基于APE1和p53蛋白序列的多肽阵列设计及其线粒体定位序列的筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
线粒体是人类细胞中除细胞核外唯一具有基因组DNA的细胞器,线粒体DNA (mtDNA)极易受到氧化应激的损伤。氧化应激与多种病理状态密切相关,包括癌症、衰老和心血管疾病等。DNA是氧化应激损伤的重要靶分子之一,形成的DNA氧化性损伤主要经碱基切除修复(BER)进行修复。APE1和抑癌基因p53为经典的核—线粒体双定位蛋白。研究表明,在未受到任何刺激情况下,二者主要定位于细胞核,当发生氧化还原后APE1和p53均发生线粒体易位,证明二者都参与了DNA的损伤修复过程。近来研究发现,APE1/Ref-1刺激大量与癌症发病有关的转录因子的DNA结合活性,如AP-1的(Fos/Jun)、缺氧诱导因子-1A(HIF-1a)、CREB蛋白、p53等。近来发现,野生型p53蛋白是一种负调节APE1表达的调控子,通过干扰APE1的结合位点Sp-1调控其表达下调。p53抑制APE1的表达将为我们进一步探讨APE1在DNA损伤修复中的作用是否依赖p53介导的细胞凋亡途径提供一条新的研究思路。
     作为BER途径的重要限速酶人脱嘌呤/脱嘧啶核酸内切酶(APE1)在细胞氧化应激反应中起中心作用。APE1的亚细胞定位可在某些代谢率或增殖率很高的细胞的胞质中,主要定位于线粒体和内质网(ER),且APE1的线粒体靶向定位是有先决条件的,即发生氧化应激反应后APE1会靶向定位线粒体,而定位于线粒体上p53足以引起线粒体水平上p53依赖的细胞凋亡。由于双定位的核—线粒体蛋白通常拥有一个非常规的线粒体定位序列(MTS),传统的生物信息学方法无法确定其具体位置。因此,APE1和p53的线粒体定位序列尚不清楚。具体线粒体膜易位酶与蛋白质进入线粒体密切相关,蛋白质进入线粒体必须经过两个易位接触位点,即核编码的线粒体定位前体蛋白需要与线粒体表面受体识别,然后与线粒体外膜易位酶(translocase of the outer membrane,TOM)形成复合体通道(GIP)将线粒体定位蛋白外膜上。而TOM复合体主要由Tom20、Tom22和Tom70三个亚基构成,主要负责转运内部具有信号序列的蛋白,通过外膜,进入膜间隙。每个输入受体均能结合线粒体前体蛋白,但结合特性不同。Tom20和Tom22是异二聚体受体,是转运携带裂解N-端线粒体定位序列(MTS)的典型的线粒体前体蛋白。Tom70是负责将线粒体非裂解前体蛋白向内膜转运所必须的特异受体蛋白。
     本课题组重点研究基于APE1和p53蛋白序列的多肽阵列设计及其MTS的筛选,旨在进一步揭示DNA损伤修复通路中二者的线粒体易位机制。本课题拟联合运用分子生物学、细胞生物学、生物化学及生物信息学的技术方法,建立肽库并利用搭建好的肽库筛选APE1和p53的MTS。首先使用分子生物学手段构建一系列的融合蛋白质粒,转化E.coli表达、纯化Tom20、Tom22和Tom70。采用每15个小肽为单位,构建APE1和p53的肽库微阵列芯片。然后通过杂交反应,确定MTS的可能的区域。根据肽库筛选的结果,拟构建相应的截短型APE1融合GFP质粒,转化Hela细胞,激光共聚焦显微镜观察,融合蛋白的亚细胞定位情况。Pull down试验进一步确定APE1和p53的亚细胞定位的准确性。寻找到特异的区域后,通过定点突变的方法,对MTS进行功能确认。这为今后鉴定p53和APE1线粒体定位序列,设计阻断多肽抑制其线粒体定位提供理论依据,为通过以p53基因介导抑制线粒体APE1的表达为靶点,对肿瘤细胞的药物敏感性提供一个潜在基因治疗方法和可行策略。
     主要结果如下:
     1.构建了线粒体外膜受体蛋白Tom20、Tom22和Tom70的三种His-10 tag重组质粒,pET19b-yTom20cd-His10、pET19b-yTom22cd-His10和pET19b- yTom70cd - His10,转化E.coli,IPTG诱导蛋白表达。
     2. SDS-PAGE,考马斯亮蓝R250染色确定三种蛋白的诱导,使用His标签蛋白纯化树脂(Ni-NTA Resin)纯化三种蛋白。Bradford法测定纯化后的蛋白浓度。使用HRP标记的His抗体,Western blot检测三种融合蛋白。得到纯度和浓度较高的融合蛋白,进行后续的亲和试验。
     3.激光共聚焦显微镜观察刺激前后APE1的亚细胞定位。结果表明:APE1主要定位在HeLa细胞的细胞核,在氧化应激或维生素K3诱导后APE1易位到线粒体。分离各组分(细胞核、线粒体、胞浆)蛋白,Western blot进一步验证了APE1的定位。
     4.构建APE1的肽库微阵列芯片。纯化后的三种TOM蛋白分别与APE1的肽库微阵列芯片杂交,通过Spotfinder软件提取数据,SAM3.02、Cluster3.0分析数据。结果显示,APE1与Tom20的亲和力明显强于Tom22和Tom70。主要分布在APE1的N-端和C-端的前三分之一区域,筛选出可能的MTS区域位于:峰值区域包括残基211-240,238-258,265-279以及289-312。
     5.三种TOM蛋白与APE1的pull down试验,进一步确认,Tom20与APE1的结合力最强。提示:APE1的线粒体易位可能通过Tom20的依赖途径。
     6.在本实验室成功构建了以GFP为报告基因的亚细胞定位系统。激光共聚焦显微镜观察到野生型的p53定位于细胞核中,线粒体特异蛋白转录因子A(TFAM)定位于线粒体中。表明该系统采用融合GFP以指示被融合蛋白的定位是可行的。
     7.同样方法构建p53的肽库微阵列芯片,三种TOM蛋白杂交后的结果表明: APE1与Tom20的亲和力明显强于Tom22和Tom70。提示p53的线粒体易位也可能通过Tom20的依赖途径。通过Spotfinder软件提取数据,SAM3.02、Cluster3.0分析数据结果,筛选出可能的MTS区域位于:351-365,358-372,365-379及372-386,为后续的试验提供支持。
Mitochondria are the only organelle with genomic DNA besides nucleus in human cells, and mitochondrial DNA(mtDNA) is extremely susceptible to oxidative damage. Oxidative stress is closely related with a variety of pathological conditions, including cancer, aging and cardiovascular disease. Cellular DNA is a biologically important target for ROS and DNA oxidative damage was mainly repaired by the base excision repair (BER). APE1 and the tumor suppressor gene p53 are the classic dual-targeted mitochondrial proteins for nuclear-mitochondrial. Previous studies showed that both of the two proteins were mainly localized in the nucleus and when subjected to different stimuli ofoxidative stress APE1 and p53 would translocate to mitochondrial, which demonstraed they involved in DNA damage repair process. Human apurinic/apyrimidinic endonuclease(APE1) plays a central role in the cellular response to oxidative stress. Previous studies showed APE1/Ref-1 stimulates the DNA binding activity of numerous transcription factors that are involved in cancer promotion and progression such as AP-1 (Fos/Jun), HIF-1a, CREB, p53 and so on. Recently report revealed WTp53 is a negative regulator of APE1 expression, that is to say p53-induced APE1 repression is mediated by interference with Sp1 binding to the APE1 promoter. Thus the repression of APE1 by p53 could provide an additional pathway for p53-dependent induction of apoptosis in response to DNA damage.
     As classical dual-targeted mitochondrial proteins, APE1 and tumor suppressor gene p53, being located in nuclear-mitochondrial. A growing body of evidence has shown that the subcellular distribution of APE1 can be cytoplasmic in some cell types with high metabolic or proliferative rates, with predominant localization in the mitochondria and the endoplasmic reticulum (ER) (5) (6-7). It is a dual-targeted protein preferentially residing in the nucleus with conditional distribution in the mitochondria. Dual-targeted mitochondrial proteins usually possess an unconventional mitochondrial targeting sequence (MTS) which makes them difficult to predict by current bioinformatics approaches. Thus, its mitochondrial localization sequence (MTS) is not clear. Translocase of the outer mitochondrial membrane(TOM) is closely related to proteins translocation into mitochondria, which is to be required for two translocation contact sites. That is to say, the nuclear-encoded mitochondrial-targeted preproteins are recognized by the receptors on the mitochondrial surface and are subsequently translocated across the outer mitochondrial membranes through a general import pore (GIP) that assembles into a high molecular weight complex, termed the preprotein translocase of the outer mitochondrial membrane. The three Tom subunits, Tom20, Tom22, and Tom70, expose major portions on the cytosolic side of the outer membrane and function as import receptors for distinct classes of the preproteins in vivo and in organello. Each receptor domain is able to bind mitochondrial preproteins but with different specificity. Protein import studies with isolated mitochondria indicate that Tom20 and Tom22 function as heterodimer receptors for the typical mitochondrial preproteins that carry the cleavable N-terminal mitochondrial targeting sequence (MTS). Tom70 is reported to be required for the import of non-cleavable preproteins that have been shown to have specificity for carrier proteins destined for the inner mitochondrial membrane. The purified cytosolic domains of these import receptors were validated to specifically bind the mitochondrial preproteins in vitro.
     Our study will mainly investigate to design on peptide array based on the sequence of proteins APE1 and p53 and its peptide screening for mitochondrial targeting sequence. To further reveal the mitochondrial translocation mechanism of DNA damage repair pathway. Our experimental approaches were combined in this study to identify the MTS of APE1 and p53 by molecular biology, cell biology, biochemistry and bioinformatics to establish peptide library and make a good use of it. First, the interactions between the peptides from APE1 and the three purified translocases receptors of the outer mitochondrial membrane (Tom) were evaluated using a peptide array screen. All the peptide sequences originated from APE1 and in 15 amino acids’lengths overlapped by 12 residues that were covalently attached to the cellulose membrane. All the peptide sequences originated from p53 by the same method of 15 amino acids’lengths overlapped by 8 residues, and use Spotfinder to predict the most possible MTS of the both proteins above for the future design of the blocking peptide inhibited mitochondrial localization with providing a theoretical basis, which sheds light on future prediction of MTS of p53 and APE1. Thus the p53-mediated suppression of APE1 expression could offer a potential approach for sensitizing tumor cells to drugs.
     The main results and conclusion of the study are as follows:
     1. To construct Tom receptor preteins of expression vector for mitochondrial outer membrane. Expression of the Cytosolic Domains of Tom20,Tom22, and Tom70—(His)10- tagged cytosolic domains of Tom20,Tom22 and Tom70 were induced using IPTG and Saccharomyces cerevisiae genomic DNA as template. The three kinds of Tom proteins were cloned into pET19b vector to obtain recombinant plasmid pET19b-yTom20cd-His10,pET19b-yTom22cd-His10 and pET19b- yTom70cd - His10.
     2. To validate the purity of the Tom proteins with SDS-PAGE and Coomassie Brilliant
     Blue R250 with His tag by Ni-NTA Resin. To evaluate the concentration of the purified protein by Bradford and detecte the three fusion proteins with His labeled antibody with HRP-tag by western blot. The results provided the fusion protein with high purity and concentration to make affinity test.
     3. Subcellular localization of APE1 under different stimuli. To confirm the subcellular fractions of the nucleus, cytoplasm, and mitochondria from each group were subjected to western blot. The results indicate that the major localization of APE1 in the HeLa cell is the nucleus, and that oxidative stress or the menadione induced the translocation of APE1 to the mitochondria.
     4. To construct the peptide screen assay. Together with results of hybridization and the pull-down assay demonstrate that APE1 possesses higher affinity to Tom20 by peptide array for the three kinds of Tom protein. And Tom20cd was distributed in the regions of the first one-third of both the N-terminus and C-terminus.Tom22cd and Tom70cd were strikingly similar, the overall intensity of the interactions with Tom22cd and Tom70cd were significantly lower.TOM respectively APE1 protein peptide library microarray chip hybridization. The peak regions of APE1 including peptides of residues were observed in the peptide scans by Spotfinder, and analyzed by SAM3.02 and Cluster3.0 to filter the candidate MTS 211-240,238-258,265-279 and 289-312.
     5. The results provided by the peptide screen assay together with the pull-down assay demonstrate that APE1 possesses higher affinity to Tom20 than to Tom22 or Tom70, which led to the hypothesis that mitochondrial translocation of APE1 may be through a Tom20–dependent pathway.
     6. To construct the subcellular location system with gene GFP as the reporter gene. The results by laser confocal microscope showed wild-type p53 located in the nucleus, and the subcellular distribution of p53 and transcription factor A mitochondria (TFAM) were tested as nuclear- and mitochondrial targeting controls to validate the correction of our observation system.
     7. To construct the peptide screen assay by the same method. The result demonstrated that p53 possesses higher affinity to Tom20 by peptide array for the three kinds of Tom protein, which hitten the hypothesis that mitochondrial translocation of p53 may be through a Tom20–dependent pathway. The peak regions of p53 including peptides of residues were observed in the peptide scans by Spotfinder, and analyzed by SAM3.02 and Cluster3.0 to filter the candidate MTS 351-365,358-372,365-379 and 372-386.
引文
1. Eliyahu E, Pnueli L, Melamed D, et al. Tom20 mediates localization of mRNAs to mitochondria in a translation-dependent manner. Mol Cell Biol. 2010, 30(1): 284-294.
    2. BY Ahn1, DLN Trinh1, LD Zajchowski2,et al. Tid1 is a new regulator of p53 mitochondrial translocation and apoptosis in cancer. Oncogene. 2010, 29:1155–1166
    3. Amira Zaky1, Carlos Busso, Tadahide Izumi3,et al. Regulation of the human AP-endonuclease (APE1/Ref-1) expression by the tumor suppressor p53 in response to DNA damage. Nucleic Acids Research, 2008, 36 (5):1555–1566.
    4. Marsolais D., Cote C.H., Frenette J. Pifithrin-alpha, an inhibitor of p53 transactivation, alters the inflammatory process and delays tendon healing following acute injury. Am. J. Physiol. 2007, 292: R321–R327.
    5. Chacinska A, van der Laan M, Mehnert CS, et al. Distinct forms of mitochondrial TOM-TIM super- complexes define signal- dependent states of preprotein sorting. Mol Cell Biol. 2010, 30(1):307-18.
    6. Eliyahu E, Pnueli L, Melamed D, et al. Tom20 mediates localization of mRNAs to mitochondria in a translation-dependent manner. Mol Cell Biol. 2010, 30(1): 284-294.
    7. Budzińska M, Ga?gańska H, Karachitos A, et al. The TOM complex is involved in the release of superoxide anion from mitochondria. J Bioenerg Biomembr. 2009,41(4):361-367.
    8.李梦侠,王东. APE1 /Ref-1基因结构及其表达调控.医学分子生物学杂志, 2006, 3 (5) : 350-353.
    9. Cheng TL, Liao CC, Tsai WH, et al. Identification and characterization of the mitochondrial targeting sequence and mechanism in human citrate synthase. J Cell Biochem. 2009, 107(5):1002-1015.
    10. Yamamoto H, Fukui K, Takahashi H, et al. Roles of Tom70 in import of presequence-containing mitochondrial proteins. J Biol Chem. 2009, 284(46): 31635-31646.
    11. Young JC, Hoogenraad NJ, Hartl FU. Molecular chaperones Hsp90 and Hsp70 deliverpreproteins to the mitochondrial import receptor Tom70. Cell. 2003; 112(1):41-50.
    12. Brix J, Dietmeier K, Pfanner N. Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J Biol Chem. 1997; 272(33):20730-5.
    13. Prieto-Alamo MJ, Laval F. Overexpression of the human HAP1 protein sensitizes cells to the lethal effect of bioreductive drugs. Carcinogenesis. 1999; 20(3):415-9.
    14. Tomicic M, Eschbach E, Kaina B. Expression of yeast but not human apurinic/ apyrimidinic endonuclease renders Chinese hamster cells more resistant to DNA damaging agents. Mutat Res. 1997; 383(2):155-65.
    15. Druzhyna NM, Hollensworth SB, Kelley MR, Wilson GL, Ledoux SP. Targeting human 8-oxoguanine glycosylase to mitochondria of oligodendrocytes protects against menadione-induced oxidative stress. Glia. 2003; 42(4):370-8.
    16. Dobson AW, Kelley MR, Wilson GL, LeDoux SP. Targeting DNA repair proteins to mitochondria. Methods Mol Biol. 2002; 197:351-62.
    17. Dobson AW, Grishko V, LeDoux SP, Kelley MR, Wilson GL, Gillespie MN. Enhanced mtDNA repair capacity protects pulmonary artery endothelial cells from oxidant-mediated death. Am J Physiol Lung Cell Mol Physiol. 2002; 283(1):L205-10.
    18. LeDoux SP, Druzhyna NM, Hollensworth SB, Harrison JF, Wilson GL. Mitochondrial DNA repair: a critical player in the response of cells of the CNS to genotoxic insults. Neuroscience. 2007; 145(4):1249-59.
    19. Mayer, A., Nargang, F. E., Neupert, W., and Lill, R. EMBO J. 1995,14(4): 4204–4211
    20. Wiedemann N, Kozjak V, Prinz T, et al. Biogenesis of yeast mitochondrial cytochrome c: a unique relationship to the TOM machinery. J Mol Biol. 2003, 327(2):465-474.
    21. Tell G, Damante G, Caldwell D, Kelley MR. The intracellular localization of APE1/Ref-1: more than a passive phenomenon? Antioxid Redox Signal. 2005; 7(3-4):367-84.
    22. Kow YW. Repair of deaminated bases in DNA. Free Radic Biol Med. 2002; 33(7):886-93.
    23. Ramana CV, Boldogh I, Izumi T, Mitra S. Activation of apurinic/apyrimidinicendonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals. Proc Natl Acad Sci U S A. 1998; 95(9):5061-6.
    24. Tell G, Zecca A, Pellizzari L, Spessotto P, Colombatti A, Kelley MR, Damante G, Pucillo C. An 'environment to nucleus' signaling system operates in B lymphocytes: redox status modulates BSAP/Pax-5 activation through Ref-1 nuclear translocation. Nucleic Acids Res. 2000; 28(5):1099-105.
    25. Chattopadhyay, R., Wiederhold, L., Szczesny, B., Boldogh, I., Hazra, T. K., Izumi, T., and Mitra, S. (2006) Nucleic Acids Res. 34, 2067-2076.
    26. Mitra, S., Izumi, T., Boldogh, I., Bhakat, K. K., Chattopadhyay, R., and Szczesny, B. (2007) DNA Repair (Amst). 6, 461-469.
    27. Frossi, B., Tell, G., Spessotto, P., Colombatti, A., Vitale, G., and Pucillo, C. (2002) J Cell Physiol. 193, 180-186
    28. Asin-Cayuela, J., and Gustafsson, C. M. (2007) Trends Biochem Sci. 32, 111-117.
    29. Becker, L., Bannwarth, M., Meisinger, C., Hill, K., Model, K., Krimmer, T., Casadio, R., Truscott, K. N., Schulz, G. E., Pfanner, N., and Wagner, R. (2005) J Mol Biol. 353, 1011-1020.
    30. Dekker, P. J., Ryan, M. T., Brix, J., Muller, H., Honlinger, A., and Pfanner, N. (1998) Mol Cell Biol. 18, 6515-6524.
    31. Brix, J., Dietmeier, K., and Pfanner, N. (1997) J Biol Chem. 272, 20730-20735.
    32. Brix, J., Rudiger, S., Bukau, B., Schneider-Mergener, J., and Pfanner, N. (1999) J Biol Chem. 274, 16522-16530.
    33. Sollner, T., Pfaller, R., Griffiths, G., Pfanner, N., and Neupert, W. (1990) Cell. 62, 107-115.
    34. Tsuchimoto, D., Sakai, Y., Sakumi, K., Nishioka, K., Sasaki, M., Fujiwara, T., and Nakabeppu, Y. (2001) Nucleic Acids Res. 29, 2349-2360.
    35. Jackson, E. B., Theriot, C. A., Chattopadhyay, R., Mitra, S., and Izumi, T. (2005) Nucleic Acids Res. 33, 3303-3312.
    36. Maya Dinur-Mills, M. T., Ophry Pines. (2008) PLoS ONE. 3, e2161.
    37. Rone MB, Liu J, Blonder J, et al. Targeting and insertion of the cholesterol- binding translocator protein into the outer mitochondrial membrane. Biochemistry. 2009, 48(29):6909-6920.
    38. Chattopadhyay, R., Wiederhold, L., Szczesny, B., Boldogh, I., Hazra, T. K., Izumi, T., and Mitra, S. (2006) Nucleic Acids Res 34, 2067-2076
    39. Chacinska, A., Pfanner, N., and Meisinger, C. (2002) Trends Cell Biol 12, 299-303
    40. Bhakat, K. K., Mantha, A. K., and Mitra, S. (2009) Antioxid Redox Signal 11, 621-638
    41. Vongsamphanh, R., Fortier, P. K., and Ramotar, D. (2001) Mol Cell Biol 21, 1647-1655
    42. Otera, H., Taira, Y., Horie, C., Suzuki, Y., Suzuki, H., Setoguchi, K., Kato, H., Oka, T., and Mihara, K. (2007) J Cell Biol 179, 1355-1363
    43. Setoguchi, K., Otera, H., and Mihara, K. (2006) EMBO J 25, 5635-5647
    44. Iosefson O, Azem A. Reconstitution of the mitochondrial Hsp70 (mortalin)-p53 interaction using purified proteins identification of additional interacting regions. 2010, 584(6): 1080-4.
    45. Tomita Y, Marchenko N, Erster S, et al. WT p53, but Not Tumor-derived Mutants, Bind to Bcl2 via the DNA Binding Domain and Induce Mitochondrial Permeabilization. J. Biol. Chem. 2007, 281(13): 8600-8606.
    46. Raffoul J.J., Banerjee S., Singh-Gupta V., et al. Down-regulation of apurinic/ apyrimidinic endonuclease 1/redox factor-1 expression by soy isoflavones enhances prostate cancer radiotherapy in vitro and in vivo. Cancer Res. 2007, 67: 2141-2149.
    1. Chacinska A, van der Laan M, Mehnert CS, et al. Distinct forms of mitochondrial TOM-TIM super- complexes define signal- dependent states of preprotein sorting. Mol Cell Biol. 2010, 30(1):307-18.
    2. Eliyahu E, Pnueli L, Melamed D, et al. Tom20 mediates localization of mRNAs to mitochondria in a translation-dependent manner. Mol Cell Biol. 2010, 30(1): 284-294.
    3. Budzińska M, Ga?gańska H, Karachitos A, et al. The TOM complex is involved in the release of superoxide anion from mitochondria. J Bioenerg Biomembr. 2009, 41(4):361-367.
    4. Mol CD, Izumi T, Mitra S, et al. DNA2bound structures and mutants reveal abasic DNA binding byAPE1 DNA repair and coordination [J]. Nature, 2000, 403 (6768) : 451-456.
    5. Yang S, Misner BJ, Chiu RJ, et al. Redox effector factor21, combined with reactive oxygen species, p lays an important role in the transformation of JB6 cells [J]. Carcinogenesis, 2007, 28 (11) : 2382 - 2390.
    6. JonesDP. Redefining oxidative stress[J]. Antioxid Redox Signal, 2006, 8 (9210) : 1865-1879.
    7. Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and mitochondrial DNA damage in heart failure [J]. Circ J, 2008, 72 (8) : 1347 - 1358.
    8. Prakash S, Johnson RE, Prakash L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function [J]. Annu Rev Biochem, 2005, 74: 317 - 353.
    9. Yang S, Misner BJ, Chiu RJ, et al. Redox effector factor21, combined with reactiveoxygen species, plays an important role in the transformation of JB6 cells [ J ]. Carcinogenesis, 2007, 28 (11) : 2382 - 2390.
    10. Breit JF, Ault-Ziel K, Al-Mehdi AB, Gillespie MN. Nuclear protein-induced bending and flexing of the hypoxic response element of the rat vascular endothelial growth factor promoter. FASEB J. 2008, 22(1): 19-29.
    11. Santos JH, Hunakova L, Chen Y, Bortner C, Van Houten B. Cell sorting experiments link persistent mitochondrial DNA damage with loss of mitochondrial membrane potential and apoptotic cell death. J Biol Chem. 2003; 278(3):1728-34.
    12. Kow YW. Repair of deaminated bases in DNA. Free Radic Biol Med. 2002; 33(7):886-93.
    13. Stuart JA, Brown MF. Mitochondrial DNA maintenance and bioenergetics. Biochim Biophys Acta. 2006; 1757(2):79-89.
    14. Wiesner RJ, Zsurka G, Kunz WS. Mitochondrial DNA damage and the aging process: facts and imaginations. Free Radic Res. 2006; 40(12):1284-94.
    15. Dagley MJ, Dolezal P, Likic VA,et al. The protein import channel in the outer mitosomal membrane of Giardia intestinalis. Mol Biol Evol. 2009, 26(9):1941-1947.
    16. Rone MB, Liu J, Blonder J, et al. Targeting and insertion of the cholesterol- binding translocator protein into the outer mitochondrial membrane. Biochemistry. 2009, 48(29):6909-6920.
    17. N. Bolender, A. Sickmann, R. Wagner, et al. Multiple pathways for sorting mitochondrial precursor proteins. EMBO. 2008, 9(61): 42–49.
    18. Dianov GL, Souza-Pinto N, Nyaga SG, et al. Base excision repair in nuclear and mitochondrial DNA. Prog Nucleic Acid Res Mol Biol. 2001; 68(3):285-297.
    19. Jezek P, Plecitá-HlavatáL. Mitochondrial reticulum network dynamics in relation to oxidative stress, redox regulation, and hypoxia Int J Biochem Cell Biol. 2009, 41(10):1790-804.
    20. Meng-Xia Li, Dong Wang, Zhao-Yang Zhong, et al. Targeting Truncated APE1 in Mitochondria Enhances Cell Survival after Oxidative Stress. Free Radical Biology andMedicine, 2008,45(5): 592-601.
    21.李梦侠,王东. APE1 /Ref-1基因结构及其表达调控.医学分子生物学杂志, 2006, 3 (5) : 350-353.
    22. Cheng TL, Liao CC, Tsai WH, et al. Identification and characterization of the mitochondrial targeting sequence and mechanism in human citrate synthase. J Cell Biochem. 2009, 107(5):1002-1015.
    23. Yamamoto H, Fukui K, Takahashi H, et al. Roles of Tom70 in import of presequence-containing mitochondrial proteins. J Biol Chem. 2009, 284 (46): 31635-31646.
    24. Mengxia Li,Zhaoyang Zhong,Jianwu Zhu et al. Identification and characterization of mitochondrial targeting sequence of human apurinic/ apyrimidinic endonuclease 1. J. Biol. Chem. 2010,285(20):14871-14881.
    25. Chan NC, Likic VA, Waller RF, Mulhern TD, Lithgow T. The C-terminal TPR domain of Tom70 defines a family of mitochondrial protein import receptors found only in animals and fungi. J Mol Biol. 2006, 358 (4):1010–1022.
    26. Tsuchimoto D, Sakai Y, Sakumi K, et al. Human APE2 protein is mostly localized in the nuclei and to some extent in the mitochondria, while nuclear APE2 is partly associated with proliferating cell nuclear antigen. Nucleic Acids Res. 2001; 29(11):2349-60.
    27. Roth DM, Harper I, Pouton CW, et al. Modulation of nucleocytoplasmic trafficking by retention in cytoplasm or nucleus. J Cell Biochem. 2009, 107(6):1160-1167.
    28. Qu J, Liu GH, Huang B, Chen C. Nitric oxide controls nuclear export of APE1/Ref-1 through S-nitrosation of cysteines 93 and 310. Nucleic Acids Res. 2007; 35 (8):2522-32.
    29. Dinur-Mills M, Tal M, Pines O. Dual targeted mitochondrial proteins are characterized by lower MTS parameters and total net charge. PLoS One. 2008, 3 (5): 2161-2169.
    30.高文祥,陈建,高钰琪.线粒体蛋白转运的研究进展.重庆医学.2006, 35 (19): 1795-1798.
    31. Ott M, Norberg E, Zhivotovsky B, Orrenius S. Mitochondrial targeting of tBid/Bax: a role for the TOM complex? Cell Death Differ. 2009, 16(8):1075-1082.
    32. Singh KK, Kulawiec M, Still I, Desouki MM, Geradts J, Matsui S. Inter-genomic cross talk between mitochondria and the nucleus plays an important role in tumorigenesis.Gene.2005,354(18):140-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700