两种线状病毒分子变异的研究及热处理对梨基因表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究对来源于中国的砂梨和加拿大温室与作物加工研究中心国家种质资源圃苹果和西洋梨的苹果褪绿叶斑病毒(Apple chlorotic leaf spot virus,ACLSV)分离物和核果类上的樱桃绿环斑驳病毒(Cherry green ring mottle virus,CGRMV)分子变异进行了较系统的研究,明确了苹果褪绿叶斑病毒和樱桃绿环斑驳病毒的分子变异情况以及进化上的亲缘关系,为苹果、梨和核果类病毒的发生、防治奠定了基础。栽培无病毒种苗是减轻这些病毒危害的重要途径,热处理技术也广泛应用于无病毒果树种质培育中。为探索适合梨病毒的脱毒处理条件,建立更加有效的脱毒技术,本研究分析了热处理对病毒在离体植株中分布的影响,结果表明高温降低茎尖病毒浓度,对基部无影响,这种作用的不均匀性是否触发了热处理的某些抗性机制仍不清楚,进而以热处理和正常培养砂梨离体植株为研究体系,构建cDNA差减文库,筛选热处理诱导下与病毒互作的相关基因,深入分析热处理对病毒生活史及植物基因表达解析热处理脱除机制。取得的主要研究结果如下:
     1.本研究采用生物学法和RT-PCR对加拿大温室与作物加工研究中心国家种质资源圃核果类110个样品检测,结果表明8个样品感染CGRMV,并首次发现了CGRMV侵染李寄主。对扩增的8个CGRMV分离物的CP基因编码的氨基酸进行序列分析,结果表明CP基因变异很大,分离物之间的氨基酸同源性为90~100%,在进化亲缘关系上CGRMV分离物可以分为两个组群。
     2.加拿大温室与农作物加工研究中心的国家种质资源圃梨和苹果四种主要病毒的检测结果,采用DAS-ELISA对采集的438份苹果和122份梨样品进行四种主要病毒ACLSV、苹果茎沟病毒(Apple stem grooving virus,ASGV)、苹果茎痘病毒(Aple stem pitting virus,ASPV)和苹果花叶病毒(Apple mottle virus,ApMV)进行检测,结果表明,病毒复合感染现象普遍,其中ACLSV发生最普遍,其检出率达40%左右,梨样品严重感染了ASPV和ApMV,带毒率高于90%。以总RNA为模板,在检测体系中引入nad5基因作为内标的多重RT-PCR对17份苹果样品的四种主要病毒进行复检,均能扩增四种病毒的特异性目标片断,检测效果较ELISA好。
     3.ACLSV3′端基因的分子变异研究,以ACLSV-6860/ACLSV-7536为引物,采用改进的CTAB法提取总RNA为模板的RT-PCR对来源于加拿大22个ACLSV分离物和采用TC-RT-PCR法病毒粗提液为模板对来源于中国24个ACLSV分离物的3′端基因进行扩增、纯化、克隆和测序。序列测定表明,目标片断大小为680bp左右,该序列包含3′端CP基因(500nt,占CP核苷酸序列的85%)和3′端NCR序列。对加拿大22个ACLSV分离物的扩增片断进行了序列分析,结果表明,22个ACLSV分离物的核苷酸序列同源性为84~100%,其中11个分离物序列同源性为100%。参照报道来源于不同国家不同寄主的ACLSV分离物的序列进行进化树分析,加拿大ACLSV分离物分为2个组群,分离物Malus0422、Malus0908和Malus0422与来源日本P205位于同一组群,属于P205型,CP基因编码的氨基酸具有Ala14-Va133-Phe49-Ser104-Met158的保守序列特点,其余19个分离物位于另一个组群的两个不同分支,属于B6型,CP氨基酸具有保守序列Ser14-Leu33-Tyr49-Thr104-Leu158的特点。对来源于中国砂梨的20个分离物和来源于苹果和桃子上的4个分离物与Genbank上登录的来源于不同国家和不同寄主的分离物序列进行同源性比较和系统进化树分析,本研究的24个ACLSV分离物属于B6型,进化树分析分为两个组群,两组群之间苷酸和氨基酸同源性为86.3~87.5%和94.0~96.4%。扩增片断为686bp、来源于砂梨的的XSJ,SMJ,QX,PL,CL,QYS,GY和苹果C-AP之间同源性为95~99%的8个分离物,亲缘关系较近在进化树中归为为同一组群;扩增片断为680bp,来源于砂梨ZY,JS1,ZSZ,HL1,JQ,FS,SY BY 61-7-7,CX,CS和1个桃子C-P之间同源性为96~100%的12个分离物与来源于砂梨的XG、HL2和2个桃子(C-XA和C-HB)之间同源性为95~99%,位于另一个组群的两个不同进化分支。采用PCR-SSCP技术对中国砂梨的9个样品进行了ACLSV分子变异分析,结果表明同源性高于98%位于同一组群的的ZY、ZSZ、HL1、FS、JS1、JQ分离物的SSCP电泳为带型一致的两条弥散带型,位于另一组群同源性为99%的C—XA和HL2分离物的SSCP电泳为泳动带型一致的两条弥散带型。对分离物ZY、JQ和CL多个克隆进行序列分析,结果表明,ACLSV每个分离物由不同分子变种组成,其中有一个优势变种;优势变种和非优势变种序列间仅几个碱基差异,相似性高达99~100%,说明分离物内部存在遗传变异,ZY和JQ两个分离物的克隆序列进行多重比对,结果表明两个分离物的优势变种的序列同源性为100%。
     4.热处理对梨离体植株中ACLSV和ASGV分布的影响,本研究对比组织印迹杂交的两种化学显色方法检测病毒核酸产生的杂交信号强度,CDP-Star底物化学发光检测产生的杂交信号强于NBT/BCIP底物化学显色,但信号相对较弱的NBT/BCIP底物化学显色,既具有常规杂交技术的特异性,又可以直接观察病毒在梨离体植株中的分布状况,进而采用组织印迹结合化学发光显色法对热处理过程中ACLSV和ASGV在砂梨离体植株自茎尖到基部每隔0.5mm横切面的动态分布变化进行分析,结果表明,热处理50d后病毒浓度开始降低,植株茎尖无病毒核酸分布,茎干中部病毒核酸也明显下降,而茎干基部仍产生强的杂交信号,根据杂交信号的有无判断,可以观察到在茎尖2mm无杂交信号,表明获得了茎尖2mm的无毒植株,对耐热性高的ASGV病毒,在茎尖0.5mm无杂交信号,得到了茎尖0.5mm无ASGV区域,因此采用组织印迹对热处理材料进行病毒分布分析,直接提供热处理50d后切0.5mm和2mm茎尖继代离体培养可以有效脱除ASGV和ACLSV的信息。
     5.热处理诱导寄主基因差异表达,以37℃恒温热处理和正常培养的带有ASGV和ACLSV的黄花梨离体培养植株为研究体系,利用抑制差减杂交技术(SSH)构建了热处理诱导寄主上调和下调基因文库。通过反向Southern斑点杂交技术对两个差减文库进行筛选,经过DNA测序并在已知的核酸与蛋白质数据库中比对分析,发现两个文库中共有149个unigene差异表达,其中热处理诱导寄主上调表达的基因63个,下调表达的基因86个。在149个EST片段中,50%尚不能推断其功能,其余50%涉及抗病防御、转录、信号转导、能量、代谢、蛋白质合成等信号途径,揭示了病毒与寄主互作是一个复杂的多基因参与的过程。本研究首次利用SSH杂交技术构建了热处理诱导下热处理正、反相调节梨离体植株差异表达基因文库,筛选得到了病毒与寄主互作相关的基因片段,为认识热处理脱除病毒分子机制奠定基础。
In this study we analysed Cherry green ring mottle virus(CGRMV) isolates CP gene sequences and Apple chlorotic leaf spot virus(ACLSV) isolates 3' UTR and partial CP gene sequences of pears from Canada and China in order to know CGRMV and ACLSV molecular variability characters and the phylogenetic relationship,which established the foundation to prevent virus spread.One of most effective measures for controlling these virus diseases is utilizing certified healthy propagation materials. Thermotherapy is the most widely used technique for the production of virus-free plant materials.Higher virus elimination efficiency and the virus distribution features in in vitro pear plants during thermotherapy were analyzed in this study.The results showed that high temperature decrease the virus titers on meristerm tip,and have no effect on the base,whether it is relative to the host defence mechanism is still unknown.In vitro pear plants infected with ACLSV and Apple stem grooving virus(ASGV) were further used as materials for heat treatment and for construction of cDNA libraries and screening the genes related to host-virus interaction under thermotherapy.The virus life cycle and the host genes expression were further analyzed which will be helpful to know the mechanism of elimination of viruses from hosts.Seeking results are listed as followings:
     1.A survey was conducted to evaluate the sanitary status of stone fruit tree collections in the Canadian Clonal Genebank(CCG),at the Greenhouse and Processing Crops Research Center(GPCRC) in Harrow Ontario(Canada).Samples collected from clones of 110 cultivars,including 28 sweet cherry,36 sour cherry,12 hybrids and 34 plum accessions were bud-grafted onto indicator seedlings of P.serrulata 'Kwanzan' for virus indexing,symptoms with epinasty and/or rusty necrotic fragments of midrib, suggestive of the response of Kwanzan to infection by CGRMV,were observed on indicator plants inoculated with samples from 8 clones[1 sweet cherry,1 cherry plum (P.besseyi×P.hortulana) and 6 plum].Amplicons of the expected size of 948 bp were consistently produced from 8 samples showing symptoms of CGRMV infection by One-step RT-PCR.To our knowledge,this is the first report of CGRMV infecting plum in North America.The phylogentic analyses 8 Canadian CGRMV isolates of sequences and NCBI available ones(including their origin and species when available),clustered the Canadian isolates in two groups that could be indicative for two different introduction events.
     2.A survey of apple(Malus domestica) and pear(Pyrus communis) viruses was carried out at the Canadian Clonal Genebank(CCG) during the fall/winter of 2007 and spring of 2008.In total,438 accessions of apple and 122 of pear were tested using randomly collected samples of leaves and/or dormant cuttings and processed using Double Antibody Sandwich - Enzyme Linked Immunosorbent Assay(DAS- ELISA). All samples were tested by ELISA for the presence of ACLSV,Apple stem pitting virus(ASPV),ASGV and Apple mosaic virus(ApMV).Specific infection rates of viruses of apples were ACLSV(48.1%),ASGV(10.0%),ASPV(6.6%) and ApMV (7.1%),and of pears were ACLSV(42.6%),ASGV(0%),AS PV(91.8%) and ApMV(90.1%).Seventeen of the apple accessions were also tested by multiplex RT-PCR and the results proved that RT-PCR is more sensitive than ELISA
     3.One-step RT-PCR and TC-RT-PCR using primers of CLS6860 and CLS7536 were used to amplify 22 ACLSV isolates in Canada and 24 ACLSV isolates in China.The PCR products were purified、cloned and sequences.The size of cloned fragment was 680nt corresponding to 3' CP gene and 3' NCR region.The nucleotide homology was 84%~100%among the 22 ACLSV isolates whereas the homology of amino acid was 91%~100%.The homology of nucleotide was 100%among the isolates of MAL0427, MAL0270,MAL0537,MAL0375,MAL0577,MAL0844,MAL0976,MAL0107, PYR0206,PYR0112,and PYR0129.The phylogenetic tree analysis at the nucleotide and amino acid level clustered the Canadian isolates in two groups.One group including of Malus0170、Malus0422 and Malus 0908 ACLSV isolates,belonged to the P205 type,the others belonged to B6 type.Meanwhile the sequence datas obtained from the 24 ACLSV isolates in China in the study were compared with previously reported sequences of ACLSV from different sources.The homology and pylogenetic tree results showed that the 24 isolates were divided into 2 groups,the homology of nucleotide and deduced amino acid sequences of 3' gene were 86.3~87.5%and 94.0~96.4%,respectively.The similarities of nucleotide and deduced amino acid sequences among XSJ,SMJ,QX,PL,CL,QYS,GY and C-AP were 95~99%and 98~99%,respectively,which belonged to the same group. Meanwhile among the 16 isolates,12 isolates of ZY,JS1,ZSZ,HL1,JQ,FS,SY,BY, 61-7-7,CX,CS and C-P,had 99~100%homology and 4 isolates of XG、HL2、C-XA、C-HBP,had 95~99%homology,which belonged to the same group of two different branches.The molecular variability of ACLSV within 9 samples was analyzed by the PCR-SSCP.The results showed that the SSCP profile of ZY、ZSZ、HL1、FS、JS1、JQ was of the same type,the SSCP profile of C-X A and HL2 was of the another type.Sequence of JQ and ZY isolates were analyzed,it showed that ACLSV isolates were composed of a population of genetically related variants,the predominat haplotype had very tiny variation with other haplotypes within each population,only 1~10 bases variation was observed and the similarity was more than 99%among them.The sequence analysis showed that the homology of the predominant sequence is 100%between JQ and ZY isolates.
     4.Comparison of the results visualized by either chemical stain or X-ray film exposure showed that relatively more intense signals and less background were produced by X-ray film exposure than chemical stain for both ASGV and ACLSV.Therefore,the X-ray film exposure is more suitable for the detection of viruses with a very low titer in plant tissues.These results indicated that both ASGV and ACLSV were present in the whole plants,but the highest viral RNA titer was found in phloem parenchyma of vascular bundles in all cross sections.Tissue-printing hybridization(TPH) was used to detect ACLSV and ASGV in thermotherapy-treated in vitro cultured pears at the tip, intermediate stem and base levels,and to evaluate the effect of the tip length on the efficiency of virus elimination.It was found that both ASGV and ACLSV were present at high concentrations in the base and tip of the plants,and were present at much lower concentrations in the intermediate stem.Only tip tissues of 2mm and 0.5 mm long were ACLSV and ASGV-free,respectively,therefore,the use of tips length of 0.5mm and 2mm are recommended for improving the efficiency of virus elimination for pear meristem-tip culture.These results will be helpful for improving the efficiency for virus elimination by thermotherapy.
     5.Two differentially expressed genes libraries were constructed,a library of up-regulated genes and a library of down-regulated genes in virus-infected in vitro pear(pyrus proflia) were prepared by suppression subtractive hybridization(SSH). Inserts of 1200 randomly selected colonies from the forward-subtractive library and of 1000 colonies from the reverse-subtractive library were identified with the reverse southern dot-blot screening method.Sequencing results showed that 63 genes were showing up-regulated expression and 86 genes were showing down-regulated expression among 149 ESTs under heat-treatment.The function of about 52%gene fragments was unknown,while the rest 48%had putative function clarifying as disease defense,transcription,signal transduction,energy,metabolism and protein synthesis.The results indicated that the process of virus-host interactions was complex and many genes could participate in the process.In this research,we first reported the differentially expressed genes of in vitro pear under thermotherapy, which established the foundation for understanding the molecular mechanisms of virus elimination from in vitro pear plants.
引文
1.蔡瑜,向本春,席德慧,都业娟,刘升学.苹果褪绿叶斑病毒库尔勒香梨分离物外壳蛋白基因的序列分析.石河子大学学报,2004,22(3):1997-200
    2.蔡瑜,向本春,席德慧,刘升学,都业.苹果褪绿叶斑病毒库尔勒分离物外壳蛋白基因的克隆、原核表达及特异抗血清的制备.农业生物技术学报,2005,13(4):533-537
    3.陈爱香.水稻条纹病毒NS2基因的分子变异及其原核表达.[硕士论文].福建农林大学,2004
    4.陈林蚊,缪颖,陈德海.原位PCR技术及其应用.生物工程进展.2000,20(2):58-63
    5.邓晓云,洪霓,胡红菊,王国平.检测砂梨潜隐病毒的IC-RT-PCR和TC-RT-PCR 的研究.果树学报,2004,21(6):569-572
    6.董雅凤,张尊平,张少瑜,洪霓,于济民.苹果和梨树茎尖培养结合热处理脱病毒研究.北方果树,2002(2):9-10
    7.冯志敏.免疫金标记技术在植物蛋白质亚细胞定位中的应用.信阳农业高等专科学校学报,2006,16(1):105-108
    8.宏肖敏,杨洪一,李贺,高秀岩,杜国栋.草莓病毒脱除方法的比较与评价.果树学报,2006,23(5):720-723
    9.洪霓,王国平,Boscia D,Martelli G P.苹果褪绿叶斑病毒提纯及抗血清制备技术.中国果树,1999b,1:15-18
    10.洪霓,王国平,于济民,董雅凤,张尊平.苹果茎沟病毒的分离纯化及血清学检验.中国农业科学,1997,30(5):6-12
    11.洪霓,王国平,张尊平,董雅凤,薛光荣.梨病毒脱除技术研究.中国果树,1995,4:5-7
    12.洪霓,王国平.苹果褪绿叶斑病毒生物学及生化特性研究.植物病理学报,1999a,29(1):77-81
    13.侯义龙,张开春,吴雅琴,李春敏.苹果褪绿叶斑病毒检测:PCR技术与ELISA 技术灵敏度比较.大连大学学报,2001,22(6):19-22
    14.胡琳.植物脱毒技术.北京:中国农业大学出版社.2000,111-112
    15.黄翯,牛建新,刘娜.利用原位RT-PCR技术检测库尔勒香梨中苹果茎沟病毒.石河子大学学报,2008,1:26-29
    16.黄培堂译.PCR技术实验指南.科学技术出版社,1999,162-172
    17.黄平,俞守义,方苓,陈清,李晖.SARS-CoV毒株E、M、N和S基因分子变异 研究.中国预防医学杂志,2005,6(4):313-315
    18.焦徕.柑橘抗寒相关基因的鉴定与表达分析.[硕士论文].湖南农业,2007
    19.李成军 高温胁迫下烟草-TMV互作中蛋白质表达谱初步分析[硕士论文].河南农业大学,2006
    20.林含新,魏太云,吴祖建,林奇英,谢联辉.应用PCR-SCP技术快速检测我国水稻条纹病毒的分子变异.2001,16(2):166-169
    21.刘春燕,王伟权,陈庆山,杨翠平,李文滨,辛大伟,金振国,宋英博.大豆花叶病毒胁迫诱导的消减文库构建及初步分析.生物工程学报,2005,21(2):320-322
    22.刘宏.库尔勒香茎尖苹果褪绿叶斑病毒原位RT-PCR检测技术.[硕士论文].石河子大学,2006
    23.刘阳.甘蓝型油菜突变体Cr3529抑制反向消减文库的构建和BnCr基因全张cDNA的克隆.[硕士论文].四川农业大学,2005
    24.马代夫,李洪民,李秀英,李强,唐君,马飞,谢逸萍.甘薯病毒检测技术的改进与组培苗病毒分布特征研究.江苏农业科学,2003,(3):32-34
    25.马琦.原位PCR技术及其应用前景.生物化学与生物物理进展,1996,23(6):488-492
    26.牛建新,刘连科,朱军,谭伟铭,吴钟华,王小兵.库尔勒香梨上ACLSV 的RT-PCR检测.果树学报,2003,20(4):243-246
    27.牛建新,马兵钢,何梅,李海生,赵英,李西平.周多进.库尔勒香梨主要病毒多重RT-PCR检测技术研究.植物病理学报,2006,36(1):12-21
    28.牛建新,朱军,马兵钢.库尔勒香梨的苹果褪绿叶斑病毒cDNA探针检测技术研究.西北农业学报,2005,14(2):58-63
    29.牛建新.库尔勒香梨和葡萄病毒分子检测技术研究.[博士论文].沈阳农业大学,2004
    30.庞晓斌.小麦幼苗水份胁迫应答基因表达谱.[博士论文].吉林大学,2006
    31.尚志华.葡萄扇叶病毒检测与技术研究.[硕士论文].南京:南京农业大学图书馆,2006
    32.石延霞,李宝聚.刘学敏.高温诱导黄瓜抗霜霉病机理.应用生态学报,2007,18(2):389-394
    33.宋瑞琳,吴如健,柯冲.茎尖嫁接脱除柑桔主要病原的研究.植物病理学报,1999,29(3):275-279
    34.谭荣荣.物理及化学处理脱除砂梨潜隐病毒研究.[硕士论文].武汉:华中农业大学图书馆,2006
    35.田振东.马铃薯晚疫病水平抗性相关基因片段筛选及基因克隆.[博士论文].武汉:华中农业大学图书馆,2003
    36.王艳,蒋磊,李韶山.拟南芥CHS基因表达的实时荧光定量PCR检测.植物学通报,2005,22(5):594-598
    37.王彩霞.柑橘衰退病毒的血清学特性分析及其诱导寄主差异表达基因的筛选.[博士论文].武汉:华中农业大学图书馆,2007
    38.王春燕.葡萄茎痘病毒原位RT-PCR检测技术研究.[硕士论文].石河子大学,2007
    39.王国平,洪霓,张尊平,张少瑜,姜修凤.我国北方梨产区主要品种病毒种类的鉴定研究.中国果树,1994,2:1-4
    40.王国平,洪霓.果树病毒检测与脱除技术的研究进展.华中农业大学学报,2004,23(6):685-691
    41.王辉.水稻条纹病毒NS3基因的分子变异及其抗血清的制备.[硕士论文].福建农林大学,2003
    42.王季春,吕长文,唐道彬,何凤发,盖琼辉.马铃薯不同热处理方式脱毒效果比较研究.2008年中国马铃薯大会论文集,2008,231-234
    43.王利平.热处理和化学处理对梨离体植株中病毒的影响.[硕士论文].武汉:华中农业大学图书馆,2006
    44.王小青.高温胁迫下烟草-TMV互作的防御酶活性变化.[硕士论文].河南农业大学,2006
    45.魏太云,林含新,吴祖建,林奇英,谢联辉.应用PCR-RFLP及PCR-SSCP技术研究我们水稻条纹病毒RNA4基因间隔区的变异.农业生物技术学报,2000,8(1):41-44
    46.魏太云.水稻条纹病毒的基因组机构及其分子群体遗传.[博士论文].福建农林大学,2003
    47.吴雅琴,陈霜莹,王文慧.三种方法检测苹果褪绿叶斑病毒与苹果茎沟病毒比较.植物保护学报,1998,25(3):245-248
    48.夏宗良,王美平,刘全军,王道文.大麦黄矮病毒GAV株系ORF4基因在杆状病毒2昆虫细胞系统中的表达及亚细胞定位.生物工程学报,2007,23(6):1107-1111
    49.邢浩然,刘丽娟,刘国振.植物蛋白质的亚细胞定位研究进展.华北农学报,2006,21(增刊):1-6
    50.薛光荣,杨振英,洪霓,史永忠.茎尖培养等处理脱除梨病毒的技术研究.中国果树,1996,(3):9-11
    51.杨峰,洪霓,王远程.分泌抗苹果茎沟病毒单克隆抗体杂交瘤细胞株的建立.中国农业科学,1996,29(2):85-89
    52.杨洪一,张志宏,杜国栋,代红艳,高秀岩.利用内标为基础的RT-PCR技术检测草莓斑驳病毒.植物病理学报,2005,35(2):116-122
    53.杨勇.激化蛋白诱导的水稻叶片SSH文库构建.[硕士论文].湖南农业大学,2006
    54.于秀梅.条锈菌诱导的小麦抑制差减杂交纹路构建(SSH)及其表达序列标签(ESTs)研究.[博士论文].陕西农林科技大学,2006
    55.张辅达,孙宪昀.马铃薯茎尖培养脱毒研究进展.中国马铃薯,2004,18(1):35-38
    56.张虹,洪霓,王国平.梨树茎尖培养及其在病毒脱除中的应用.华中农业大学学报,2004,23(3):370-374
    57.张建坤,洪霓,王国平.应用SSCP技术分析我国柑橘衰退病毒的混合感染.果树学报,2006,23(3):346-349
    58.张世贤.我国北方稻区水稻条纹病毒CP和SP基因的分子变异与品种抗病性研究.[硕士论文].中国农业科学院,2006
    59.张占英.栎皮黄酮处理结合茎尖培养脱除砂梨植株中潜隐病毒研究.[硕士论文].武汉:华中农业大学图书馆,2008
    60.张尊平,张少瑜,洪霓,董雅凤,姜修风,王国平,于济民,周宗山.热处理脱除梨瞒毒技木研究.北方果树,2001,5:8-9
    61.赵英,牛建新.利用原位杂交及原位RT-PCR技术检测梨树组织中苹果茎痘病毒的分布.中国农业科学,2008,41(12):4092-4099
    62.郑银英,洪霓,王国平,胡红菊.苹果茎沟病毒梨分离物外壳蛋白基因的克隆与序列分析.植物病理学报,2006,36(1):62-67
    63.郑银英,洪霓,王国平.苹果茎沟病毒部分分离物的生物学特性与分子鉴定.植物保护学报,2005,32(3):266-270
    64.#12
    65.Al Rwahnih M,Turturo C,Minafra A,Saldarelli P,Myrta A,Pallas V,Savino V.Molecular variability of apple chlorotic leaf spot virus in different hosts and geographical regions.J.Plant Pathol,2004,86:117-122
    66.Asins M J,Bernet G P,Ruiz C,Cambra M,Guerri J,Carbonell E A.QTL analysis of citrus tristeza virus-citradia interaction.Theor Appl Genet,2004,108(4):603-611
    67.Barba M,Clark M F,Detection of strains of apple chlorotic leaf spot virus by F(ab)_2-based indirect ELISA.Acta Hortic,1986,193:297-30
    68.Bar-Joseph,M,Martelli G.P.Closterovirus group.In:Francki R.I.V.,Fauquet C.M.,Knudson D.L.,and Brown F.(Eds.) Classification and Nomenclature of Viruses.Fifth Report of the International Committee on Taxonomy of Viruses.Arch.Virol.Suppl,1991,2:339-340.
    69.Barzegar A,Sohi H H,Rahimian H.Characterization of Citrus tristeza virus isolates in northern Iran.J Virol Methods,2006,72:46-51
    70.Bitiner H.Relationship between the efficiency of antiphytoviral substances,the degreen of quantitative resistance of cultivars,and the virulence of virus isolates in virus/host system of potato. J Phytopathol, 1990,128(4): 315-320.
    
    71. Brlansky R H, Lee R F, Garnsey S M. In stiu immunofluorescence for the detection of citrus virus inclusion bodies. Plant Dis, 1988, 72: 1039-1041
    
    72. Campell A I. 1968. Heat sensitivity of some apple viruses. Tagungsber. DAL DDR Berlin, 97: 311-316.
    
    73. Chellappan P, Vanitharani R, Ogbe F, Fauquet C M. Effect of temperature on geminivirus-induced RNA sileneing in Plants. Plant Physiol, 2005,1-14
    
    74. Cieslifiska M. Elimination of apple chlorltic leaf spot virus (ACLSV) from pear by in vitro thermotherapy and chemotherapy. Acta Hortic, 2002, 596: 481- 484
    
    75. Clark M D, Flegg C L, Bar-Joseph M, Rottem S. The detection of spiroplasma citri by enzyme-linked immunosorbent assay(ELISA). Phytopathol Z, 1978, 92: 332-337 76. Deogratias J M, Dosba F, Lutz A. Elimination of PPV, NRSV and CLSV from sweet cherries by means of in vitro culture. Acta Hortic, 1988, 235: 189
    
    77. Desvignes J C, Boye R. Different diseases caused by the Chlorotic leaf spot virus on the fruit trees. Acta Hortic, 1988, 235: 31-38.
    
    78. Diatchenko L, Lau Y C, Campbell A P. Suppression Subtractive Hybridization: A Method for Generating Differentially Regulated or Tissue-Specific cDNA Probes and.Libraries. Proc Natl Acad Sci, 1996, 93 (12): 6025-6030
    
    79. Dietzgen R G, Xu Z, Teycheney P Y. Digoxigenin labeled cRNA probes for the detection of two potyviruses infecting peanut (Arachis hypogaea). Plant Dis, 1994, 78:708-711.
    
    80. Fagard M, Boutet S, Morel J B, Bellini C. Vaucheret H. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene in plants, quelling in fungi, and RNA interference in animals. Proc. Natl Acad. Sci. USA, 2000, 97:11650-11654.
    
    81. Faggioli F. In vitro micrografting of pyrus communis shoot tips. Advances in Horticultural Science, 1997,11(1): 25-29
    
    82. Foissac X, Svanella-Dumas L, Dulucq MJ, Gentit P, Candresse T. Polyvalent detection of fruit tree tricho, capillo and foveaviruses by nested RT-PCR using degenerated and inosine containing primers (PDO RT-PCR). Acta Hortic, 2001, 550, 37-43.
    
    83. Foster T M, Lough T J, Emerson S J, Lee R H, Bowman J L, Forster R L S, Lucas W J. A surveillance system regulates selective entry of RNA into the shoot apex. Plant cell, 2002,14: 1497-1508
    
    84. Fridlund P R. Distribution of chlorotic leafspot virus on various lengths of apple budsticks in successive years. Acta Hortic, 1983,130: 85-87
    
    85. Galipienso L, Vives M C, Navarro L, Moreno P, Guerri J. Detection of citrus leaf blotch virus using digoxigenin-labeled cDNA probes and RT-PCR. Euro J plant Pathol,2004, 110:175-181.
    
    86. Gella R. Effect of some virus diseases on the performance of two clones of Agua de Aranjuez pear.Acta Hortic, 1990,256: 137-142
    
    87. German S, Bergey B, Delbos R P, Candresse T, Dunez J. Complete nucleotide sequence of the genome of a severe cherry isolate of Apple chlorotic leaf spot trichovirus (ACLSV). Arch. Virol. 1997,142: 833-842
    
    88. German S, Candresse T, Lanneau M, Huet J C, Dunez J. Nucleotide Sequence and Genomic Organization of Apple Chlorotic Leaf Spot Closterovirus. Virology, 1990, 179: 104-112
    
    89. German-Retana S, Bergey B, Delbos R P, Candresse T, Dunez J. Complete nucleotide sequence of the genome of a severe cherry isolate of Apple Chlorotic Leaf Spot trichovirus. Arch.Virol, 1997,142: 833-841
    
    90. Goszczynski D E, Jooste A E C. Identification of grapevines infected with divergent variants of Grapevine virus A using variant-specific RT-PCR. J Virol Methods, 2003, 112:157-164
    
    91. Goszczynski D E. Single-strand conformation polymorphism (SSCP), cloning and sequencing reveal a close association between related molecular variants of Grapevine virus A (GVA) and Shiraz disease in South Africa. Plant Pathol, 2007, 56: 755-762
    
    92. Hansen A J, Lane D. Inhibition of Apple chlorotic leafspot virus in apple meristem tissue. Plant Dis. Rep. 1983.
    
    93. Hansen A J, Lane W D. Elimination of Apple chlorotic leaf spot virus from apple shoot cultures by ribavirin. Plant Dis, 1985, 69:134-135.
    
    94. Hansen A J. Effect of ribavirin on green ring mottle causal agent and necrotic ring spot virus in Prunus species. Plant Dis, 1984, 68: 216-218
    
    95. Harper K, Creamer R. Hybridisation detection of insect-transmitted plant viruses with digoxigenin-labeled probes. Plant Dis, 1995, 79: 563-567.
    
    96. Harrison B D. Studies on the effect of temperature on virus multiplication in inoculated leaves. Annu. Appl. Biol., 1956,44: 215-226.
    
    97. Hassan M, Myrta A, Polak J. Simultaneous detection and identification of four pome fruit viruses by one-tube pentaplex RT-PCR. J. Virol. Methods, 2006,133: 124-129
    
    98. Hatta I, Francki R I B. Identification of small polyhedral virus particles in thin sections of plant cells by an enzyme cytochemical technique. Journal of Ultrastructure Research, 1981, 74: 116-129
    
    99. Hine R B, Osborne W E. Dennis R E. Elevation and temperature effects on severity of maize dwarf mosaic virus in sorghum in Arizona. Plant Dis. Rep, 1970, 54:1064-1068
    
    100.Hull R. Matthews. Plant Virology. Academic Press, San Diego, CA, 2002.
    
    101.Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Bio, 1996,47: 77-403
    102.Isac M. Obtaining plum varieties free of viruses by in vitro technique. Acta Hortic, 1986,193:213-216
    103.James D. A simple and reliable protocol for the detection of apple stems grooving vurus by RT-PCR and in a multiplex PCR assay. J Virol Methods, 1999, 83: 1-9
    104.James D. Long term assessment of the effects of invitro chemotherapy as a tool for apple stem grooving virus elimination. Acta Hortic, 2002, 550: 459- 461
    105.Jelkmann J. The nucleotide sequence of a strain of Apple chlorotic leaf spot trichovirus (ACLSV) responsible for plum pseudopox and its relation to an apple and strain plum bark split. Phytopathology, 1996, 86: 101-101
    106.Johnson J. The relation of air temperature to the mosaic disease of potatoes and other plants. Phytopathology, 1992,12: 438-440
    107.Jooste A E C, Goszczynski D E. Single-strand conformation polymorphism (SSCP), cloning and sequencing reveals two major groups of divergent molecular variants of grapevine leafroll-associated virus 3 (GLRaV-3). Vitis, 2005,44: 39-43
    108.Joseph P. Virus tested pear germplasm available at the national clonal germpalasm repository in Corvalis Oregon. Fruit Varieties Journal, 1988,42(3): 109-115
    109.Kinard G R, Scott S W. Detection of apple chlorotic leaf spot and apple stem grooving viruses using RT-PCR. Plant Dise, 1996, 80: 616-621
    110.Kiss C, Nishikawa J, Dieckmann A, Takada K, Klein G, Szekely L. Improved subtractive hybridization combination with high density Cdna array screening identifies differentially expressed viral and cellular genes. J Virol Methods, 2003,107: 195-203
    111 .Knapp E, Da camara Machado A, Pühringer H, Wang Q, Hanzer V, Weiss H, Weiss B, Katinger H, Laimer da camara Machado M. Localizatin of fruit viruse by immuno-tissue printing in infected shoots of Malus sp. and Prunus sp. J. Virol. Methods, 1995a, 55: 157-173
    112.Knapp E, Hanzer V, Mendonca D, da Camara Machado A, Katinger H, Laimer da Ca(?)mara Machado M. Improved virus detection in rosaceous fruit trees in vitro. Plant Cell Tiss Org Cult, 1998,52:3-6
    113.Knapp E, Hanzer V, Weiss H, da Camara Machado A, Wang Q, Weiss B, Katinger, H, Laimer da Camara Machado M. Distribution of Apple chlorotic leafspot virus in apple shoots cultivated in vitro. Acta Hortic, 1995c, 386: 187-194
    114.Knapp E, Hanzer V, Weiss H. New aspects of virus elimination in fruit trees. Acta Hortic, 1995b, 386: 409-418
    115.Labonne G, Quiot J B, Yvon M, Quiot-Douine L. 1 Immunoprinting: A quick and reliable method to measure the efficiency of plant as virus source for aphids in field epidemiology. J. Plant Pathol, 997, 79:135-141.
    116.Langer P R, Waldrop A A, Ward D C. Enzymatic synthems of biotin labeled polynucleotides novel nucleic acid affinity probes. Proc Natl Acad Sci USA, 1981
    117.Leary J, Brigati D J, Ward D C. Rapid and sensitive colorimetric method for visualizing biotin labeled DNA probes hybridzed to DNA or RNA immlbiliezd on nitroccllulose: Bio blots. Proc Natl Acad Sci USA, 1983, 80 (13): 4045-4049.
    118.Li R, Mock R, An improved reverse transcription-polymerase chain reaction (RT-PCR) assay for the detection of two cherry flexiviruses in Prunus spp. J J. Virol. Methods, 2005, 129:162-169.
    
    119.Lin N S, Hsu Y H, Hsu H T. Immunological detection of plant viruses and a mycoplasmlike organism by direct tissue blotting on nitrocellulose membranes. Phytopathology, 1990,80: 824-828
    120.Lin Y, Ruaell P A., Xie L, Powell C A. In situ immunoassay for detection of Citrus tristeza virus. Plant Dis, 2000, 84: 937-940.
    121.Lizarrage C, Fermandez-Northcote E N. Detection of potato viruses X and Y in sap extracts by a modified indirect enzyme-linked immunosorbent assay on nitrocellulose membrances (NCM-ELIS). Plant Dis, 1989, 73:11-14.
    122.Lopez C, Piegu B, Cooke R, Delseny M, Tohme J, Verdier V. Using cDNA and genomic sequences as tools to develop SNP strategies in cassava (Manihot esculenta Crantz), Theor. Appl. Genet, 2005,110: 425-431
    123.Magome H, Yoshikawa N, Takahashi T, Ito T, Miyakawa T. Molecular Variability of the Genomes of Capilloviruses from Apple, Japanese Pear, European Pear, and Citrus Trees. Phytopathology, 1997, 87( 4): 389-396
    124.Magome H, Yoshikawa N, Takahashi T. Single-Strand Conformation Polymorphism Analysis of Apple Stem Grooving Capillovirus Sequence Variants. Phytopathology, 1999, 89(2): 136-140
    125.Maliowski T, Komorowaka B, Candrerse T, Cieslinska M, Zawadzka B. Charaterization of Sx/2 an apple chlorotic leaf spot virus isolate showing unusual coat protein properties. Acta Hortic, 1998, 474: 43-50
    126.Manganaris G A, Economou A S, Boubourakas I N, Katis N I. Elimination of PPV and PNRSV through thermotherapy and meristem-tip culture in nectarine. Plant Cell Rep, 2003,22:195-200
    127.Marbot S, Salmon M, Vendrame M, Huwaert A, Kummert J, Dutrecq O, Lepoivre P. Development of real-Time RT-PCR assay for detection of Prunus necrotic ringspot virus in fruit trees. Plant Dis, 2003, 7:1344-1348.
    128.Marini D B, Gibson P G, Scott S W. The complete nucleotide sequence of an isolate of apple chlorotic leaf spot virus from peach (Prunus persica (L.) Batch). Arch Virol, 2008,153: 1003-1005
    129.Martelli G P, Candresse T, Namba S. Trichovirus, a new genus of plant viruses. Arch Virol, 1994,142: 1929-1932
    130.Martelli G P, Ruso M. Virus-host relationships, symptomatological and ultrastructural aspects. In The Plant Viruses, 1985,1: 163-205
    
    131.Martelli G P. The new classification of plant viruses. Petria 1993, 3:131-140.
    132.Martelli G. P, Candresse T, Namba S. Trichovirus, a new genus of plant viruses. Arch. Virol, 1994,134: 451-455.
    133.Más P, Pallas V. Non-isotopic tissue-printing hybridisation: a new technique to study long-distance plant virus movement. J. Virol. Methods, 1995, 52: 317-326.
    134.Mas P, Sanchez-Navarro, J A, Sanchez-Pina M A, Pallas V. Chemiluminescent and colorigenic detection of Cherry leaf roll virus with digoxigenin-labeled RNA probes. J. Virol. Methods, 1993,45: 93-102.
    135.Matzke M A, Matzke A J, Pruss G J, Vance V B. RNA-based silencing strategies in plants. Curr. Opin. Genet. Dev, 2001,2: 221-227.
    136.Menzel W, Jelkmann W, Maiss E. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J. Virol. Methods, 2002, 99: 81-92
    137.Mink G. I. Apple chlorotic leaf spot. in: P. R. Fridlund (Ed.), Virus and virus like diseases of pome fruits and simulating noninfectious disorders. Pullman, Washington, 1989,8-19
    138.Murashige T, Bitters W P, Rangan T S, Mauer E M, Roistacher C N, Holliday P B. A technique of shoot apex grafting and its utilization towards recovering virus-free citrus clone. HortScience, 1972, 7: 118-119
    139.Narvaez G, Skander B S, Ayllon M A, Rubio L, Guerri J, Moreno P. A new procedure to differentiate citrus tristeza virus isolates by hybridisation with digoxigenin-labeled cDNA probes. J. Virol. Methods, 2000, 85: 83-92
    140.Navarro J A, Botella F, Maruhenda A, Sastre P, Sanchez-Pina M A, Pallas V. Comparative infection progress analysis of Lettuce big-vein virus and Mirafiori lettuce virus in lettuce crops by developed molecular diagnosis techniques. Phytopathology, 2004, 94: 470-477
    141.Navarro L, Roistacher C N, Murashige T. Improvement of shoot tip grafting in vitro for virus-free citrus. J Am Soc HorticSci, 1975, 100: 471-479
    142.Nemeth M. Virus, Mycoplasma and rickettsia diseases of fruit trees. M N P, 1986, 153-223
    143.O'Herlihy E A, Croke J T, Cassells A C. Influence of in vitro factors on titre and elimination of model fruit tree viruses. Plant Cell Tiss Org Cult, 2003, 72: 33-42
    144.Ohira K, Namba S, Rozanov M, Kusumi T, Tsuchizaki T. Complete sequence of an infectious full-length cDNA clone of citrus tatter leaf capillovirus: Comparative sequence analysis of capillovirus genomes. J. Gen. Virol, 1995, 76: 2305-2309
    145.Pappu H R, Manjunath K L, Lee R F, Niblett C L. Molecular characterization of a structural epitope that is largely conserved among severe isolates of a plant virus. Proc Natl Acad Sci USA, 1993, 90:3641-3644
    146.Pappu H R, Rosales I M, Druffel K L. Serological and Molecular Assays for Rapid and Sensitive Detection of Iris yellow spot virus Infection of Bulb and Seed Onion Crops. Plant Dis, 2008, 92: 588-594.
    
    147.Parker K G, Fridland P R, Gilmer G M, Green ring mottle. In Virus Diseases and Noninfec tious Diseases of Stone Fruit in North America, US Department of Agriculture, Agriculture Handbook no. 1976,437: 193-199.
    
    148.Pasquini G, Faggioli F, Pilotti M, Lumia V, Barba M. Characterisation of apple chlorotic leaf spot virus isolates from Italy. Acta Hortic, 1998,472: 195-202
    149.Peter R, Jody L M, Avelina S, David J D, Sau-wan C, David W T Ho, Alan M M, Andrea J C, Peter L D. Comparision of a Commercial Enzyme-Liked Immunosorbent Assay with Immunofluorescence and Complement Fixation Tests for Detection of Coxiella burnetii(Q Fever) Immunoglobulin M. Journal of Clinical Microbiology, 2000, 1645-1647.
    
    150.Petrzik K. Capsid protein sequence gene analysis of Apple mosaic virus infecting pears. Euro J plant Pathol, 2005, 111: 355-360
    
    151.Postman J D, Hadid A. Elimination of apple scar skin viroid from pears by in vitro thermotherapy and apical meristem culture. Acta Hortic, 1995, 386: 536-543
    
    152.Powel A. Protection agairtst tobacco mosaic virus in transgenic plants that express tobaoeo mosaic virus antisevse RNA. Proc Natl Acad Sci USA, 1989, 89: 6949-6958
    
    153.Relies J M, Harsen A J, Granell A. Ativiroid effects of ribavirin on citrus exocortis viroid infection. Physiol Mol Plant Pathol, 1986,28(1): 61-65
    
    154.Riedel D, Lesemann D E, Maiss E. Ultrastructural localization of nonstructural and coat proteins of 19 potyviruses using antisera to bacterially expressed proteins of plum pox potyvirus. Arch. Virol, 1998,143: 2133-2158
    155.Rizhsky L, Liang H, Mittler R, The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol, 2002,130: 1143-1151
    156.Roman A Z, Tatynan N E, Dietrich E L, Wilhelm J, Alexey A. Processing and subcellular localization of the leader papain-like proteinase of Beet yellows closterovirus. J Gen Virol, 2003, 84: 2265-2270.
    157.Ropley R. Virus interference in fruit trees. Tagungsber. DAL DDR, Berlin, 1968, 97: 235-240
    158.Rubio L, Ayllon M A, Guerri J, Pappu H, Niblett C, Moreno P. Differentiation of citrus tristeza closterovirus (CTV) isolates by single-strand conformation polymorphism analysis of the coat protein gene. Ann. appl. Biol, 1996,129: 4794-89
    159.Rubio L, Janssen D, Cuadrado I M, Moreno P, Guerri J. Rapid detection of cucumber vein yellowing virus by tissue-print hybridisation with digoxigenin-labelled cDNA probes. J. Virol. Methods, 2003, 114:105-107.
    160.Sanchez-Navarro J A, Aparicio F, Herranz M C, Minafra A, Myrta A, Pallas V. Simultaneous detection and identification of eight stone fruit viruses by one-step RT-PCR. Euro J plant Pathol, 2005, 111: 77-84
    161.Sato K, Yoshikawa N, Takahashi T, Taira H. Expression subcellular location and modification of the 50 kDa protein encoded by ORF2 of the apple chlorotic leaf spot trichovirus genome. J Gen Virol, 1995, 76: 1503-1507
    162.Sato K, Yoshikawa N, Takahashi T. Complete nucleotide sequence of the genome of an apple isolate Virus. J Gen Virol, 1993, 74:1927-1931
    163.Satoh H, Matsuda H, Kawamura T, Isogai M, Yoshikawa N, Takahashi T. Intracellular distribution, cell-to-cell trafficking and tubul-indueing activity of the 50 kDa movement protein of Apple chlorotic leaf spot virus fused to gmen fluorescent protein. J Gen Virol, 2000, 81: 2085-2093
    
    164.Schuster G. Antipytoclral compounds with guanidine structure. Phytopathol, 1982, 103(4): 323-328.
    
    165.Schuster G. Synthetic Antiphytoviral Substances. Applied Virol Reserch, 1988, 1: 265-283.
    
    166.Schweizer P, Vallēlin-Bindschedler L, M(?)singer E. Heat-induced resistance in barley to the powery midew fungus Erysiphe graminis f. sp. Hordei, physiol. Mol. Plant Pathol, 1995,47: 51-66
    167.Shim H K, Min Y J, Hong S Y, Kwon M S, Kim H R, Choi Y M, Lee S C, Yang J M. Nucleotide sequences of Korean isolate of apple stem grooving virus associated with black necrotic leaf spot disease on Pear (Pyrus pyrifolia). Mol. Cells, 2004, 18: 192-199
    168.Sidwell R W, Huffman J H, Khare G P. Broad-spectrum antiviral activity of Virazole:l-P-D-ribofuranosyl-l,2,4-triazole-3-carboxamide. Science, 1972,177:705-706
    169.Spiegel S, Thlorotiompson D, Varga A, James D. An apple chlorotic leaf spot virus isolates from ornamental dwarf flowering almomd (Prunus glandulosa'Sinensis'): detection and characterization. Hortscience, 2005, 1401-1404
    170.Spiegel S, Thompson D, Varga A, Rosner A, James D. Evaluation of reverse transcription-polymerase chain reaction assays for detecing Apple chlorotic leaf spot virus in certification and quarantine programs. Can. J. Plant Pathol, 2006, 28:280-288
    171.Stark-Lorenzen P, Guitton M C, Werner R, Muhlbach H P. Detection and tissue distribution of Potato viroid in infected tomato plants by tissue hybridization. Arch. Virol, 1997,142: 1289-1296
    172.Sun M H, Xu W, Zhu Y F, Su W A, Tang Z C. A Simple Method for In Stiu Hybridization to RNA in Guard Cell of Vicia Faba L. The Expression of Aquporins in Guard Cells. Plant Molecular Biology Reporter, 2001,19: 129-135,
    173.Szittya G, Silhavy D, Molnar A, Havelda Z, Lovas A L, Banfalvi Z, Burgyan J. Low temperature inhibits RNA silencing-mediated defense by the control of siRNA generation. EMBOJ, 2003, 22: 633-640
    174.Takeshita M, Shigemune N, Kikuhara K, Furuya N, Takanami Y. Spatial analysis for exclusive interactions between subgroups I and II of Cucumber mosaic virus in cowpea. Virology, 2004, 328:45-51
    175.Tanne E, Shlamovitz N, Spiegel-Roy P. Rapidly diagnosing grapevine corky bark by in vitro micrografting. Hortscience, 1993, 28(6): 667-668.
    176.Tatyana N, Erokhina M V, Vitushkina R A, Zinovkin D E, Lesemann W, Jelkmann E V K, Alexey A A. Ultrastructural localization and epitope mapping of the methyltransferase-like and helicase-like proteins of Beet yellows virus. J Gen Virol, 2001, 82: 1983-1994
    177.Terauchi H, Magome H, Yoshikawa N, Takahashi T, Inoue N. Construction of an infectious cDNA clone of the apple stem grooving capillovirus (isolate Li-23) genome containing a cauliflower mosaic virus 35S RNA promoter. Ann. Phytopathol. Soc.Jpn, 1997,63:432-436.
    178.Valentine T A, Robertos I M, Oparka K J. Inhibition of tobaccomosaic virus replication in lateral roots is dependent on an activated meristem-derived signal. Protoplasma, 2002, 219:184-196
    179.Vance V B, Vaucheret H. RNA silencing in plants-defense and counterdefense. Science, 2001,292: 2277-2280.
    180.Voinnet O, lederer C, Bauleombe D C. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell, 2000,103:157-167
    181.Voinnet O. RNA silencing as a plant immune system against viruses. Trends Genet, 2001,17:449-459.
    182.Von Stein O D, Thies W G, Hofmann M A. A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Res, 1997, 25: 2598-2602
    183.Wang L P, Wang G P, Hong N, Tang R R, Deng X Y. Effect of thermotherapy on elimination of Apple stem grooving virus and Apple chlorotic spot virus for in vitro-cultured pear shoot tips. HortScience, 2006,41: 729-732
    184.Welsh M F, Nyland G. Elimination and separation of viruses in apple clones by exposure to dry heat. Can. J. Plant Sci, 1965,45:443-454.
    185.Wen X X, Hong N, Zhang J K, Wang G P. Improving these sensitivity of single-strand conformation polymorphism(SSCP) to study the variability of PLMVd. J Virol Methods, 2006,135: 276-280
    186.Wisniewski L A, Powell P A. Local and systemic spread of tobacco mosaic virus in transgenic tobacco plants. The Plant Cell, 1990,2: 559-567
    187.Yang G P, Ross D T, Kuang W W. Combining SSH and cDNA micro assays for rapid identification of differentially expressed genes. Nucleic Acid Res, 1999b, 27(6): 1517-1523
    188.Yang G, Che X, Gofman R, Ben-Shalom Y, Piestun D, Gamy R, Mawassi M, Bar-Joseph M. D-RNA molecules associated with subisolates of the VT strain of citrus tristeza virus which induce different seedling-yellows reactions. Virus Genes, 1999a, 19: 5-13
    189.Yoshida K. Transgenic Nicotiana occidentalis plants expressing the 50-kDa protein of apple chlorotic leaf spot virus display increased susceptibility to homologous virus, but strong resistance to Grapevine berry inner necrosis virus. Phytopathology, 2000,90:311-316
    190.Yoshikawa N, Oogake S, Terada M, Miyabayashi S, Ikeda Y, Takahashi T, Ogawa K. Apple chlorotic leaf spot virus 50kD protein is targeted to plasmod esmata and accumulates in sieve elements in transgenic plant leaves. Arch. Virol, 1999, 144: 2475-2483
    191.Yoshikawa N, Saski E, Kato M, Takahashhi T. The nucleotide sequence of apple stem grooving Capillovirus genome. Virology, 1992, 191: 98-105
    192.Zamore P D. RNA interference: listening to the sound of silence. Nat. Struct. Biol, 2001, 8: 746-750
    
    193.Zhang Y P, Kirkpatrick B C, Smart C D, Uyemoto J K, cDNA cloning and molecular characterization of cherry green ring mottle virus. J Gen Virol, 1998, 79, 2275-2281.
    194.Zilka S, Faingersh E, Rotbaum A, Tam Y, Spiegel S, Malca N. In vitro production of virus-free pear plants. Acta Hortic, 2002, 596: 477-479

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700