this mechanism is finished with the first task. Thus, RT2 is essentially the sum of the time spent waiting for the bottleneck and the time needed for Task 2 processing.
     In PRP paradigm, the basic approach is to manipulate a factor that influences the difficulty of a specific second-task stage and then determine whether the effect of that factor decreases or remains constant as SOA decreases. If the factor affects a second—task stage at or beyond the bottleneck, the factor's effect should be additive with the effects of SOA (i. e. independent of SOA,). This is because SOA and the factor affect different additive components of RT2, SOA affects the time at which postbottleneck operations begin, whereas the factor affects the duration of postbottleneck operations. If the factor affects a stage prior to the bottleneck, however, the factor's effect should decrease with decreasing SOA (i. e., there should be an underadditive interaction of the factor with SOA). At short SOA, Task 2 operations that require the bottleneck (e. g., response selection) must wait until the bottleneck mechanism has completed Task 1 bottleneck processes. A factor affecting prebottleneck operations will only affect what goes on during this waiting time and therefore will have little or no effect on RT2, because the postbottleneck operations have to wait for the bottleneck mechanism to become available in either case. Of course, at long SOA the bottleneck mechanism will usually be available for Task 2 processing as soon as it is needed, and so the durations of prebottleneck operations will influence RT2. Thus, the factor will have a larger effect on RT2 at long SOA than at short one.
     Mental rotation have special character to use PRP effect research, Shepard and Metzler's classical research showed subjects pairs of perspective line drawings of choral shapes, and asked whether the shapes were identical or one was a mirror-image of the other. The figures in each pair were presented at different degrees of angular disparity, and the subjects' response times increased almost linearly as the angle between the figures increased. This means use mental rotation will central the difficulty of T2 more stably.
     In the present research, 14 reaction time experiments and 2 ERP experiments using a psychological refractory period paradigm examined whether the mental rotation is influenced by the response-selection bottleneck and whether the mental rotation process occurs in parallel with other cognitive operations. In each experiment, participants made speeded responses to both a tone (T1) and a different rotation letter or digit (T2), which presented with varying stimulus onset asynchronies (SOA). The results revealed that:
     (1) In the dual-task experiment, when mental rotation and other cognitive operations be presented in serially and quickly, T1 response selection influenced T2 response selection greatly, the effect of PRP was significant in RT2. The effect of mental rotation decreased substantially with SOA decreasing. The SOA between the two tasks is a major source in dual-task performance decrease. The shorter SOA, the worse dual-task performance. The tasks are more difficult, the more resource competition is in dual-task, which results worse the dual-task performance. PRP effect suggests when two highly overlapping tasks competed the limited capacity which results the T2 is influenced by the bottleneck.
     (2) In the highly overlapping dual-task, when the T2 is difficult, there is also a significant effect of SOA was observed in RT1. As SOA decreased, RT1 increased. T1 was significantly influenced by the difficulty of T2. This result showed that when T1 occupied the bottleneck to accomplish its response selection, mental rotation can parallel with other cognitive operation. This result supports the prediction of CCS model.
     (3) In the condition of Mirror-normal judgment, T2 difficulty effect still exists, but reduce slightly when the SOA is short. This effect does not wash out even when the SOA is 0 millisecond. But in the condition of classified judgment, the effect of mirror-normal and orientation is washed out, at this time, different orientation is identical to the perception judgment and lose it's mental rotation image character.
     (4) When subjects are required to respond to two stimuli presented in rapid succession, responses to the second stimulus are delayed. Such dual—task interference has been attributed to a fundamental processing bottleneck preventing simultaneous processing on both tasks. Two experiments show dual-task interference even when the first task does not require a response. The observed interference is caused by a bottleneck in central cognitive processing, rather than in response initiation or execution.
     (5) In the PRP paradigm, when the T2 is mental rotation image, the effect of orientation decrease substantially with decreasing SOA, especially when SOA is sufficiently short and make the dual-task's central overlapping.
     (6) In the highly overlapping dual-task paradigm, the main reason of dual tasks interfere with each other is both task competing for the limited central capacity at the same time. But the relationship between task-switching costs is the other main reason. The present experiments showed that when the two tasks in the same channel, the PRP effect also exists. These costs are traditionally attributed to fixed and unique capacity limitations for task set reconfiguration, target identification, and response selection, respectively.
     (7) The ERP finding showed that when SOA was short, the primary interference effect occurring at somewhat late stage of processing. These results generally support the model of CCS, which predicted that human being can perform tasks in parallel. The present research showed, even if does not response to T1, the PRP effect is still exist in RT2 in highly overlapping dual-task, this means the PRP effect is very robust and results performance decrease in dual-task paradigm.
引文
中幽硬什et[1] 韩凯,屈军,佟云霞.双任务并存条件下的信息提取[J].心理科学,1995,18(2):85—88.
    [2] 沈模卫,高涛,水仁德等.任务转换条件下对特征的并行搜索[J].心理学报,2005,37(3):291—297.
    [3] 沈模卫,高涛,丁海杰.双任务间隔对特征搜索方式的影响[J].心理学报,2004,36(1):24—30.
    [4] 魏景汉.仿同时刺激延迟反应模式及其在ERP研究中的作用[J].心理学动态,1995,(1):28—30.
    [5] 罗跃嘉,魏景汉.跨感觉通道注意ERP研究现状与争论[J].心理学动态,1996,(4):7—11.
    [6] 罗跃嘉,魏景汉.跨感觉通路ERP注意成分的研究[J].心理学报,1997,29(2):195—201.
    [7] 游旭群,杨治良.表象运动推断加工子系统特性的研究[J].心理科学,1998,21(3):216—219.
    [8] 游旭群,杨治良.表象旋转加工子系统特性的初步研究[J].心理学报,1999,31(4):377—382.
    [9] 游旭群,杨治良.视觉空间关系识别中的认知特性研究[J].心理学报,2002,34(3):344—350.
    [10] 游旭群,杨治良.视觉表象扫描加工可塑性水平的研究[J].心理科学,2002,25(1):18—21.
    [11] 游旭群,杨治良.客体投影方式对空间问题解决和再认的影响[J].心理学报.1998,30(1):27—34.
    [12] 游旭群.心理表征对正投影问题解决和轴侧投影图再认的影响[J].心理科学,1997,20(4):329—332.
    [13] 游旭群,晏碧华.视觉空间能力的认知加工特性.陕西师范大学学报(哲社版)[J].2004,33(1):102—107.
    [14] 游旭群.心理表征对正投影问题解决和轴侧投影图再认的影响[J].心理科学,1997,20(4):329—332.
    [15] 赵向东,严晴,曹华.不同手按键对事件相关电位的影响[J].临床神经病学杂志,1996,9(5):284—286.
    [16] 邓炳海,吴宗耀.事件相关电位中P300电位研究现状[J].现代康复,2000,4(2):322—233.
    [17] 赵仑,魏金河,姜洋,等.听觉事件相关电位(ERPs早期和晚期成分的任务负荷效应[J].航天医学与医学工程,2002,15(1):12—16.
    [18] 罗跃嘉,吴宗耀,魏景汉.跨通路选择性注意脑内记忆痕迹的位置[J].第三军医大学报,1998,20(4):299—300.
    [19] 高文斌,魏景汉,彭小虎,等.视觉注意范围的调控机制[J].航天医学与医学工程,2002,15(3):210—211.
    [20] 解恒革,王晓红,王鲁宁.注意状态对事件相关电位的影响研究[J].中国心理卫生杂志,2002,16(1):94—96.
    [21] 罗跃嘉,Parasuraman R.早期ERP效应与视觉注意空间等级的脑调节机制[J].心理学报,2001,33(5):385—389.
    [22] 史艺荃,周晓林.执行控制研究的重要范式——任务切换.心理科学进展,2004,12(5):672—679.
    [23] 李永建.心理不应期的研究进展[J].心理学动态1996,(1):52—56.
    [24] 李永建,董琼,朱祖祥.驾驶操作中反应选择与反应触发的加工关系[J].中国公路学报,1997,10(4):96—102.
    [25] 李永建,武振业,朱祖祥.驾驶操作中反应选择与反应组织加工关系[J].人类工效学,1997,3(1):7—12.
    [26] 罗跃嘉,魏景汉.认知事件相关脑电位教程[M].北京:经济日报出版社,2002:32—39.
    [27] 王甦,汪安圣.认知心理学[M].北京:北京大学出版社,1992:202—239.
    [28] 吴彦文,游旭群,霍涌泉.主题信息合理性、语境意义偏向性对汉语歧义句意义建构的影响[J].心理科学,2004,27(4):855—858.
    [29] Byrne, M. D., Anderson, J. R. Serial modules in parallel: The psychological refractory period and perfect time-sharing [J]. Psychological Review, 2001,108(4):847-869.
    [30] De Jong, R. The role of preparation in overlapping-task performance [J]. Quarterly Journal of Experimental Psychology: Human Experimental Psychology,1995,48(1):2-25.
    [31] Greenwald, A. G. On doing two things at once: Ⅲ. Confirmation of perfect timesharing when simultaneous tasks are ideomotor compatible [J].Journal of Experimental Psychology: Human Perception and Performance, 2003,29(5): 859-868.
    [32] Greenwald, A. G. On doing two things at once: IV. Necessary and sufficient conditions: Rejoinder to Lien, Proctor, and Ruthruff (2003) [J].Journal of Experimental Psychology: Human Perception and Performance, 2004,30(3): 632-636.
    [33] Hazeltine, E., Teague, D., Ivry, R. B. Simultaneous dual-task performance reveals parallel response selection after practice [J]. Journal of Experimental Psychology: Human Perception and Performance, 2002,28(3):527-545.
    [34] Hommel, B. Automatic stimulus-response translation in dual-task performance [J]. Journal of Experimental Psychology: Human Perception and Performance, 1998, 24(5): 1368-1384.
    [35] Hommel, B., Musseler, J., Aschersleben, G., & Prinz, W. The theory of event coding (TEC): A framework for perception and action planning [J]. Behavioral and Brain Sciences, 2001,24(5): 849-937.
    [36] Wijers A, Otten L, Feenstra S, Mulder G, Mulder L. Brain potentials during selective attention, memory search, and mental rotation [J]. Psychophysiology. 1989,26(4): 452-467
    [37] Levy, J., Pashler, H. Is dual-task slowing instruction dependent? [J]. Journal of Experimental Psychology: Human Perception and Performance, 2001, 27(4): 862-869.
    [38] Lien, M. C., Proctor, R. W. Multiple spatial correspondence effects on dual-task performance [J]. Journal of Experimental Psychology: Human Perception and Performance, 2000,26(4): 1260-1280.
    [39] Lien, M. C., Proctor, R. W. Stimulus-response compatibility and psychological refractory period effects: Implications for response selection [J]. Psychonomic Bulletin & Review, 2002,9(2): 212-238.
    [40] Lien,M C., Proctor, R. W., Allen, P. A. Ideomotor compatibility in the psychological refractory period effect: 29 years of oversimplification [J]. Journal of Experimental Psychology: Human Perception and Performance, 2002, 28(2):396-409.
    [41] Uen,M C., Schweickert, R., Proctor, R. W. Task switching and response correspondence in the psychological refractory period paradigm Journal of Experimental Psychology: Human Perception and Performance, 2003, 29(3): 692-712.
    [42] Logan G. D., Gordon, R. D. Executive control of visual attentionin dual-task situations [J]. Psychological Review, 2001,108(2): 393-434.
    
    [43] Logan, G. D., Schulkind, M. D. Parallel memory retrieval in dual-task situations: I. Semantic memory [J]. Journal of Experimental Psychology: Human Perception and Performance, 2000, 26(3): 1072-1090.
    [44] McCann, R. S., Johnston, J. C. Locus of the single-channel bottleneck in dual-task interference [J]. Journal of Experimental Psychology: Human Perception and Performance, 1992,18(2):471-484.
    [45] Lien, M.C., McCann R. S., Ruthruff E. Dual-Task performance with Ideomotor- Compatible Tasks: Is the central processing bottleneck intact, bypassed, or shifted in locus? [J]. Journal of Experimental Psychology: Human Perception and Performance, 2005,31(1), 122-144.
    
    [46] Pashler H. Graded capacity-sharing in dual-task interference? [J]. Journal of Experimental Psychology: Human Perception and Performance, 1994,20(2): 330-342
    [47] Pashler, H. Processing stages in overlapping tasks: Evidence for a central bottleneck [J]. Journal of Experimental Psychology: Human Perception and Performance, 1984,10(3): 358-377.
    [48] Pashler, H. Dual-task interference in simple tasks: Data and theory [J]. Psychological Bulletin, 1994,116(2): 220-244.
    [49] Pashler, H., Carrier, M., & Hoffman, J. Saccadic eye movements and dual-task interference [J]. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 1993,46A(1): 51-82.
    [50] Pashler, H., Johnston, J. C. Chronometric evidence for central postponement in temporally overlapping tasks [J]. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 1989, 41A(1):19-45.
    [51] Pashler, H., O'Brien, S. Dual-task interference and the cerebral hemispheres [J]. Journal of Experimental Psychology: Human Perception and Performance, 1993, 19(2): 315-330.
    [52] Ruthruff, E., Johnston, J. C., Van Selst, M. Why practice reduces dual-task interference [J]. Journal of Experimental Psychology: Human Perception and Performance, 2001, 27(1): 3-21.
    [53] Ruthruff, E., Johnston, J. C., Van Selst, M., et al. Vanishing dual-task interference after practice: Has the bottleneck been eliminated or is it merely latent? [J]. Journal of Experimental Psychology: Human Perception and Performance, 2003, 29(2): 280-289.
    [54] Ruthruff, E., Pashler, H. E., Hazeltine, E. Dual-task interference with equal task emphasis: Graded capacity-sharing or central postponement? [J]. Perception & Psychophysics, 2003, 65(5):801-816.
    [55] Ruthruff, E., Pashler, H. E., Klaassen, A. Processing bottlenecks in dual-task performance: Structural limitation or voluntary postponement? [J]. Psychonomic Bulletin & Review, 2001,8(1): 73-80.
    [56] Schumacher, E. H., Lauber, E. J., Glass, J. M., etc. Concurrent response selection processes in dual-task performance: Evidence for adaptive executive control of task scheduling [J]. Journal of Experimental Psychology: HumanPerception and Performance, 1999, 25(3):791-814.
    [57] Van Selst, M., Jolicoeur, P. Decision and response in Dual-Task interference [J]. Cognitive Psychology, 1997,33(3): 266-307.
    [58] Van Selst, M.,Ruthruff, E., Johnston, J. C. Can practice eliminate the psychological refractory period effect? [J]. Journal of Experimental Psychology: Human Perception and Performance, 1999, 25(5): 1268-1283.
    [59] Bokura, H., Yamaguchi, S., Kobayashi, S. Electrophysiological correlates for response inhibition in a Go/NoGo task [J].Clinical Neurophysiology, 2001,112(12): 2224-2232.
    [60] Bruin, K.J., Wijers, A.A., van Staveren, A.S.J. Response priming in a go/nogo task: Do we have to explain the go/nogo N2 effect in terms of response activation instead of inhibition? [J]. Clinical Neurophysiology, 2001,112(9):1660-1671.
    [61] Eimer, M. Effects of attention and stimulus probability on ERP in a Go/Nogo task [J]. Biological Psychology, 1993,35(1):123-138.
    [62] Haig, A.R., Gordon, E., Rogers, G., Anderson, J. Classification of single-trial ERP sub- types: Application of globally optimal vector quantization using simulated annealing [J]. Electroencephalography and Clinical Neurophysiology, 1995, 94(2): 288-297.
    [63] Johnson, J.R. On the neural generators of the P300 component of the event-related potential [J]. Psychophysiology, 1993 ,30(1):90-97.
    [64] Keifer, M., Marzinzik, F., Weisbrod, M.,et al. The time course of brain activations during response inhibition: Related potentials in a go/no go task of brain activations during response inhibition; related potentials in a go/no go task [J]. NeuroReport, 1998, 9(3): 765-770.
    [65] Roberts, L.E., Rau, H., Lutzenberger, W., Birbaumer, N. Mapping P300 waves onto inhibition: Go/No-Go discrimination [J]. Electroencephalography and Clinical Neurophysiology, 1994, 92(1):44-55.
    [66] Heil M, Rauch M, Hennighausen E. Response preparation begins before mental rotation is finished: Evidence from event-related brain potentials [J].Acta Psychologica, 1998, 99(2):217-232
    [67] Heil M, Wahl K, Herbst M. Mental rotation, memory scanning, and the central bottleneck [J]. Psychological Research, 1999,62(1):48-61
    [68] Heit M, Rolke B. Towards a chronopsychophysiology of mental rotation [J]. Psychophysiology, 2002, 39(4):414-422
    [69] Osman, A.M., Moore, C.M. The locus of dual-task interference: Psychological refractory effects on movement-related brain potentials [J]. Journal of Experimental Psychology: Human Perception and Performance, 1993, 18(6):1292-1312.
    [70] Osman, A, Moore, C. M, Ulrich, R. Bisecting RT with lateralized readiness potentials: Precue effects after LRP onset [J]. Acta Psychologica, 1995, 90(1): 111-127.
    [71] Tombu M, Jolicoeur P. All-or-none bottleneck versus capacity sharing accounts of the psychological refractory period phenomenon [J]. Psychological Research, 2002, 66(2): 274-286.
    [72] Tombu M, Jolicoeur P. A central capacity sharing model of dual-task performance [J]. Journal of Experimental Psychology: Human perception and Performance, 2003, 29(1):3-18.
    [73] Tombu M, Jolicoeur P. Testing the predictions of the central capacity sharing model[J]. Journal of Experimental Psychology: Human Perception and Performance, 2005,31(4):790-802.
    [74] Logan G D, Schulkind M D. Parallel memory retreval in dual-task situations: I , Semantic memory [J]. Journal of Experimental Psychology: Human Perception and Performance, 2000, 26(4): 1072-1090.
    [75] Logan G D, Delheimer J A. Parallel memory retreval in dual-task situations: II, Episodic memory [J]. Journal of Experimental Psychology: Learning, Memory and Cognition, 2001, 27(3):668-685.
    [76] Watter S, Logan G D.Parallel response selection in dual-task situations [J]. Perception & Psychophysics, 2006, 68(2):254-277.
    [77] Schuch S, Koch I. The Role of Response Selection for Inhibition of Task Sets in Task Shifting [J].Journal of Experimental Psychology: Human Perception andPerformance, 2003,29 (1): 92-105.
    [78] Sherpard S., Metzler D. Mental rotation: Effects of dimensionality of objects and type of task [J]. Journal of experimental psychology: Human perception and performance, 1988,114(1): 12-13.
    [79] Ishai A., Haxby J V., Ungerleider L G Visual imagery of famous faces: effects of memory and attention revealed by fMRI [J]. Neuroimage, 2002,17(4):1729-1741.
    
    [80] Dennis D. et al. Impossible "mental rotation" problems A mismeasure of women's spatial abilities [J].Intelligence, 2001,12(3):253-269.
    [81] Luck S J, WoodmanG F, Vogel E K. Event-related potential studies of attention [J]. Trends in cognitive science, 2000, 4(11): 432-440.
    [82] Shepard R, Cooper L. Mental images and their transformations [M].Cambridge MA: MIT Press, 1982: 26-90.
    [83] Yeung N, Monsell S. Switching between tasks of unequal familiarity: the role of stimulus-attribute and response-set selection [J]. Journal of Experimental Psychology: Human Perception and Perform, 2003, 29(2): 455—469.
    [84] Logan G D. Working Memory, Task Switching, and Executive Control in the Task Span Procedure [J]. Journal of Experimental Psychology: General, 2004, 133(2): 218-236.
    [85] Yeung N, Monsell S. The effects of recent practice on task switching [J]. Journal of Experimental Psychology: Human Perception and Performance, 2003, 29(5):919— 936.
    [86] Schuch S, Koch I. The Role of Response Selection for Inhibition of Task Sets in Task Shifting [J]. Journal of Experimental Psychology: Human Perception and Performance, 2003, 29 (1): 92-105.
    [87] Woodward T S, Bub D N, Hunter MA. Task switching deficits associated with Parkinson's disease reflect depleted attentional resources [J]. Neuropsychologia, 2002,40(12): 1948-1955.
    [88] Sherpard S., Metzler D., Mental rotation: Effects of dimensionality of objects and type of task [J]. Journal of experimental psychology. Human perception and performance, 1988, 114(1): 12-13.
    [89] Sohn, M. H., Anderson J. R. Task preparation and task prprtition: Tow-component model of task switching [J]. Journal of Experiment Psychology: General, 2001, 130(4):764-778.
    [90] Sohn, M. H., Carlson, R.A. Effect of repetition and foreknowledge in task-set reconfiguration [J]. Journal of Experimental Psychology: Memory and Cognition, 2000, 26(6):1445-1460.
    [91] Rogers, R. D., Monsell, S. Cost of predictable switch between simple cognitive tasks [J]. Journal of Experimental Psychology: General, 1995, 124(2):207-231.
    [92] Meiran, N. Modeling cognitive control in task-switching. Psychology Research, 2000, 63(2): 234-249.
    [93] Heil M. The functional significance of ERP effects during mental rotation [J]. Psychophysiology, 2002, 39(5): 535-545.
    [94] Wylie G, Allport A. Task switching and the measurement of "switch costs". Psychological Research. 2000, 63(3):212-233.
    [95] Carrier, M. Pashler, H. Attentional limits in memory retrieval [J]. Journal of Experimental Psychology: Learning Memory and Cognition, 1995, 21(5): 1339— 1348.
    [96] Monsell S. Task switching [J]. Trends in Congnitive Science, 2003, 7(3): 134-140

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700