去甲肾上腺素促进卵巢癌生长和血管化的分子机制以及使用PTD4-t4EBP2逆转化疗抵抗的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢癌是最常见的妇科恶性肿瘤之一,由于具有起病隐匿、早期不易发现、易转移、易发生铂类药物抵抗等特点,因此通常预后不佳。尽管近年来随着外科手术、化疗、放疗以及辅助治疗技术的不断发展,卵巢癌患者的5年生存率有所改善,然而,目前已有的治疗方案均不能达到完全治愈卵巢癌的目的。因此,研究影响卵巢癌迁移、耐药发生的分子机制,成为目前妇科肿瘤的研究重点与难点。
     近年来,流行病学研究和动物实验均表明慢性应激是影响肿瘤发生发展和演进的重要因素,尤其是交感神经递质去甲肾上腺素的作用逐渐受到重视。最初研究发现去甲肾上腺素可通过调节机体免疫系统功能促进恶性肿瘤的发生发展,如削弱自然杀伤(natural killer)细胞的细胞毒活性、抑制T细胞对有丝分裂原刺激的反应等。最近研究则发现去甲肾上腺素能够直接作用于肿瘤细胞,上调VEGF、bFGF、基质金属蛋白酶9(matrix metalloproteinase-9,MMP-9)等促血管生成分子表达,从而加速肿瘤组织生长和血管化,并且该作用可被β肾上腺素能受体拮抗剂心得安和β2肾上腺素能受体特异性小干扰RNA(small interfering RNA,siRNA)阻断,然而其分子机制尚未阐明。
     因为VEGF、bFGF和MMP-9的翻译起始过程均依赖于eIF4F复合物,ERK-Mnk1信号通路和Akt-mTOR信号通路可通过调节eIF4E磷酸化和4E-BP家族成员磷酸化影响eIF4F复合物活性,而去甲肾上腺素能够激活ERK-Mnk1信号通路和Akt-mTOR信号通路,所以我们推测去甲肾上腺素通过正性调控eIF4F复合物活性促进肿瘤增殖和血管化。同时,由于eIF4F复合物控制着survivin等在决定化疗敏感性中发挥关键作用的抗凋亡分子的翻译起始过程,所以我们推测去甲肾上腺素能够通过上调survivin表达诱发化疗抵抗。在此基础之上,我们尝试使用磷酸化缺陷型4E-BP2阻断eIF4F复合物装配,以期提高卵巢癌细胞的化疗敏感性,从而为建立新的卵巢癌靶向治疗策略奠定基础。
     目的:
     探讨去甲肾上腺素对卵巢癌细胞增殖、迁移及化疗敏感性的影响并初步阐明其分子机制,进而针对eIF4F复合物设计、制备新型蛋白治疗药物,评价其对卵巢癌化疗敏感性的影响。
     方法:
     ①使用伤口愈合实验测定去甲肾上腺素对人卵巢癌SKOV3细胞迁移能力的影响;
     ②应用MTT法和流式细胞术测定去甲肾上腺素对SKOV3细胞增殖能力的影响;
     ③用Annexin-V/PI双标法和DAPI染色法测定去甲肾上腺素对SKOV3细胞顺铂敏感性的影响;
     ④Western Blot法测定去甲肾上腺素对磷酸化Akt、磷酸化mTOR、磷酸化p70S6K、磷酸化4E-BP1、磷酸化ERK1、磷酸化Mnk1、磷酸化eIF4E、HIF-1α、c-myc、ODC、MDM2和survivin等表达水平的影响;
     ⑤ELISA法测定去甲肾上腺素对VEGF分泌水平的影响;
     ⑥设计、构建原核表达载体pVIP4 ,诱导表达并纯化融合蛋白PTD4-EGFP-t4EBP2;
     ⑦MTT法绘制生长曲线观察PTD4-EGFP-t4EBP2对SKOV3细胞增殖的影响;
     ⑧Annexin-V/PI双标法测定PTD4-EGFP-t4EBP2对SKOV3细胞顺铂敏感性的影响;
     ⑨ELISA法测定PTD4-EGFP-t4EBP2对VEGF分泌水平的影响;
     ⑩Western Blot测定PTD4-EGFP-t4EBP2对survivin表达水平的影响。
     结果:
     ①去甲肾上腺素处理SKOV3细胞3h、6h和12h时划痕宽度分别为初始宽度的98.7±2.2%、95.4±3.0%和92.7±2.2%,而对照组则分别为93.0±2.4%、80.7±3.7%和69.8±2.6%其中6h和12h时与对照组相比差异非常显著(P<0.001)。
     ②去甲肾上腺素对SKOV3细胞增殖的影响呈双相调节,在3h和6h时细胞增殖指数分别为39.6±1.3%和41.0±1.6%(P<0.001),9h时则为45.8±3.0%,而12h和24h进一步升高至70.4±3.8%和63.9±4.8%(P<0.001),MTT法绘制生长曲线表明细胞增殖能力明显增强。
     ③使用去甲肾上腺素处理SKOV3细胞0h、3h、6h、9h、12h和24h后加入终浓度为10μg/mL顺铂,12h后Annexin-V/PI双标法测定细胞凋亡率显示在3h和6h时凋亡率明显升高(3h,P<0.001;6h,P<0.001),而在9h、12h和24h凋亡率则均显著下降(P<0.001),DAPI染色法结果与Annexin-V/PI双标法一致。
     ④Western Blot显示去甲肾上腺素处理SKOV3细胞后磷酸化Akt、磷酸化mTOR、磷酸化p70S6K、磷酸化4E-BP1、磷酸化ERK1、磷酸化Mnk1、磷酸化eIF4E、HIF-1α、c-myc、ODC、MDM2和survivin等表达水平均明显升高;
     ⑤DNA测序证实原核表达载体pET28a-PTD4和pVIP4与设计完全相符;
     ⑥以SKOV3细胞总RNA为模板进行RT-PCR,成功获得了截短型4E-BP2 cDNA,克隆至pVIP4后经双酶切鉴定、PCR鉴定和DNA测序证实获得pVIP4-t4EBP2原核表达载体;
     ⑦将pVIP4-t4EBP2转化至ER2566大肠杆菌后获得高效表达,经纯化制备了重组融合蛋白PTD4-EGFP-t4EBP2;
     ⑧荧光显微镜观察显示融合蛋白PTD4-EGFP-t4EBP2能够高效进入SKOV3细胞,作用24h后VEGF分泌水平仅为对照组的21.0±2.7%(P<0.001),Western Blot显示其能显著抑制survivin表达;
     ⑨在作用24h和48h时,融合蛋白PTD4-EGFP-t4EBP2对SKOV3细胞增殖的抑制率分别可达16.9±4.4%和47.8±6.2%,与使用PTD4-EGFP对照组相比差异显著(P<0.001);
     ⑩使用重组蛋白PTD4-EGFP-t4EBP2干预SKOV3细胞24h即可使早期凋亡率上升至14.2±1.2%,与PTD4-EGFP组相比差异非常显著(P<0.001)。联合使用PTD4-EGFP-t4EBP2和顺铂可使早期凋亡率和晚期凋亡率分别达到45.2±3.3%和20.2±2.7%,与PTD4-EGFP+顺铂组相比差异非常显著(P<0.001)。
     结论:
     ①去甲肾上腺素能够抑制SKOV3细胞迁移;
     ②去甲肾上腺素对SKOV3细胞的顺铂敏感性呈双相调节,在早期提高顺铂敏感性,而在9h后显著诱发顺铂抵抗;
     ③去甲肾上腺素能够上调c-myc、ODC、MDM2等增殖相关分子、抗凋亡分子survivin、促血管生成相关分子VEGF和HIF-1α表达,其机制可能涉及激活ERK-Mnk1信号通路促进eIF4E磷酸化和激活Akt-mTOR信号通路促进4E-BP1磷酸化;
     ④成功制备了原核表达载体pVIP4-t4EBP2,在大肠杆菌ER2566中实现了PTD4-EGFP-t4EBP2的高效表达,并纯化获得了PTD4-EGFP-t4EBP2融合蛋白;
     ⑤证实PTD4-EGFP-t4EBP2融合蛋白能够抑制SKOV3细胞增殖,下调VEGF的分泌水平和survivin的表达水平;
     ⑥证实PTD4-EGFP-t4EBP2融合蛋白能够大幅度提高SKOV3细胞对顺铂的敏感性,提示eIF4F复合物是有效逆转化疗抵抗的关键靶点,并且阻断eIF4F复合物装配是提高化疗敏感性的有效手段。
Ovarian cancer, the most common gynecologic malignancy, is the fifth leading cause of death from cancer in women and the leading cause of death from gynecological cancer. The evolution of surgical techniques, chemotherapy, radiotherapy and adjuvant therapy through multiple clinical trials over the past three decades has resulted in improvements in ovarian cancer treatment and increase in 5-year survival rate. However, the high incidence of platinum- resistance following first-line platinum-paclitaxel doublet treatment makes ovarian cancer incurable.
     Epidemiologic and experimental animal studies have shown that chronic stress promotes tumor development and progression and the sympathetic transmitter, noradrenaline, has been considered as an important mediator. Thus far, the majority of research on the deleterious effects of stress has focused on the neuroendocrine regulation of the immune response. In both animal and human studies, chronic stress has been shown to decrease cellular immune parameters, such as natural killer cell cytotoxicity and T-cell responses to mitogen stimulation. Recently, there is growing evidence confirming that alterations in neuroendocrine dynamics due to chronic stress can cause alterations in tumor pathogenesis.
     Several report demonstrated that noradrenaline could act on tumor cells directly and promote tumor growth and angiogenesis through up-regulation the expression of VEGF, bFGF and MMP-9. Further more, both propranolol and ADRB2 siRNA could completely block noradrenaline-induced effects. However, its molecular mechanisms had not been uncovered.
     As the translation initiation of VEGF, bFGF and MMP-9 depend on eIF4F complex, the ERK-Mnk1 pathway and Akt-mTOR pathway could regulate eIF4F activities by phosphorylation of eIF4E or 4E-BPs, and noradrenaline could activate both the ERK-Mnk1 pathway and Akt-mTOR pathway, we postulate that noradrenaline promote tumor growth and angiogenesis through positive regulation of eIF4F complex. Meanwhile, eIF4F complex controls the translation initiation of survivin, an anti-apoptotic protein which plays key roles in determination of chemosensitivity. Therefore, we suppose that noradrenaline could induce chemoresistance by up-regulation the translation of survivin. At last, we prepared a novel fusion protein composed of protein transduction domain and phosphorylation-defective truncated 4E-BP2, and investigated whether it could enhance the chemosensitivity of ovarian cancer cells by disruption of eIF4F assembly.
     Methods: Wound healing assay was carried out to detect the effect of norepinephrine on SKOV3 cell migration. Apoptosis rate and cell cycle phase distribution of SKOV3 cells were measured by flow cytometry (FCM). The effect of norepinephrine on cell apoptosis and chemosensitivity were examined by Annexin V/PI staining and DAPI staining. The expression levels of Akt、p-mTOR、p-p70S6K、p-4E-BP1、p-ERK1、p-Mnk1、p-eIF4E、HIF-1α、c-myc、ODC、MDM2 and survivin was analyzed by Western blot and the secretion of VEGF was examined by ELISA assay.
     After design and construction a prokaryotic expression vector pVIP4- t4EBP2, a novel fusion protein PTD4-EGFP-t4EBP2 was highly expressed in E.coli ER2566 and purified. The effect of PTD4-EGFP-t4EBP2 on SKOV3 cell proliferation was evaluated by MTT assay. Annexin-V/PI staining was used to evaluate the effect of PTD4-EGFP-t4EBP2 on cisplain sensitivity. The effects of PTD4-EGFP-t4EBP2 on VEGF secretion and survivin expression was examined by ELISA assay and Western blot, respectively.
     Results: After treatment of SKOV3 cells with noradrenaline, the mean remaining width at 3h, 6h and 12h was 98.7±2.2%, 95.4±3.0% and 92.7±2.2% of the original wound width, but the mean remaining width in the control group was 93.0±2.4%、80.7±3.7% and 69.8±2.6%. Noradrenaline decrease the proliferation index of SKOV3 cells to 39.6±1.3% and 41.0±1.6% at 3h and 6h (P<0.001), but at 12h and 24h, the proliferation index was increased to 70.4±3.8% and 63.9±4.8%(P<0.001). Cell growth curve demonstrated that the tumor cells proliferate very quickly between 12 and 24 hours. Annexin-V/PI staining demonstrated that at early phase, pretreatment SKOV3 cells with noradrenaline significantly promote cisplatin-induced apoptosis, but after 9 hours pretreatment, the tumor cells are resistant to cisplatin-induced death. Western Blot demonstrated that noradrenaline significantly increase the phosphorylation levels of ERK1, Mnk1 and eIF4E, suggested that ERK-Mnk1 pathway was activated. Meanwhile, phosphorylation levels of Akt, mTOR, p70S6K and 4E-BP1 were also elevated, suggested that Akt-mTOR pathway was another downstream signal pathway that was activated by noradrenaline. And HIF-1α, c-myc, ODC, MDM2 and survivin, whose translation initiation has been proved to depend on the activity of eIF4F complex were all up-regulated.
     DNA sequencing confirmed that prokaryotic expression vector pET28a- PTD4 and pVIP4 were successfully constructed. Truncated 4E-BP2 cDNA was amplified by RT-PCR using total RNA from SKOV3 cellls as template and subsequently cloned into pVIP4, double endonuclease cutting, PCR with specific primers and DNA sequencing suggested that pVIP4-t4EBP2 was successfully. After transforming pVIP4-t4EBP2 into E.coli ER2566 competent cells, recombinant protein PTD4-EGFP-t4EBP2 was highly expressed and prepared. Under fluorescence microscope, we find that fusion protein PTD4-EGFP-t4EBP2 could enter SKOV3 cells with high efficiency, and both the secretion of VEGF and the expression of survivin were down-regulated. After transduction of SKOV3 cells with PTD4-EGFP-t4EBP2 for 24 or 48 hours, the inhibition rate was 16.9±4.4% and 47.8±6.2%, respectively. And transduction of SKOV3 cells with PTD4-EGFP-t4EBP2 for 24 hours, the percent of early apoptotic cells of SKOV3 cells was elevated from 3.3±1.0% to 14.2±1.2%, and the percent of apoptotic cells induced by cisplatin was elevated from 16.3±1.8% to 45.2±3.3% (P<0.001).
     Conclusion: Though noradrenaline enhances the cisplatin sensitivity of SKOV3 cells at early phase, the tumor cells are resistant to apoptosis after 9 hours. Also, noradrenaline promotes the proliferation of SKOV3 cells after 9 hours, but an obvious inhibition could be detected at 3 hours or 6 hours. Moreover, noradrenaline could activate both ERK-Mnk1 pathway and Akt-mTOR pathway which were demonstrated by up-regulation the phosphorylation levels of ERK, Mnk1 and eIF4E, or the phosphorylation levels of Akt, mTOR, p70S6K and 4E-BP1. And noradrenaline could up-regulate the expression of c-myc, ODC, MDM2, survivin and HIF-1αand enhance VEGF secretion, all of which are involved in promoting tumor growth and angiogenesis, confirmed that eIF4F complex plays key roles in tumor progression. The recombinant fusion protein PTD4-EGFP-t4EBP2 significantly inhibits SKOV3 cell proliferation, VEGF secretion and sensitizes the tumor cells to cisplatin through survivin expression.
引文
[1]. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T and Thun MJ. Cancer statistics, 2008. CA Cancer J Clin 2008; 58(2): 71-96.
    [2]. Parkin DM, Bray F, Ferlay J and Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55(2): 74-108.
    [3]. Dinh P, Harnett P, Piccart-Gebhart MJ and Awada A. New therapies for ovarian cancer: cytotoxics and molecularly targeted agents. Crit Rev Oncol Hematol 2008; 67(2): 103-12.
    [4]. Agarwal R and Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 2003; 3(7): 502-16.
    [5]. Mutch DG. Surgical management of ovarian cancer. Semin Oncol 2002; 29(1 Suppl 1): 3-8.
    [6]. Greenlee RT, Hill-Harmon MB, Murray T and Thun M. Cancer statistics, 2001. CA Cancer J Clin 2001; 51(1): 15-36.
    [7]. Neijt JP, Engelholm SA, Tuxen MK, Sorensen PG, Hansen M, Sessa C, de Swart CA, Hirsch FR, Lund B and van Houwelingen HC. Exploratory phase III study of paclitaxel and cisplatin versus paclitaxel and carboplatin in advanced ovarian cancer. J Clin Oncol 2000; 18(17): 3084-92.
    [8]. Ozols RF, Bundy BN, Greer BE, Fowler JM, Clarke-Pearson D, Burger RA, Mannel RS, DeGeest K, Hartenbach EM and Baergen R. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol 2003; 21(17): 3194-200.
    [9]. Sandercock J, Parmar MK, Torri V and Qian W. First-line treatment for advanced ovarian cancer: paclitaxel, platinum and the evidence. Br J Cancer 2002; 87(8): 815-24.
    [10]. Gore ME, Fryatt I, Wiltshaw E and Dawson T. Treatment of relapsed carcinoma of the ovary with cisplatin or carboplatin following initial treatment with these compounds. Gynecol Oncol 1990; 36(2): 207-11.
    [11]. Bookman MA, Greer BE and Ozols RF. Optimal therapy of advanced ovarian cancer: carboplatin and paclitaxel vs. cisplatin and paclitaxel (GOG 158) and an update on GOG0 182-ICON5. Int J Gynecol Cancer 2003; 13(6): 735-40.
    [12]. De Placido S, Scambia G, Di Vagno G, Naglieri E, Lombardi AV, Biamonte R, Marinaccio M, Carteni G, Manzione L, Febbraro A, De Matteis A, Gasparini G, Valerio MR, Danese S, Perrone F, Lauria R, De Laurentiis M, Greggi S, Gallo C and Pignata S. Topotecan compared with no therapy after response to surgery and carboplatin/ paclitaxel in patients with ovarian cancer: Multicenter Italian Trials in Ovarian Cancer(MITO-1) randomized study. J Clin Oncol 2004; 22(13): 2635-42.
    [13]. Hanahan D and Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57-70.
    [14]. Hicklin DJ and Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005; 23(5): 1011-27.
    [15]. Martin L and Schilder R. Novel approaches in advancing the treatment of epithelial ovarian cancer: the role of angiogenesis inhibition. J Clin Oncol 2007; 25(20): 2894-901.
    [16]. Ramakrishnan S, Subramanian IV, Yokoyama Y and Geller M. Angiogenesis in normal and neoplastic ovaries. Angiogenesis 2005; 8(2): 169-82.
    [17]. Burger RA. Experience with bevacizumab in the management of epithelial ovarian cancer. J Clin Oncol 2007; 25(20): 2902-8.
    [18]. Nagy JA, Meyers MS, Masse EM, Herzberg KT and Dvorak HF. Pathogenesis of ascites tumor growth: fibrinogen influx and fibrin accumulation in tissues lining the peritoneal cavity. Cancer Res 1995; 55(2): 369-75.
    [19]. Yoshiji H, Kuriyama S, Hicklin DJ, Huber J, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, Tsujinoue H and Fukui H. The vascular endothelial growth factor receptor KDR/Flk-1 is a major regulator of malignant ascites formation in the mouse hepatocellular carcinoma model. Hepatology 2001; 33(4): 841-7.
    [20]. Spannuth WA, Sood AK and Coleman RL. Angiogenesis as a strategic target for ovarian cancer therapy. Nat Clin Pract Oncol 2008; 5(4): 194-204.
    [21]. Gossmann A, Helbich TH, Mesiano S, Shames DM, Wendland MF, Roberts TP, Ferrara N, Jaffe RB and Brasch RC. Magnetic resonance imaging in an experimental model of human ovarian cancer demonstrating altered microvascular permeability after inhibition of vascular endothelial growth factor. Am J Obstet Gynecol 2000; 183(4): 956-63.
    [22]. Hu L, Hofmann J, Zaloudek C, Ferrara N, Hamilton T and Jaffe RB. Vascular endothelial growth factor immunoneutralization plus Paclitaxel markedly reduces tumor burden and ascites in athymic mouse model of ovarian cancer. Am J Pathol 2002; 161(5): 1917-24.
    [23]. Mesiano S, Ferrara N and Jaffe RB. Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am J Pathol 1998; 153(4): 1249-56.
    [24]. Byrne AT, Ross L, Holash J, Nakanishi M, Hu L, Hofmann JI, Yancopoulos GD and Jaffe RB. Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin Cancer Res 2003; 9(15): 5721-8.
    [25]. Machida S, Saga Y, Takei Y, Mizuno I, Takayama T, Kohno T, Konno R, Ohwada M and Suzuki M. Inhibition of peritoneal dissemination of ovarian cancer by tyrosine kinase receptor inhibitor SU6668 (TSU-68). Int J Cancer 2005; 114(2): 224-9.
    [26]. Xu L, Yoneda J, Herrera C, Wood J, Killion JJ and Fidler IJ. Inhibition of malignantascites and growth of human ovarian carcinoma by oral administration of a potent inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. Int J Oncol 2000; 16(3): 445-54.
    [27]. Burger RA, Sill MW, Monk BJ, Greer BE and Sorosky JI. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. J Clin Oncol 2007; 25(33): 5165-71.
    [28]. Cannistra SA, Matulonis UA, Penson RT, Hambleton J, Dupont J, Mackey H, Douglas J, Burger RA, Armstrong D, Wenham R and McGuire W. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J Clin Oncol 2007; 25(33): 5180-6.
    [29]. Han ES and Monk BJ. What is the risk of bowel perforation associated with bevacizumab therapy in ovarian cancer? Gynecol Oncol 2007; 105(1): 3-6.
    [30]. Kaye SB. Bevacizumab for the treatment of epithelial ovarian cancer: will this be its finest hour? J Clin Oncol 2007; 25(33): 5150-2.
    [31]. Fukumura D and Jain RK. Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 2007; 101(4): 937-49.
    [32]. Garofalo A, Naumova E, Manenti L, Ghilardi C, Ghisleni G, Caniatti M, Colombo T, Cherrington JM, Scanziani E, Nicoletti MI and Giavazzi R. The combination of the tyrosine kinase receptor inhibitor SU6668 with paclitaxel affects ascites formation and tumor spread in ovarian carcinoma xenografts growing orthotopically. Clin Cancer Res 2003; 9(9): 3476-85.
    [33]. Hu L, Hofmann J, Holash J, Yancopoulos GD, Sood AK and Jaffe RB. Vascular endothelial growth factor trap combined with paclitaxel strikingly inhibits tumor and ascites, prolonging survival in a human ovarian cancer model. Clin Cancer Res 2005; 11(19 Pt 1): 6966-71.
    [34]. Naumova E, Ubezio P, Garofalo A, Borsotti P, Cassis L, Riccardi E, Scanziani E, Eccles SA, Bani MR and Giavazzi R. The vascular targeting property of paclitaxel is enhanced by SU6668, a receptor tyrosine kinase inhibitor, causing apoptosis of endothelial cells and inhibition of angiogenesis. Clin Cancer Res 2006; 12(6): 1839-49.
    [35]. Azad NS, Posadas EM, Kwitkowski VE, Steinberg SM, Jain L, Annunziata CM, Minasian L, Sarosy G, Kotz HL, Premkumar A, Cao L, McNally D, Chow C, Chen HX, Wright JJ, Figg WD and Kohn EC. Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. J Clin Oncol 2008; 26(22): 3709-14.
    [36]. Nimeiri HS, Oza AM, Morgan RJ, Friberg G, Kasza K, Faoro L, Salgia R, Stadler WM, Vokes EE and Fleming GF. Efficacy and safety of bevacizumab plus erlotinib for patients with recurrent ovarian, primary peritoneal, and fallopian tube cancer: a trial of the Chicago, PMH, and California Phase II Consortia. Gynecol Oncol 2008; 110(1): 49-55.
    [37]. Shaked Y, Ciarrocchi A, Franco M, Lee CR, Man S, Cheung AM, Hicklin DJ, Chaplin D, Foster FS, Benezra R and Kerbel RS. Therapy-induced acute recruitment of circulating endothelial progenitor cells to tumors. Science 2006; 313(5794): 1785-7.
    [38]. Schilder RJ, Sill MW, Lee RB, Shaw TJ, Senterman MK, Klein-Szanto AJ, Miner Z and Vanderhyden BC. Phase II evaluation of imatinib mesylate in the treatment of recurrent or persistent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group Study. J Clin Oncol 2008; 26(20): 3418-25.
    [39]. Henriksen R, Funa K, Wilander E, Backstrom T, Ridderheim M and Oberg K. Expression and prognostic significance of platelet-derived growth factor and its receptors in epithelial ovarian neoplasms. Cancer Res 1993; 53(19): 4550-4.
    [40]. Matei D, Emerson RE, Lai YC, Baldridge LA, Rao J, Yiannoutsos C and Donner DD. Autocrine activation of PDGFRalpha promotes the progression of ovarian cancer. Oncogene 2006; 25(14): 2060-9.
    [41]. Alberts DS, Liu PY, Wilczynski SP, Jang A, Moon J, Ward JH, Beck JT, Clouser M and Markman M. Phase II trial of imatinib mesylate in recurrent, biomarker positive, ovarian cancer (Southwest Oncology Group Protocol S0211). Int J Gynecol Cancer 2007; 17(4): 784-8.
    [42]. Matei D, Emerson RE, Schilder J, Menning N, Baldridge LA, Johnson CS, Breen T, McClean J, Stephens D, Whalen C and Sutton G. Imatinib mesylate in combination with docetaxel for the treatment of patients with advanced, platinum-resistant ovarian cancer and primary peritoneal carcinomatosis : a Hoosier Oncology Group trial. Cancer 2008; 113(4): 723-32.
    [43]. Posadas EM, Kwitkowski V, Kotz HL, Espina V, Minasian L, Tchabo N, Premkumar A, Hussain MM, Chang R, Steinberg SM and Kohn EC. A prospective analysis of imatinib-induced c-KIT modulation in ovarian cancer: a phase II clinical study with proteomic profiling. Cancer 2007; 110(2): 309-17.
    [44]. Matei D, Chang DD and Jeng MH. Imatinib mesylate (Gleevec) inhibits ovarian cancer cell growth through a mechanism dependent on platelet-derived growth factor receptor alpha and Akt inactivation. Clin Cancer Res 2004; 10(2): 681-90.
    [45]. Bergers G, Song S, Meyer-Morse N, Bergsland E and Hanahan D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 2003; 111(9): 1287-95.
    [46]. Jayson GC, Parker GJ, Mullamitha S, Valle JW, Saunders M, Broughton L, Lawrance J, Carrington B, Roberts C, Issa B, Buckley DL, Cheung S, Davies K, Watson Y, Zinkewich-Peotti K, Rolfe L and Jackson A. Blockade of platelet-derived growth factor receptor-beta by CDP860, a humanized, PEGylated di-Fab', leads to fluid accumulation and is associated with increased tumor vascularized volume. J Clin Oncol 2005; 23(5): 973-81.
    [47]. Bartlett JM, Langdon SP, Simpson BJ, Stewart M, Katsaros D, Sismondi P, Love S,Scott WN, Williams AR, Lessells AM, Macleod KG, Smyth JF and Miller WR. The prognostic value of epidermal growth factor receptor mRNA expression in primary ovarian cancer. Br J Cancer 1996; 73(3): 301-6.
    [48]. Fischer-Colbrie J, Witt A, Heinzl H, Speiser P, Czerwenka K, Sevelda P and Zeillinger R. EGFR and steroid receptors in ovarian carcinoma: comparison with prognostic parameters and outcome of patients. Anticancer Res 1997; 17(1B): 613-9.
    [49]. Ciardiello F, Caputo R, Bianco R, Damiano V, Pomatico G, De Placido S, Bianco AR and Tortora G. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res 2000; 6(5): 2053-63.
    [50]. Sirotnak FM. Studies with ZD1839 in preclinical models. Semin Oncol 2003; 30(1 Suppl 1): 12-20.
    [51]. Sirotnak FM, Zakowski MF, Miller VA, Scher HI and Kris MG. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin Cancer Res 2000; 6(12): 4885-92.
    [52]. Schilder RJ, Sill MW, Chen X, Darcy KM, Decesare SL, Lewandowski G, Lee RB, Arciero CA, Wu H and Godwin AK. Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group Study. Clin Cancer Res 2005; 11(15): 5539-48.
    [53]. Bookman MA, Darcy KM, Clarke-Pearson D, Boothby RA and Horowitz IR. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a phase II trial of the Gynecologic Oncology Group. J Clin Oncol 2003; 21(2): 283-90.
    [54]. Elnakat H and Ratnam M. Role of folate receptor genes in reproduction and related cancers. Front Biosci 2006; 11: 506-19.
    [55]. Kalli KR, Oberg AL, Keeney GL, Christianson TJ, Low PS, Knutson KL and Hartmann LC. Folate receptor alpha as a tumor target in epithelial ovarian cancer. Gynecol Oncol 2008; 108(3): 619-26.
    [56]. Ebel W, Routhier EL, Foley B, Jacob S, McDonough JM, Patel RK, Turchin HA, Chao Q, Kline JB, Old LJ, Phillips MD, Nicolaides NC, Sass PM and Grasso L. Preclinical evaluation of MORAb-003, a humanized monoclonal antibody antagonizing folate receptor-alpha. Cancer Immun 2007; 7: 6.
    [57]. Gibbs DD, Theti DS, Wood N, Green M, Raynaud F, Valenti M, Forster MD, Mitchell F, Bavetsias V, Henderson E and Jackman AL. BGC 945, a novel tumor-selective thymidylate synthase inhibitor targeted to alpha-folate receptor-overexpressing tumors. Cancer Res 2005; 65(24): 11721-8.
    [58]. Ame JC, Spenlehauer C and de Murcia G. The PARP superfamily. Bioessays 2004; 26(8): 882-93.
    [59]. Dantzer F, de La Rubia G, Menissier-De Murcia J, Hostomsky Z, de Murcia G and Schreiber V. Base excision repair is impaired in mammalian cells lacking Poly (ADP- ribose) polymerase-1. Biochemistry 2000; 39(25): 7559-69.
    [60]. Tutt AN, Lord CJ, McCabe N, Farmer H, Turner N, Martin NM, Jackson SP, Smith GC and Ashworth A. Exploiting the DNA repair defect in BRCA mutant cells in the design of new therapeutic strategies for cancer. Cold Spring Harb Symp Quant Biol 2005; 70: 139-48.
    [61]. Gudmundsdottir K and Ashworth A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 2006; 25(43): 5864-74.
    [62]. Ashworth A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol 2008; 26(22): 3785-90.
    [63]. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ and Helleday T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005; 434(7035): 913-7.
    [64]. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC and Ashworth A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434(7035): 917-21.
    [65]. Turner N, Tutt A and Ashworth A. Hallmarks of 'BRCAness' in sporadic cancers. Nat Rev Cancer 2004; 4(10): 814-9.
    [66]. McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, Giavara S, O'Connor MJ, Tutt AN, Zdzienicka MZ, Smith GC and Ashworth A. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 2006; 66(16): 8109-15.
    [67]. Press JZ, De Luca A, Boyd N, Young S, Troussard A, Ridge Y, Kaurah P, Kalloger SE, Blood KA, Smith M, Spellman PT, Wang Y, Miller DM, Horsman D, Faham M, Gilks CB, Gray J and Huntsman DG. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer 2008; 8: 17.
    [68]. Engelman JA, Luo J and Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006; 7(8): 606-19.
    [69]. Hu L, Hofmann J and Jaffe RB. Phosphatidylinositol 3-kinase mediates angiogenesis and vascular permeability associated with ovarian carcinoma. Clin Cancer Res 2005; 11(22): 8208-12.
    [70]. Luo J, Manning BD and Cantley LC. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 2003; 4(4): 257-62.
    [71]. Vivanco I and Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in humancancer. Nat Rev Cancer 2002; 2(7): 489-501.
    [72]. Yap TA, Garrett MD, Walton MI, Raynaud F, de Bono JS and Workman P. Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 2008; 8(4): 393-412.
    [73]. Hennessy BT, Smith DL, Ram PT, Lu Y and Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 2005; 4(12): 988-1004.
    [74]. LoPiccolo J, Blumenthal GM, Bernstein WB and Dennis PA. Targeting the PI3K/ Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat 2008; 11(1-2): 32-50.
    [75]. Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C, Pinkel D, Powell B, Mills GB and Gray JW. PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 1999; 21(1): 99-102.
    [76]. Levine DA, Bogomolniy F, Yee CJ, Lash A, Barakat RR, Borgen PI and Boyd J. Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin Cancer Res 2005; 11(8): 2875-8.
    [77]. Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, Hooi CS, Cristiano BE, Pearson RB and Phillips WA. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 2004; 64(21): 7678-81.
    [78]. Philp AJ, Campbell IG, Leet C, Vincan E, Rockman SP, Whitehead RH, Thomas RJ and Phillips WA. The phosphatidylinositol 3'-kinase p85alpha gene is an oncogene in human ovarian and colon tumors. Cancer Res 2001; 61(20): 7426-9.
    [79]. Trotman LC and Pandolfi PP. PTEN and p53: who will get the upper hand? Cancer Cell 2003; 3(2): 97-9.
    [80]. Obata K, Morland SJ, Watson RH, Hitchcock A, Chenevix-Trench G, Thomas EJ and Campbell IG. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res 1998; 58(10): 2095-7.
    [81]. Jiang BH and Liu LZ. PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta 2008; 1784(1): 150-8.
    [82]. Cheng JQ, Lindsley CW, Cheng GZ, Yang H and Nicosia SV. The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 2005; 24(50): 7482-92.
    [83]. Page C, Lin HJ, Jin Y, Castle VP, Nunez G, Huang M and Lin J. Overexpression of Akt/AKT can modulate chemotherapy-induced apoptosis. Anticancer Res 2000; 20(1A): 407-16.
    [84]. Hu L, Hofmann J, Lu Y, Mills GB and Jaffe RB. Inhibition of phosphatidylinositol 3'-kinase increases efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Cancer Res 2002; 62(4): 1087-92.
    [85]. Yang X, Fraser M, Moll UM, Basak A and Tsang BK. Akt-mediated cisplatin resistance in ovarian cancer: modulation of p53 action on caspase-dependent mitochondrial death pathway. Cancer Res 2006; 66(6): 3126-36.
    [86]. Arboleda MJ, Lyons JF, Kabbinavar FF, Bray MR, Snow BE, Ayala R, Danino M, Karlan BY and Slamon DJ. Overexpression of AKT2/protein kinase Bbeta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res 2003; 63(1): 196-206.
    [87]. Yuan ZQ, Sun M, Feldman RI, Wang G, Ma X, Jiang C, Coppola D, Nicosia SV and Cheng JQ. Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene 2000; 19(19): 2324-30.
    [88]. Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, Wan M, Dubeau L, Scambia G, Masciullo V, Ferrandina G, Benedetti Panici P, Mancuso S, Neri G and Testa JR. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 1995; 64(4): 280-5.
    [89]. Cheng JQ, Godwin AK, Bellacosa A, Taguchi T, Franke TF, Hamilton TC, Tsichlis PN and Testa JR. AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci U S A 1992; 89(19): 9267-71.
    [90]. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, Uhlik M, Lin A, Du J, Qian YW, Zeckner DJ, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M, Schevitz R, Lai MH, Blanchard KL and Thomas JE. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 2007; 448(7152): 439-44.
    [91]. Nakayama K, Nakayama N, Kurman RJ, Cope L, Pohl G, Samuels Y, Velculescu VE, Wang TL and Shih Ie M. Sequence mutations and amplification of PIK3CA and AKT2 genes in purified ovarian serous neoplasms. Cancer Biol Ther 2006; 5(7): 779-85.
    [92]. Graff JR, Konicek BW, Carter JH and Marcusson EG. Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res 2008; 68(3): 631-4.
    [93]. Tee AR and Proud CG. Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol Cell Biol 2002; 22(6): 1674-83.
    [94]. Constantinou C and Clemens MJ. Regulation of translation factors eIF4GI and 4E-BP1 during recovery of protein synthesis from inhibition by p53. Cell Death Differ 2007; 14(3): 576-85.
    [95]. Constantinou C and Clemens MJ. Regulation of the phosphorylation and integrity of protein synthesis initiation factor eIF4GI and the translational repressor 4E-BP1 by p53. Oncogene 2005; 24(30): 4839-50.
    [96]. Peponi E, Drakos E, Reyes G, Leventaki V, Rassidakis GZ and Medeiros LJ. Activation of mammalian target of rapamycin signaling promotes cell cycle progression and protects cells from apoptosis in mantle cell lymphoma. Am J Pathol 2006; 169(6): 2171-80.
    [97]. Graff JR, Konicek BW, Vincent TM, Lynch RL, Monteith D, Weir SN, Schwier P, Capen A, Goode RL, Dowless MS, Chen Y, Zhang H, Sissons S, Cox K, McNulty AM, Parsons SH, Wang T, Sams L, Geeganage S, Douglass LE, Neubauer BL, Dean NM, Blanchard K, Shou J, Stancato LF, Carter JH and Marcusson EG. Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J Clin Invest 2007; 117(9): 2638-48.
    [98]. Tran J, Rak J, Sheehan C, Saibil SD, LaCasse E, Korneluk RG and Kerbel RS. Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem Biophys Res Commun 1999; 264(3): 781-8.
    [99]. Randle RA, Raguz S, Higgins CF and Yague E. Role of the highly structured 5'-end region of MDR1 mRNA in P-glycoprotein expression. Biochem J 2007; 406(3): 445-55.
    [100]. Karni R, Gus Y, Dor Y, Meyuhas O and Levitzki A. Active Src elevates the expression of beta-catenin by enhancement of cap-dependent translation. Mol Cell Biol 2005; 25(12): 5031-9.
    [101]. Nathan CO, Amirghahri N, Rice C, Abreo FW, Shi R and Stucker FJ. Molecular analysis of surgical margins in head and neck squamous cell carcinoma patients. Laryngoscope 2002; 112(12): 2129-40.
    [102]. Van Trappen PO, Ryan A, Carroll M, Lecoeur C, Goff L, Gyselman VG, Young BD, Lowe DG, Pepper MS, Shepherd JH and Jacobs IJ. A model for co-expression pattern analysis of genes implicated in angiogenesis and tumour cell invasion in cervical cancer. Br J Cancer 2002; 87(5): 537-44.
    [103]. van der Velden AW and Thomas AA. The role of the 5' untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 1999; 31(1): 87-106.
    [104]. Nathan CA, Carter P, Liu L, Li BD, Abreo F, Tudor A, Zimmer SG and De Benedetti A. Elevated expression of eIF4E and FGF-2 isoforms during vascularization of breast carcinomas. Oncogene 1997; 15(9): 1087-94.
    [105]. Torres VA, Tapia JC, Rodriguez DA, Lladser A, Arredondo C, Leyton L and Quest AF. E-cadherin is required for caveolin-1-mediated down-regulation of the inhibitor of apoptosis protein survivin via reduced beta-catenin-Tcf/Lef-dependent transcription. Mol Cell Biol 2007; 27(21): 7703-17.
    [106]. Tapia JC, Torres VA, Rodriguez DA, Leyton L and Quest AF. Casein kinase 2 (CK2) increases survivin expression via enhanced beta-catenin-T cell factor/lymphoid enhancer binding factor-dependent transcription. Proc Natl Acad Sci U S A 2006; 103(41): 15079-84.
    [107]. Kaga S, Zhan L, Altaf E and Maulik N. Glycogen synthase kinase-3beta/beta-catenin promotes angiogenic and anti-apoptotic signaling through the induction of VEGF, Bcl-2 and survivin expression in rat ischemic preconditioned myocardium. J Mol Cell Cardiol2006; 40(1): 138-47.
    [108]. Yang L, Cao Z, Li F, Post DE, Van Meir EG, Zhong H and Wood WC. Tumor-specific gene expression using the survivin promoter is further increased by hypoxia. Gene Ther 2004; 11(15): 1215-23.
    [109]. Conway EM, Zwerts F, Van Eygen V, DeVriese A, Nagai N, Luo W and Collen D. Survivin-dependent angiogenesis in ischemic brain: molecular mechanisms of hypoxia-induced up-regulation. Am J Pathol 2003; 163(3): 935-46.
    [110]. Kong D, Li Y, Wang Z, Banerjee S and Sarkar FH. Inhibition of angiogenesis and invasion by 3,3'-diindolylmethane is mediated by the nuclear factor-kappaB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer. Cancer Res 2007; 67(7): 3310-9.
    [111]. Oguro A, Ohtsu T, Svitkin YV, Sonenberg N and Nakamura Y. RNA aptamers to initiation factor 4A helicase hinder cap-dependent translation by blocking ATP hydrolysis. Rna 2003; 9(4): 394-407.
    [112]. Mochizuki K, Oguro A, Ohtsu T, Sonenberg N and Nakamura Y. High affinity RNA for mammalian initiation factor 4E interferes with mRNA-cap binding and inhibits translation. Rna 2005; 11(1): 77-89.
    [113]. Miyakawa S, Oguro A, Ohtsu T, Imataka H, Sonenberg N and Nakamura Y. RNA aptamers to mammalian initiation factor 4G inhibit cap-dependent translation by blocking the formation of initiation factor complexes. Rna 2006; 12(10): 1825-34.
    [114]. DeFatta RJ, Li Y and De Benedetti A. Selective killing of cancer cells based on translational control of a suicide gene. Cancer Gene Ther 2002; 9(7): 573-8.
    [115]. Chu QD, Sun L, Li J, Byrnes K, Chervenak D, DeBenedetti A, Mathis JM and Li BD. Rat adenocarcinoma cell line infected with an adenovirus carrying a novel herpes-simplex virus-thymidine kinase suicide gene construct dies by apoptosis upon treatment with ganciclovir. J Surg Res 2007; 143(1): 189-94.
    [116]. DeFatta RJ, Chervenak RP and De Benedetti A. A cancer gene therapy approach through translational control of a suicide gene. Cancer Gene Ther 2002; 9(6): 505-12.
    [117]. Mathis JM, Williams BJ, Sibley DA, Carroll JL, Li J, Odaka Y, Barlow S, Nathan CO, Li BD and DeBenedetti A. Cancer-specific targeting of an adenovirus-delivered herpes simplex virus thymidine kinase suicide gene using translational control. J Gene Med 2006; 8(9): 1105-20.
    [118]. Byrnes K, Li BD, Holm N, Li J, Okadata Y, De Benedetti A, Nedeljkovic-Kurepa A, Mathis M and Chu QD. A novel suicide gene therapy targeting the overexpression of eukaryotic initiation factor 4E improves survival in a rat peritoneal carcinomatosis model. Surgery 2007; 142(2): 270-5.
    [119]. Polunovsky VA, Gingras AC, Sonenberg N, Peterson M, Tan A, Rubins JB, Manivel JC and Bitterman PB. Translational control of the antiapoptotic function of Ras. J Biol Chem 2000; 275(32): 24776-80.
    [120]. Li S, Sonenberg N, Gingras AC, Peterson M, Avdulov S, Polunovsky VA and Bitterman PB. Translational control of cell fate: availability of phosphorylation sites on translational repressor 4E-BP1 governs its proapoptotic potency. Mol Cell Biol 2002; 22(8): 2853-61.
    [121]. Jacobson BA, Alter MD, Kratzke MG, Frizelle SP, Zhang Y, Peterson MS, Avdulov S, Mohorn RP, Whitson BA, Bitterman PB, Polunovsky VA and Kratzke RA. Repression of cap-dependent translation attenuates the transformed phenotype in non-small cell lung cancer both in vitro and in vivo. Cancer Res 2006; 66(8): 4256-62.
    [122]. Reich M. Depression and cancer: recent data on clinical issues, research challenges and treatment approaches. Curr Opin Oncol 2008; 20(4): 353-9.
    [123]. Gidron Y and Ronson A. Psychosocial factors, biological mediators, and cancer prognosis: a new look at an old story. Curr Opin Oncol 2008; 20(4): 386-92.
    [124]. Lutgendorf SK, Cole S, Costanzo E, Bradley S, Coffin J, Jabbari S, Rainwater K, Ritchie JM, Yang M and Sood AK. Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res 2003; 9(12): 4514-21.
    [125]. Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, Jennings NB, Armaiz-Pena G, Bankson JA, Ravoori M, Merritt WM, Lin YG, Mangala LS, Kim TJ, Coleman RL, Landen CN, Li Y, Felix E, Sanguino AM, Newman RA, Lloyd M, Gershenson DM, Kundra V, Lopez-Berestein G, Lutgendorf SK, Cole SW and Sood AK. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 2006; 12(8): 939-44.
    [126]. Sood AK, Bhatty R, Kamat AA, Landen CN, Han L, Thaker PH, Li Y, Gershenson DM, Lutgendorf S and Cole SW. Stress hormone-mediated invasion of ovarian cancer cells. Clin Cancer Res 2006; 12(2): 369-75.
    [127]. Landen CN, Jr., Lin YG, Armaiz Pena GN, Das PD, Arevalo JM, Kamat AA, Han LY, Jennings NB, Spannuth WA, Thaker PH, Lutgendorf SK, Savary CA, Sanguino AM, Lopez-Berestein G, Cole SW and Sood AK. Neuroendocrine modulation of signal transducer and activator of transcription-3 in ovarian cancer. Cancer Res 2007; 67(21): 10389-96.
    [128]. Yang EV, Sood AK, Chen M, Li Y, Eubank TD, Marsh CB, Jewell S, Flavahan NA, Morrison C, Yeh PE, Lemeshow S and Glaser R. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res 2006; 66(21): 10357-64.
    [129]. Yang EV, Kim SJ, Donovan EL, Chen M, Gross AC, Webster Marketon JI, Barsky SH and Glaser R. Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun 2009; 23(2): 267-75.
    [130]. Thaker PH, Lutgendorf SK and Sood AK. The neuroendocrine impact of chronic stress on cancer. Cell Cycle 2007; 6(4): 430-3.
    [131]. Thaker PH and Sood AK. Neuroendocrine influences on cancer biology. Semin Cancer Biol 2008; 18(3): 164-70.
    [132]. Konicek BW, Dumstorf CA and Graff JR. Targeting the eIF4F translation initiation complex for cancer therapy. Cell Cycle 2008; 7(16): 2466-71.
    [133]. Sonenberg N. eIF4E, the mRNA cap-binding protein: from basic discovery to translational research. Biochem Cell Biol 2008; 86(2): 178-83.
    [134]. Zorko M and Langel U. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 2005; 57(4): 529-45.
    [135]. Prochiantz A. Protein transduction: from physiology to technology and vice versa. Adv Drug Deliv Rev 2005; 57(4): 491-3.
    [136]. Futaki S. Membrane-permeable arginine-rich peptides and the translocation mechanisms. Adv Drug Deliv Rev 2005; 57(4): 547-58.
    [137]. Joliot A and Prochiantz A. Transduction peptides: from technology to physiology. Nat Cell Biol 2004; 6(3): 189-96.
    [138]. Snyder EL and Dowdy SF. Cell penetrating peptides in drug delivery. Pharm Res 2004; 21(3): 389-93.
    [139]. Fittipaldi A and Giacca M. Transcellular protein transduction using the Tat protein of HIV-1. Adv Drug Deliv Rev 2005; 57(4): 597-608.
    [140]. Brooks H, Lebleu B and Vives E. Tat peptide-mediated cellular delivery: back to basics. Adv Drug Deliv Rev 2005; 57(4): 559-77.
    [141]. Green M and Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 1988; 55(6): 1179-88.
    [142]. Frankel AD and Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988; 55(6): 1189-93.
    [143]. Mann DA and Frankel AD. Endocytosis and targeting of exogenous HIV-1 Tat protein. Embo J 1991; 10(7): 1733-9.
    [144]. Tyagi M, Rusnati M, Presta M and Giacca M. Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 2001; 276(5): 3254-61.
    [145]. Rusnati M, Coltrini D, Oreste P, Zoppetti G, Albini A, Noonan D, d'Adda di Fagagna F, Giacca M and Presta M. Interaction of HIV-1 Tat protein with heparin. Role of the backbone structure, sulfation, and size. J Biol Chem 1997; 272(17): 11313-20.
    [146]. Rusnati M, Tulipano G, Spillmann D, Tanghetti E, Oreste P, Zoppetti G, Giacca M and Presta M. Multiple interactions of HIV-I Tat protein with size-defined heparin oligosaccharides. J Biol Chem 1999; 274(40): 28198-205.
    [147]. Rusnati M, Tulipano G, Urbinati C, Tanghetti E, Giuliani R, Giacca M, Ciomei M, Corallini A and Presta M. The basic domain in HIV-1 Tat protein as a target forpolysulfonated heparin-mimicking extracellular Tat antagonists. J Biol Chem 1998; 273(26): 16027-37.
    [148]. Hakansson S and Caffrey M. Structural and dynamic properties of the HIV-1 tat transduction domain in the free and heparin-bound states. Biochemistry 2003; 42(30): 8999-9006.
    [149]. Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B and Barsoum J. Tat- mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci U S A 1994; 91(2): 664-8.
    [150]. Schwarze SR, Ho A, Vocero-Akbani A and Dowdy SF. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 1999; 285(5433): 1569-72.
    [151]. Kwon HY, Eum WS, Jang HW, Kang JH, Ryu J, Ryong Lee B, Jin LH, Park J and Choi SY. Transduction of Cu,Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic domain into mammalian cells. FEBS Lett 2000; 485(2-3): 163-7.
    [152]. Caron NJ, Torrente Y, Camirand G, Bujold M, Chapdelaine P, Leriche K, Bresolin N and Tremblay JP. Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol Ther 2001; 3(3): 310-8.
    [153]. Embury J, Klein D, Pileggi A, Ribeiro M, Jayaraman S, Molano RD, Fraker C, Kenyon N, Ricordi C, Inverardi L and Pastori RL. Proteins linked to a protein transduction domain efficiently transduce pancreatic islets. Diabetes 2001; 50(8): 1706-13.
    [154]. Eguchi A, Akuta T, Okuyama H, Senda T, Yokoi H, Inokuchi H, Fujita S, Hayakawa T, Takeda K, Hasegawa M and Nakanishi M. Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J Biol Chem 2001; 276(28): 26204-10.
    [155]. Ter-Avetisyan G, Tunnemann G, Nowak D, Nitschke M, Herrmann A, Drab M and Cardoso MC. Cell Entry of Arginine-rich Peptides Is Independent of Endocytosis. J Biol Chem 2009; 284(6): 3370-8.
    [156]. Torchilin VP, Rammohan R, Weissig V and Levchenko TS. TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci U S A 2001; 98(15): 8786-91.
    [157]. Elliott G and O'Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 1997; 88(2): 223-33.
    [158]. Dilber MS, Phelan A, Aints A, Mohamed AJ, Elliott G, Smith CI and O'Hare P. Intercellular delivery of thymidine kinase prodrug activating enzyme by the herpes simplex virus protein, VP22. Gene Ther 1999; 6(1): 12-21.
    [159]. Phelan A, Elliott G and O'Hare P. Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nat Biotechnol 1998; 16(5): 440-3.
    [160]. Aints A, Guven H, Gahrton G, Smith CI and Dilber MS. Mapping of herpes simplex virus-1 VP22 functional domains for inter- and subcellular protein targeting. Gene Ther2001; 8(14): 1051-6.
    [161]. Normand N, van Leeuwen H and O'Hare P. Particle formation by a conserved domain of the herpes simplex virus protein VP22 facilitating protein and nucleic acid delivery. J Biol Chem 2001; 276(18): 15042-50.
    [162]. Harms JS, Ren X, Oliveira SC and Splitter GA. Distinctions between bovine herpesvirus 1 and herpes simplex virus type 1 VP22 tegument protein subcellular associations. J Virol 2000; 74(7): 3301-12.
    [163]. Dorange F, El Mehdaoui S, Pichon C, Coursaget P and Vautherot JF. Marek's disease virus (MDV) homologues of herpes simplex virus type 1 UL49 (VP22) and UL48 (VP16) genes: high-level expression and characterization of MDV-1 VP22 and VP16. J Gen Virol 2000; 81(Pt 9): 2219-30.
    [164]. Joliot A, Pernelle C, Deagostini-Bazin H and Prochiantz A. Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A 1991; 88(5): 1864-8.
    [165]. Prochiantz A. Messenger proteins: homeoproteins, TAT and others. Curr Opin Cell Biol 2000; 12(4): 400-6.
    [166]. Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G and Prochiantz A. Cell internalization of the third helix of the Antennapedia homeodomain is receptor- independent. J Biol Chem 1996; 271(30): 18188-93.
    [167]. Derossi D, Joliot AH, Chassaing G and Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 1994; 269(14): 10444-50.
    [168]. Ghibaudi E, Boscolo B, Inserra G, Laurenti E, Traversa S, Barbero L and Ferrari RP. The interaction of the cell-penetrating peptide penetratin with heparin, heparansulfates and phospholipid vesicles investigated by ESR spectroscopy. J Pept Sci 2004.
    [169]. Lin YZ, Yao SY, Veach RA, Torgerson TR and Hawiger J. Inhibition of nuclear translocation of transcription factor NF-kappa B by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. J Biol Chem 1995; 270(24): 14255-8.
    [170]. Chaloin L, Vidal P, Heitz A, Van Mau N, Mery J, Divita G and Heitz F. Conformations of primary amphipathic carrier peptides in membrane mimicking environments. Biochemistry 1997; 36(37): 11179-87.
    [171]. Chaloin L, Vidal P, Lory P, Mery J, Lautredou N, Divita G and Heitz F. Design of carrier peptide-oligonucleotide conjugates with rapid membrane translocation and nuclear localization properties. Biochem Biophys Res Commun 1998; 243(2): 601-8.
    [172]. Jo D, Nashabi A, Doxsee C, Lin Q, Unutmaz D, Chen J and Ruley HE. Epigenetic regulation of gene structure and function with a cell-permeable Cre recombinase. Nat Biotechnol 2001; 19(10): 929-33.
    [173]. Ho A, Schwarze SR, Mermelstein SJ, Waksman G and Dowdy SF. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo. Cancer Res2001; 61(2): 474-7.
    [174]. Mi Z, Mai J, Lu X and Robbins PD. Characterization of a class of cationic peptides able to facilitate efficient protein transduction in vitro and in vivo. Mol Ther 2000; 2(4): 339-47.
    [175]. Xia H, Mao Q and Davidson BL. The HIV Tat protein transduction domain improves the biodistribution of beta-glucuronidase expressed from recombinant viral vectors. Nat Biotechnol 2001; 19(7): 640-4.
    [176]. Aints A, Dilber MS and Smith CI. Intercellular spread of GFP-VP22. J Gene Med 1999; 1(4): 275-9.
    [177]. Wybranietz WA, Prinz F, Spiegel M, Schenk A, Bitzer M, Gregor M and Lauer UM. Quantification of VP22-GFP spread by direct fluorescence in 15 commonly used cell lines. J Gene Med 1999; 1(4): 265-74.
    [178]. Lai Z, Han I, Zirzow G, Brady RO and Reiser J. Intercellular delivery of a herpes simplex virus VP22 fusion protein from cells infected with lentiviral vectors. Proc Natl Acad Sci U S A 2000; 97(21): 11297-302.
    [179]. Liu CS, Kong B, Xia HH, Ellem KA and Wei MQ. VP22 enhanced intercellular trafficking of HSV thymidine kinase reduced the level of ganciclovir needed to cause suicide cell death. J Gene Med 2001; 3(2): 145-52.
    [180]. Tasciotti E, Zoppe M and Giacca M. Transcellular transfer of active HSV-1 thymidine kinase mediated by an 11-amino-acid peptide from HIV-1 Tat. Cancer Gene Ther 2003; 10(1): 64-74.
    [181]. Qiu Z, Harms JS, Zhu J and Splitter GA. Bovine herpesvirus tegument protein VP22 enhances thymidine kinase/ganciclovir suicide gene therapy for neuroblastomas compared to herpes simplex virus VP22. J Virol 2004; 78(8): 4224-33.
    [182]. Wills KN, Atencio IA, Avanzini JB, Neuteboom S, Phelan A, Philopena J, Sutjipto S, Vaillancourt MT, Wen SF, Ralston RO and Johnson DE. Intratumoral spread and increased efficacy of a p53-VP22 fusion protein expressed by a recombinant adenovirus. J Virol 2001; 75(18): 8733-41.
    [183]. Roy I, Holle L, Song W, Holle E, Wagner T and Yu X. Efficient translocation and apoptosis induction by adenovirus encoded VP22-p53 fusion protein in human tumor cells in vitro. Anticancer Res 2002; 22(6A): 3185-9.
    [184]. Zender L, Kuhnel F, Kock R, Manns M and Kubicka S. VP22-mediated intercellular transport of p53 in hepatoma cells in vitro and in vivo. Cancer Gene Ther 2002; 9(6): 489-96.
    [185]. Zender L, Kock R, Eckhard M, Frericks B, Gosling T, Gebhardt T, Drobek S, Galanski M, Kuhnel F, Manns M and Kubicka S. Gene therapy by intrahepatic and intratumoral trafficking of p53-VP22 induces regression of liver tumors. Gastroenterology 2002; 123(2): 608-18.
    [186]. Xu C, Zhang Y and Jiang H. Ex vivo expansion of hematopoietic stem cell by fusionprotein TAT-Zfx. Biochem Biophys Res Commun 2009; 379(3): 771-4.
    [187]. Yun CO, Shin HC, Kim TD, Yoon WH, Kang YA, Kwon HS, Kim SK and Kim JS. Transduction of artificial transcriptional regulatory proteins into human cells. Nucleic Acids Res 2008; 36(16): e103.
    [188]. Yu Z, Wu J, Wu S, Jia P, Tong Y, Wu X and Wang Y. A recombinant cell-permeable p53 fusion protein is selectively stabilized under hypoxia and inhibits tumor cell growth. Cancer Lett 2009.
    [189]. Yang M, Wang S, Wang S, Ma J, Xu X, Mao C, Ma B, Tong J, Qiu G, Shao Q, Ding Q and Xu H. Tat-mediated intracellular delivery of T-bet protein into THP-1 cells can induce Th1-type response. Immunol Invest 2008; 37(2): 97-111.
    [190]. Spitere K, Toulouse A, O'Sullivan DB and Sullivan AM. TAT-PAX6 protein transduction in neural progenitor cells: a novel approach for generation of dopaminergic neurones in vitro. Brain Res 2008; 1208: 25-34.
    [191]. Bosnali M and Edenhofer F. Generation of transducible versions of transcription factors Oct4 and Sox2. Biol Chem 2008; 389(7): 851-61.
    [192]. Asoh S, Ohsawa I, Mori T, Katsura K, Hiraide T, Katayama Y, Kimura M, Ozaki D, Yamagata K and Ohta S. Protection against ischemic brain injury by protein therapeutics. Proc Natl Acad Sci U S A 2002; 99(26): 17107-12.
    [193]. Arakawa M, Yasutake M, Miyamoto M, Takano T, Asoh S and Ohta S. Transduction of anti-cell death protein FNK protects isolated rat hearts from myocardial infarction induced by ischemia/reperfusion. Life Sci 2007; 80(22): 2076-84.
    [194]. Chen H, Zhang L, Jin Z, Jin E, Fujiwara M, Ghazizadeh M, Asoh S, Ohta S and Kawanami O. Anti-apoptotic PTD-FNK protein suppresses lipopolysaccharide-induced acute lung injury in rats. Exp Mol Pathol 2007; 83(3): 377-84.
    [195]. Ozaki D, Sudo K, Asoh S, Yamagata K, Ito H and Ohta S. Transduction of anti-apoptotic proteins into chondrocytes in cartilage slice culture. Biochem Biophys Res Commun 2004; 313(3): 522-7.
    [196]. Asoh S, Mori T, Nagai S, Yamagata K, Nishimaki K, Miyato Y, Shidara Y and Ohta S. Zonal necrosis prevented by transduction of the artificial anti-death FNK protein. Cell Death Differ 2005; 12(4): 384-94.
    [197]. Sudo K, Asoh S, Ohsawa I, Ozaki D, Yamagata K, Ito H and Ohta S. The anti-cell death FNK protein protects cells from death induced by freezing and thawing. Biochem Biophys Res Commun 2005; 330(3): 850-6.
    [198]. Tara S, Miyamoto M, Asoh S, Ishii N, Yasutake M, Takagi G, Takano T and Ohta S. Transduction of the anti-apoptotic PTD-FNK protein improves the efficiency of transplantation of bone marrow mononuclear cells. J Mol Cell Cardiol 2007; 42(3): 489-97.
    [199]. Li T, Fan Y, Luo Y, Xiao B and Lu C. In vivo delivery of a XIAP (BIR3-RING) fusion protein containing the protein transduction domain protects against neuronal deathinduced by seizures. Exp Neurol 2006; 197(2): 301-8.
    [200]. Patel LN, Wang J, Kim KJ, Borok Z, Crandall ED and Shen WC. Conjugation with Cationic Cell-Penetrating Peptide Increases Pulmonary Absorption of Insulin. Mol Pharm 2009.
    [201]. Khafagy el S, Morishita M, Isowa K, Imai J and Takayama K. Effect of cell-penetrating peptides on the nasal absorption of insulin. J Control Release 2009; 133(2): 103-8.
    [202]. Zhou JP, Feng ZG, Yuan BL, Yu SZ, Li Q, Qu HY and Sun MJ. Transduced PTD-BDNF fusion protein protects against beta amyloid peptide-induced learning and memory deficits in mice. Brain Res 2008; 1191: 12-9.
    [203]. Huang Y, Rao Y, Feng C, Li Y, Wu X, Su Z, Xiao J, Xiao Y, Feng W and Li X. High-level expression and purification of Tat-haFGF(19-154). Appl Microbiol Biotechnol 2008; 77(5): 1015-1022.
    [204]. Dietz GP, Valbuena PC, Dietz B, Meuer K, Mueller P, Weishaupt JH and Bahr M. Application of a blood-brain-barrier-penetrating form of GDNF in a mouse model for Parkinson's disease. Brain Res 2006; 1082(1): 61-6.
    [205]. Kashio A, Sakamoto T, Suzukawa K, Asoh S, Ohta S and Yamasoba T. A protein derived from the fusion of TAT peptide and FNK, a Bcl-x(L) derivative, prevents cochlear hair cell death from aminoglycoside ototoxicity in vivo. J Neurosci Res 2007; 85(7): 1403-12.
    [206]. Harada H, Hiraoka M and Kizaka-Kondoh S. Antitumor effect of TAT-oxygen- dependent degradation-caspase-3 fusion protein specifically stabilized and activated in hypoxic tumor cells. Cancer Res 2002; 62(7): 2013-8.
    [207]. Jain M, Chauhan SC, Singh AP, Venkatraman G, Colcher D and Batra SK. Penetratin improves tumor retention of single-chain antibodies: a novel step toward optimization of radioimmunotherapy of solid tumors. Cancer Res 2005; 65(17): 7840-6.
    [208]. Drell TLt, Joseph J, Lang K, Niggemann B, Zaenker KS and Entschladen F. Effects of neurotransmitters on the chemokinesis and chemotaxis of MDA-MB-468 human breast carcinoma cells. Breast Cancer Res Treat 2003; 80(1): 63-70.
    [209]. Lang K, Drell TLt, Lindecke A, Niggemann B, Kaltschmidt C, Zaenker KS and Entschladen F. Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int J Cancer 2004; 112(2): 231-8.
    [210]. Masur K, Niggemann B, Zanker KS and Entschladen F. Norepinephrine-induced migration of SW 480 colon carcinoma cells is inhibited by beta-blockers. Cancer Res 2001; 61(7): 2866-9.
    [211]. Palm D, Lang K, Niggemann B, Drell TLt, Masur K, Zaenker KS and Entschladen F. The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by beta-blockers. Int J Cancer 2006; 118(11): 2744-9.
    [212]. Bastian P, Balcarek A, Altanis C, Strell C, Niggemann B, Zaenker KS and Entschladen F. The inhibitory effect of norepinephrine on the migration of ES-2 ovarian carcinomacells involves a Rap1-dependent pathway. Cancer Lett 2009; 274(2): 218-24.
    [213]. Foged C and Nielsen HM. Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin Drug Deliv 2008; 5(1): 105-117.
    [214]. Patel LN, Zaro JL and Shen WC. Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 2007; 24(11): 1977-92.
    [215]. Torchilin VP. Tatp-mediated intracellular delivery of pharmaceutical nanocarriers. Biochem Soc Trans 2007; 35(Pt 4): 816-20.
    [216]. Gump JM and Dowdy SF. TAT transduction: the molecular mechanism and therapeutic prospects. Trends Mol Med 2007; 13(10): 443-8.
    [217]. Wagstaff KM and Jans DA. Protein transduction: cell penetrating peptides and their therapeutic applications. Curr Med Chem 2006; 13(12): 1371-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700