结直肠癌IGFBP-rP1基因甲基化调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结直肠癌是一类严重危害人类健康的恶性肿瘤。近年来,随着化疗、放疗和生物靶向治疗等多种手段的开展,死亡率有所下降,但发病率仍然很高。在中国,大肠癌发病率增长速度迅猛,尤其是苏浙沪三地。检出率低是影响大肠癌早期发现及治疗效果的重要因素之一。因此,因此积极开展结直肠癌发生机制的研究对于结直肠癌的防治具有很重要的现实意义。
     IGFBP-rP1 (insulin-like growth factor binding protein-related protein 1)是我们实验室在1999年用抑制性差减杂交法(suppresion subtractive hybridisation, SSH)构建的结直肠腺癌相对正常粘膜(T-N)文库中筛频率较高、在腺癌中高表达的一个基因。IGFBP-rP1又称为IGFBP7 (Insulin-like growth factor binding protein 7)、mac25 (meningioma associated cDNA 25)、PSF (prostacyclin-stimulating factor), AGM (angiomodulin)和TAF (tumor-derived adhesion factor).目前认为IGFBP-rP1与多种人类肿瘤关系密切,大部分报道认为IGFBP-rP1在多种人类肿瘤,如脑膜瘤、肺癌、肝癌等中均存在表达下调的现象,在肿瘤的发生发展中扮演抑癌基因的角色。
     基因的表达调控主要通过遗传学(genetics)和表遗传学(epigenetics)两种机制实现。遗传学改变是涉及核苷酸序列改变的机制,但是目前只能解释肿瘤发生机制中的一部分原因,表遗传学机制是一种不涉及DNA序列变化的可遗传的基因表达方式的改变,目前认为表遗传学是较遗传学更为常见的基因表达调控机制,许多具有重要功能的基因是通过表遗传学机制参与肿瘤的发生、发展。DNA甲基化表遗传的主要方式,是研究得最深入的作用方式,与抑制基因的表达有关,其在肿瘤发生中的作用是近年来的研究热点。
     实验室前期对IGFBP-rP1的表达调控进行了系列探索性工作,结果发现,IGFBP-rP1基因的启动子区域和所有5个外显子不存在序列突变,遗传学改变可能不是其主要转录调控机制。用亚硫酸氢钠-测序法(bisulfite sequencing PCR,BSP)详细研究基因5’端CpG岛中所有CpG位点的甲基化情况,在体内体外试验中均发现结直肠癌中,IGFBP-rP1基因的5’端CpG岛存在异常甲基化,并且第一外显子的异常甲基化水平与该基因的表达水平呈负相关。
     研究表明,DNA甲基化主要通过DNA甲基转移酶(DNA methyltransferases, DNMTs)的催化下,利用S-腺苷甲硫氨酸提供的甲基,将胞嘧啶的第5位碳原子甲基化,从而使胞嘧啶转化为5-甲基胞嘧啶。在人类,DNMTs主要有三种:DNMT1、DNMT3a与DNMT3b。DNMT3a和DNMT3b主要是使未甲基化的位点发生甲基化(从头发生甲基化,de novo methylation)。DNMT1则维持相关位点甲基化,并将甲基化信息传给子代细胞(维持甲基化,maintenance methylation)。5’-Azadc等去甲基化药物可能通过抑制DNMTs的活性实现去甲基化。
     EZH2 (enhancers of zest homologue 2)在肿瘤DNA甲基化中的作用最近受到关注。EZH2是一种转录抑制因子,也是一个组蛋白甲基化酶(histone methyltransferases, HMTs),属于Polycomb group (PcG)家族成员,是Polycomb repress complex 2/3 (PRC2/3)的重要成分。含EZH2的PRC复合物与H3K27包装成一个特别的染色质结构,该结构可能通过募集DNMTs,调控基因发生甲基化。
     IGFBP-rP1表达还与Rb基因状态有关,IGFBP-rP1低表达的乳腺癌磷酸化RB表达水平较高。RB基因调控IGFBP-rP1表达的确切机制也不清楚。近来有研究表明,RB、E2F可通过调控原癌基因EZH2的表达、影响其与DNMT1的结合来参与DNA甲基化过程。基于上述研究成果,本课题研究目标为明确RB、EZH2和DNMTs在IGFBP-rP1基因在结直肠癌中甲基化调控机制中的作用。
     我们利用western-blot和real-time PCR检测了实验室结直肠癌细胞株RKO、HT29、SW620和SW480中RB. EZH2和DNMTs表达情况,结果在这四株细胞中发现上述基因均有表达,所以采用RNA干扰(RNA interference, RNAi)技术沉默相关基因后,观察IGFBP-rP1转录水平表达改变情况,并利用BSP法检测IGFBP-rP1第一外显子甲基化状态的改变,旨在明确IGFBP-rP1甲基化调控通路。
     鉴于DNMTs在人类细胞甲基化中的作用,我们将DNMTs作为研究切入点,利用RNAi技术在IGFBP-rP1甲基化程度高且表达阴性的大肠癌RKO细胞系中分别沉默DNMT1、DNMT3b和DNMT3a,并建立稳定转染的单克隆细胞系,但是我们在上述基因单独沉默后并未检测到IGFBP-rP1表达改变。之后我们采取质粒共转来两两沉默DNMTs基因,我们发现在DNMT1和DNMT3b共同干扰的单克隆细胞系中IGFBP-rP1恢复了较弱的表达,染色质免疫共沉淀(Chromatin Immunoprecipitation, ChIP)结果显示DNMT1蛋白与IGFBP-rP1 DNA第一外显子直接结合而DNMT3b未检测到与IGFBP-rP1的直接作用。亚硫酸氢钠-测序法(Bisulfite sequencing PCR, BSP)检测IGFBP-rP1基因第一外显子甲基化改变情况,明确了DNMT1和DNMT3b共同参与了在IGFBP-rP1的甲基化调控中。我们还采用了MTT试验和流式细胞术检测了DNMT1和DNMT3b共同干扰可促进凋亡和抑制细胞增殖。结合IGFBP-rP1表达改变情况,我们推测IGFBP-rP1表达的恢复很可能参与了DNMT1和DNMT3b表达共同降低后引起的结直肠癌RKO细胞生物学行为的改变。
     接下来我们研究具有可调控DNMTs功能的EZH2和RB在IGFBP-rP1甲基化调控中是否发挥重要的作用。我们在有效沉默EZH2后并未发现IGFBP-rP1表达改变,而RB干扰后IGFBP-rP1有较明显的恢复表达,我们在IGFBP-rP1阴性表达的大肠癌细胞SW620中瞬时干扰RB也发现IGFBP-rP1表达的改变,我们将RB干扰后的RKO细胞建立稳定转染的单克隆细胞系用于检测IGFBP-rP1基因第一外显子甲基化改变情况。我们同样采用了MTT试验和流式细胞术检测了该单克隆细胞株在增殖能力和凋亡的改变,结果显示与对照组相比,RB干扰组凋亡率显著升高,细胞增殖能力下降。ChIP结果未发现RB与IGFBP-rP1存在直接的相互作用。我们发现在RB干扰的单克隆细胞株中DNMT1和DNMT3b均有明显下调,我们推测RB可能通过调控DNMTs家族来改变IGFBP-rP1基因第一外显子甲基化情况,进而改变IGFBP-rP1表达。
     通过对结直肠癌IGFBP-rP1基因甲基化调控机制的初步研究,我们得出以下
     结论:
     1. DNMT1和DNMT3b共同参与IGFBP-rP1基因甲基化调控,并且DNMT1蛋白与IGFBP-rP1基因有直接的相互作用。
     2.结直肠癌RKO细胞中未发现EZH2对IGFBP-rP1基因表达有明显的调控作用。
     3.RB参与IGFBP-rP1基因甲基化调控作用较明显,可能通过调控DNMTs家族来实现。
Colorectal cancer (CRC) is one of the prevalent malignant tumors that threaten our health. In spite of the development of radiotherapy, chemotherapy and bio-targeted therapy, the mortality declines indistinctively. In China, the CRC incidence grows rapidly, especially in ZheJiang, ShangHai and JiangSu provinces. The low early detection rate is one of the important factors affecting the cancer therapy, so the early detection will promote the cancer prognosis.
     In 1999, our laboratory built three cDNA libraries using SSH (suppression subtractive hybridization):adenoma VS normal mucosa(A-N), adenocarcinoma VS adenoma(T-A), adenocarcinoma VS normal mucosa(T-N), and screened a series of genes with differential expression. IGFBP-rP1 (insulin-like growth factor binding protein-related protein 1) was screened from adenocarcinoma VS normal mucosa (T-N) cDNA subtraction library and is overexpressed in the colorectal adenocarcinoma tissue.
     IGFBP-rP1 is also named as IGFBP7 (Insulin-like growth factor binding protein 7), mac25 (meningioma associated cDNA 25), PSF (prostacyclin-stimulating factor), AGM (angiomodulin) and TAF (tumor-derived adhesion factor). It belongs to the IGFBP family and is a member of insulin-like growth factor (IGF) axis. IGFs have multiple functions regulating cell differentiation, proliferation and apoptosis. IGFBPs can bind IGFs and modulate the bioavailability of IGFs in the circulation. IGFBP-rPl, as a secreted protein, is widely detected in different types of body fluids, such as serum, urine, amniotic fluid and cerebrospinal fluid, and in various types of organs, such as thymus, prostate, bladder, liver, lung, stomach and colon. The majority view is that IGFBP-rPl plays a potential tumor suppressor role against human carcinogenesis with complex control mechanism, because it is down-regulated in most human tumors, including prostate carcinoma, breast carcinoma, liver carcinoma and meningioma, and overexpression of IGFBP-rPl can induce the apoptosis, arrest cell cycle and inhibit the proliferation of immortalized or malignat human cells. However, it has been reported that there is an opposite IGFBP-rPl expression pattern in several cancers, including colorectal cancer. This paradoxical phenomenon implied a reversible regulatory mechanism in this gene. Lin et al. found DNA methylation is the main regulatory mechanism underlying aberrant IGFBP-rPl expression in colorectal cancer, and aberrant methylation of the exon 1 of IGFBP-rP1 is inversely correlated with the expression of IGFBP-rP1 in colorectal cancer.
     Gene expression is regulated by two main mechanisms, genetics and epigenetics. Alterations of gene sequence are the typical situation of genetic modification, including gene amplifications, gene deletions, point mutations, loss of heterozygosity, chromosomal rearrangements, and overall aneuploidy, However, Epigenetic changes occur at a higher frequency than genetic changes and can be reversible upon treatment with pharmacological agents. Epigenetic modification is defined as a heritable, reversible change in gene expression that does not result from DNA sequence alterations, such as DNA methylation and demethylation, histone acetylation and deacetylation, non-coding RNA, etc. Aberrant DNA methylation is the most common type of epigenetic mechanism. It has become clear that hypermethylation of the 5'-flanking CpG islands silences gene expression and many suppressor genes are regulated by this pathway, abnormal DNA methylation is considered an early event in human carcinogenesis.
     DNA methylation is an epigenetic event in which DNA methyltransferases (DNMTs) cause the addition of a methyl group connected to the fifth carbon position of a cytosine residue in CpG dinucleotides. The mammalian DNMTs family mainly encompasses DNMT1, DNMT3a and DNMT3b. In mammals, DNMT3a and-3b are mainly responsible for establishing methylation at previously unmethylated sites, whereas DNMT1 is the major maintenance methyltransferase, reproducing existing methylation patterns during cell division. Selective targeting of DNMTs can result in gene-special demethylation and reexpression of many suppressor genes.
     The PcG protein EZH2 (Enhancer of Zeste homolog 2) is a histone methyltransferase associated with transcriptional repression. The Polycomb group protein EZH2 controls CpG methylation through direct physical contact with DNA methyltransferases. EZH2, as part of the PRC2/3 complexes, can physically recruit DNMTs to certain target-genes and that this process is essential for silencing the genes.
     Recent reports have demonstrated that the transcription of the Polycomb group (PcG) gene EZH2 is controlled by growth factors through the pRB-E2F pathway, which affects its interaction with DNMT1, thus this exerts influence of methylation. Downregulation of the potential suppressor gene IGFBP-rP1 is associated with inactivation of the retinoblastoma protein in human breast cancer. Then what is the relationship between RB and the aberrant DNA methylation of IGFBP-rPl and what is the role of DNMTs in the regulatory mechanism of the aberrant DNA methylation of IGFBP-rP1? It is our task to make them clear.
     In this study, we found that DNMTs, EZH2 and RB all express in four colorectal cell lines(RKO, HT29, SW620 and SW480). In order to disclose the regulatory mechanism of aberrant methylation of IGFBP-rPl, RNA interference (RNAi) technology was chosen to delete the expression of DNMTs, EZH2 and RB in colorectal RKO cell line without the endogenous IGFBP-rP1 expression.
     In view of the important role of DNMTs on the methylation in human cancer cells, our research was started from the study whether DNMTs take part in the aberrant DNA methylation of IGFBP-rP1. The expression of DNMT1, DNMT3a and DNMT3b were deleted respectively in colorectal RKO cell line and stable transfection cell lines were built with low level of DNMT1, DNMT3a, DNMT3b, but the restoration of IGFBP-rPl expression were not observed, so co-transfection was used to delete two of them at the same time, and the weak re-expression of IGFBP-rP1 was detectd in the monoclone cell line with decrease of DNMT1 and DNMT3b simultaneously, and the methylation status of IGFBP-rPl exon 1 was detected by MSP and BSP. The results of ChIP(Chromatin Immunoprecipitation) illustrate that not DNMT3b but the protein of DNMT1 can bind the IGFBP-rP1 exon 1 directly. Based the above results, we made it clear that cooperation of DNMT1 and DNMT3b plays an important role in the aberrant DNA methylation of IGFBP-rP1 in colorectal RKO cell line.
     Because EZH2 and RB were reported to control DNMTs recent years, our concern is wether they also are involved in the regulatory of aberrant DNA methylation of IGFBP-rP1. EZH2 was deleted effectively in RKO, but we didn't observed the restoration of IGFBP-rP1 expression, while interference of RB gene in RKO induced the re-expression of IGFBP-rP1, The monoclone cell lines of selective deletion of RB were built to detect the methylation status of IGFBP-rP1 exon 1 by BSP. There is not interaction between RB and IGFBP-rP1 exon 1 in ChIP result, but we found the reduction of DNMT1 and DNMT3b in the RKO-RBi cell line.
     From the above results, we drew the following conclusions:
     1. Selective deletion of both DNMT1 and DNMT3b simultaneously in RKO cell can restore the IGFBP-rP1 expression, and DNMT1 binds the exon 1 of IGFBP-rP1 directly.
     2. Respective knockdowns of EZH2, DNMT1, DNMT3b and DNMT3a can not influence the expression of IGFBP-rP1.
     3. Decrease of RB in RKO cell can induce the hypomethylation of IGFBP-rP1 and restore the expression of IGFBP-rPl.
     4. Deletion of RB can result in the reduction of DNMT1 and DNMT3b, which maybe a pathway that RB regulates the methylation of the exon 1 of IGFBP-rP1.
引文
1. Jemal A, Murray T, Ward E, et al. Cancer statistics,2005. CA:a cancer journal for clinicians 2005; 55(1):10-30.
    2. Jemal A, Siegel R, Ward E, et al. Cancer statistics,2009. CA:a cancer journal for clinicians 2009; 59(2):225-49.
    3. You WC, Jin F, Devesa S, et al. Rapid increase in colorectal cancer rates in urban Shanghai,1972-97, in relation to dietary changes. Journal of cancer epidemiology and prevention 2002; 7(3):143-6.
    4. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. The New England journal of medicine 1988; 319(9):525-32.
    5. Sugimura T, Ushijima T. Genetic and epigenetic alterations in carcinogenesis. Mutation research 2000; 462(2-3):235-46.
    6. DePinho RA. The age of cancer. Nature 2000; 408(6809):248-54.
    7. Bohr VA, Anson RM. DNA damage, mutation and fine structure DNA repair in aging. Mutation research 1995; 338(1-6):25-34.
    8. Esteller M. Epigenetics in cancer. The New England journal of medicine 2008; 358(11):1148-59.
    9. Quina AS, Buschbeck M, Di Croce L. Chromatin structure and epigenetics. Biochemical pharmacology 2006; 72(11):1563-9.
    10. Zardo G, Tiirikainen MI, Hong C, et al. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nature genetics 2002; 32(3):453-8.
    11. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell 2007; 128(4):669-81.
    12. Klose RJ, Bird AP. Genomic DNA methylation:the mark and its mediators. Trends in biochemical sciences 2006; 31(2):89-97.
    13. Esteller M. Dormant hypermethylated tumour suppressor genes:questions and answers. The Journal of pathology 2005; 205(2):172-80.
    14.Jones PA, Laird PW. Cancer epigenetics comes of age. Nature genetics 1999; 21(2):163-7.
    15. Szyf M. DNA methylation and demethylation as targets for anticancer therapy. Biochemistry 2005; 70(5):533-49.
    16. Szyf M. Targeting DNA methylation in cancer. Ageing research reviews 2003; 2(3):299-328.
    17. Wolffe AP, Jones PL, Wade PA. DNA demethylation. Proceedings of the National Academy of Sciences of the United States of America 1999; 96(11):5894-6.
    18. Claus R, Lubbert M. Epigenetic targets in hematopoietic malignancies. Oncogene 2003;22(42):6489-96.
    19. Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, et al. Phase 1/2 study of the combination of 5-aza-2'-deoxycytidine with valproic acid in patients with leukemia. Blood 2006; 108(10):3271-9.
    20. Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proceedings of the National Academy of Sciences of the United States of America 1992; 89(5):1827-31.
    21. Hermann A, Gowher H, Jeltsch A. Biochemistry and biology of mammalian DNA methyltransferases. Cellular and molecular life sciences 2004; 61(19-20):2571-87.
    22. Jeltsch A. Molecular enzymology of mammalian DNA methyltransferases. Current topics in microbiology and immunology 2006; 301:203-25.
    23.pRobert MF, Morin S, Beaulieu N, et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nature genetics 2003;33(1):61-5.
    24. Vire E, Brenner C, Deplus R, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439(7078):871-4.
    25. Schlesinger Y, Straussman R, Keshet I, et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nature genetics 2007; 39(2):232-6.
    26. Pollak MN, Schernhammer ES, Hankinson SE. Insulin-like growth factors and neoplasia. Nature reviews 2004; 4(7):505-18.
    27. Sandhu MS, Dunger DB, Giovannucci EL. Insulin, insulin-like growth factor-I (IGF-I), IGF binding proteins, their biologic interactions, and colorectal cancer. Journal of the National Cancer Institute 2002; 94(13):972-80.
    28. Sakatani T, Kaneda A, Iacobuzio-Donahue CA, et al. Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science (New York, NY 2005;307(5717):1976-8.
    29. Burger AM, Leyland-Jones B, Banerjee K, Spyropoulos DD, Seth AK. Essential roles of IGFBP-3 and IGFBP-rPl in breast cancer. European journal of cancer 2005; 41(11):1515-27.
    30. Hwa V, Oh Y, Rosenfeld RG. The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocrine reviews 1999; 20(6):761-87.
    31. Swisshelm K, Ryan K, Tsuchiya K, Sager R. Enhanced expression of an insulin growth factor-like binding protein (mac25) in senescent human mammary epithelial cells and induced expression with retinoic acid. Proceedings of the National Academy of Sciences of the United States of America 1995; 92(10):4472-6.
    32. Burger AM, Zhang X, Li H, et al. Down-regulation of T1A12/mac25, a novel insulin-like growth factor binding protein related gene, is associated with disease progression in breast carcinomas. Oncogene 1998; 16(19):2459-67.
    33.Porkka KP, Visakorpi T. Detection of differentially expressed genes in prostate cancer by combining suppression subtractive hybridization and cDNA library array. The Journal of pathology 2001; 193(1):73-9.
    34. Akaogi K, Okabe Y, Funahashi K, et al. Cell adhesion activity of a 30-kDa major secreted protein from human bladder carcinoma cells. Biochemical and biophysical research communications 1994; 198(3):1046-53.
    35.Yamauchi T, Umeda F, Masakado M, Isaji M, Mizushima S, Nawata H. Purification and molecular cloning of prostacyclin-stimulating factor from serum-free conditioned medium of human diploid fibroblast cells. The Biochemical journal 1994; 303 (Pt 2):591-8.
    36. Yamanaka Y, Wilson EM, Rosenfeld RG, Oh Y. Inhibition of insulin receptor activation by insulin-like growth factor binding proteins. The Journal of biological chemistry 1997; 272(49):30729-34.
    37. Chen Y, Pacyna-Gengelbach M, Ye F, et al. Insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) has potential tumour-suppressive activity in human lung cancer. The Journal of pathology 2007; 211(4):431-8.
    38. Mutaguchi K, Yasumoto H, Mita K, et al. Restoration of insulin-like growth factor binding protein-related protein 1 has a tumor-suppressive activity through induction of apoptosis in human prostate cancer. Cancer research 2003;63(22):7717-23.
    39. Landberg G, Ostlund H, Nielsen NH, et al. Downregulation of the potential suppressor gene IGFBP-rPl in human breast cancer is associated with inactivation of the retinoblastoma protein, cyclin E overexpression and increased proliferation in estrogen receptor negative tumors. Oncogene 2001; 20(27):3497-505.
    40. Ruan W, Xu E, Xu F, et al. IGFBP7 plays a potential tumor suppressor role in colorectal carcinogenesis. Cancer biology & therapy 2007; 6(3):354-9.
    41. Ye F, Chen Y, Knosel T, et al. Decreased expression of insulin-like growth factor binding protein 7 in human colorectal carcinoma is related to DNA methylation. Journal of cancer research and clinical oncology 2007; 133(5):305-14.
    42. Yamashita S, Tsujino Y, Moriguchi K, Tatematsu M, Ushijima T. Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2'-deoxycytidine treatment and oligonucleotide microarray. Cancer science 2006;97(1):64-71.
    43. Lin J, Lai M, Huang Q, Ma Y, Cui J, Ruan W. Methylation patterns of IGFBP7 in colon cancer cell lines are associated with levels of gene expression. The Journal of pathology 2007; 212(1):83-90.
    44. Tennant MK, Vessella RL, Sprenger CC, et al. Insulin-like growth factor binding protein-related protein 1 (IGFBP-rPl/mac 25) is reduced in human prostate cancer and is inversely related to tumor volume and proliferation index in Lucap 23.12 xenografts. The Prostate 2003; 56(2):115-22.
    45. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. The EMBO journal 2003; 22(20):5323-35.
    46. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nature genetics 2000; 25(3):338-42.
    47. Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y. pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes & development 2007; 21(1):49-54.
    48. Siegfried Z, Cedar H. DNA methylation:a molecular lock. Current biology 1997; 7(5):R305-7.
    49. Bird AP, Wolffe AP. Methylation-induced repression-belts, braces, and chromatin. Cell 1999; 99(5):451-4.
    50. Robertson KD, Jones PA. DNA methylation:past, present and future directions. Carcinogenesis 2000; 21(3):461-7.
    51.Tycko B. Epigenetic gene silencing in cancer. The Journal of clinical investigation 2000; 105(4):401-7.
    52. Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis:epigenetics joins genetics. Trends in genetics 2000; 16(4):168-74.
    53. Ponder BA. Cancer genetics. Nature 2001; 411(6835):336-41.
    54. Robertson KD, Uzvolgyi E, Liang G, et al. The human DNA methyltransferases (DNMTs) 1,3a and 3b:coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic acids research 1999; 27(11):2291-8.
    55. Hansen RS, Wijmenga C, Luo P, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proceedings of the National Academy of Sciences of the United States of America 1999; 96(25):14412-7.
    56.Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99(3):247-57.
    57.Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science (New York, NY 2001; 293(5532):1089-93.
    58. Fang JY, Lu R, Mikovits JA, Cheng ZH, Zhu HY, Chen YX. Regulation of hMSH2 and hMLHl expression in the human colon cancer cell line SW1116 by DNA methyltransferase 1. Cancer letters 2006; 233(1):124-30.
    59. Kanai Y, Ushijima S, Kondo Y, Nakanishi Y, Hirohashi S. DNA methyltransferase expression and DNA methylation of CPG islands and peri-centromeric satellite regions in human colorectal and stomach cancers. International journal of cancer 2001;91(2):205-12.
    60. Fang JY, Cheng ZH, Chen YX, et al. Expression of Dnmtl, demethylase, MeCP2 and methylation of tumor-related genes in human gastric cancer. World J Gastroenterol 2004; 10(23):3394-8.
    61.Girault I, Tozlu S, Lidereau R, Bieche I. Expression analysis of DNA methyltransferases 1,3A, and 3B in sporadic breast carcinomas. Clin Cancer Res 2003; 9(12):4415-22.
    62. Ishii T, Kohu K, Yamada S, et al. Up-regulation of DNA-methyltransferase 3A expression is associated with hypomethylation of intron 25 in human testicular germ cell tumors. The Tohoku journal of experimental medicine 2007; 212(2):177-90.
    63. Fournel M, Sapieha P, Beaulieu N, Besterman JM, MacLeod AR. Down-regulation of human DNA-(cytosine-5) methyltransferase induces cell cycle regulators p16(ink4A) and p21(WAF/Cipl) by distinct mechanisms. The Journal of biological chemistry 1999; 274(34):24250-6.
    64. Oridate N, Lotan R. Suppression of DNA methyltransferase 1 levels in head and neck squamous carcinoma cells using small interfering RNA results in growth inhibition and increase in Cdk inhibitor p21. International journal of oncology 2005; 26(3):757-61.
    65. Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992; 69(6):915-26.
    66. Rhee I, Jair KW, Yen RW, et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 2000; 404(6781):1003-7.
    67. Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 2002; 416(6880):552-6.
    68. Sowinska A, Jagodzinski PP. RNA interference-mediated knockdown of DNMT1 and DNMT3B induces CXCL12 expression in MCF-7 breast cancer and AsPC1 pancreatic carcinoma cell lines. Cancer letters 2007; 255(1):153-9.
    69. Leu YW, Rahmatpanah F, Shi H, et al. Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer research 2003;63(19):6110-5.
    70. Przybylski M, Kozlowska A, Pietkiewicz PP, Lutkowska A, Lianeri M, Jagodzinski PP. Increased CXCR4 expression in AsPC1 pancreatic carcinoma cells with RNA interference-mediated knockdown of DNMT1 and DNMT3B. Biomedicine & pharmacotherapy= Biomedecine & pharmacotherapie 2010; 64(4):254-8.
    71. Suzuki M, Sunaga N, Shames DS, Toyooka S, Gazdar AF, Minna JD. RNA interference-mediated knockdown of DNA methyltransferase 1 leads to promoter demethylation and gene re-expression in human lung and breast cancer cells. Cancer research 2004; 64(9):3137-43.
    72. Ting AH, Jair KW, Schuebel KE, Baylin SB. Differential requirement for DNA methyltransferase 1 in maintaining human cancer cell gene promoter hypermethylation. Cancer research 2006; 66(2):729-35.
    73. Dodge JE, Okano M, Dick F, et al. Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization. The Journal of biological chemistry 2005; 280(18):17986-91.
    74. Chen T, Ueda Y, Dodge JE, Wang Z, Li E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Molecular and cellular biology 2003;23(16):5594-605.
    75.Kaneda M, Okano M, Hata K, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 2004; 429(6994):900-3.
    76. Nimura K, Ishida C, Koriyama H, et al. Dnmt3a2 targets endogenous Dnmt3L to ES cell chromatin and induces regional DNA methylation. Genes Cells 2006; 11(10):1225-37.
    77. Gisselsson D, Shao C, Tuck-Muller CM, et al. Interphase chromosomal abnormalities and mitotic missegregation of hypomethylated sequences in ICF syndrome cells. Chromosoma 2005; 114(2):118-26.
    78. McCabe MT, Davis JN, Day ML. Regulation of DNA methyltransferase 1 by the pRb/E2F1 pathway. Cancer research 2005; 65(9):3624-32.
    79.Pradhan S, Bacolla A, Wells RD, Roberts RJ. Recombinant human DNA (cytosine-5) methyltransferase I. Expression, purification, and comparison of de novo and maintenance methylation. The Journal of biological chemistry 1999; 274(46):33002-10.
    80. Umeda F, Ono Y, Sekiguchi N, et al. Increased mRNA expression of a novel prostacyclin-stimulating factor in human colon cancer. Journal of gastroenterology 1998;33(2):213-7.
    81. Adachi Y, Itoh F, Yamamoto H, et al. Expression of angiomodulin (tumor-derived adhesion factor/mac25) in invading tumor cells correlates with poor prognosis in human colorectal cancer. International journal of cancer 2001; 95(4):216-22.
    82. Shao L, Huang Q, Luo M, Lai M. Detection of the differentially expressed gene IGF-binding protein-related protein-1 and analysis of its relationship to fasting glucose in Chinese colorectal cancer patients. Endocrine-related cancer 2004; 11(1):141-8.
    83.Ruan WJ, Lin J, Xu EP, et al. IGFBP7 plays a potential tumor suppressor role against colorectal carcinogenesis with its expression associated with DNA hypomethylation of exon 1. Journal of Zhejiang University Science 2006; 7(11):929-32.
    84. Cardoso C, Mignon C, Hetet G, Grandchamps B, Fontes M, Colleaux L. The human EZH2 gene:genomic organisation and revised mapping in 7q35 within the critical region for malignant myeloid disorders. European journal of human genetics 2000; 8(3):174-80.
    85.Kuzmichev A, Jenuwein T, Tempst P, Reinberg D. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Molecular cell 2004; 14(2):183-93.
    86. Raaphorst FM, van Kemenade FJ, Blokzijl T, et al. Coexpression of BMI-1 and EZH2 polycomb group genes in Reed-Sternberg cells of Hodgkin's disease. The American journal of pathology 2000; 157(3):709-15.
    87. van Kemenade FJ, Raaphorst FM, Blokzijl T, et al. Coexpression of BMI-1 and EZH2 polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma. Blood 2001; 97(12):3896-901.
    88. Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002;419(6907):624-9.
    89. Ding L, Erdmann C, Chinnaiyan AM, Merajver SD, Kleer CG. Identification of EZH2 as a molecular marker for a precancerous state in morphologically normal breast tissues. Cancer research 2006; 66(8):4095-9.
    90. Pradhan S, Kim GD. The retinoblastoma gene product interacts with maintenance human DNA (cytosine-5) methyltransferase and modulates its activity. The EMBO journal 2002; 21(4):779-88.
    91. Jin B, Yao B, Li JL, et al. DNMT1 and DNMT3B modulate distinct polycomb-mediated histone modifications in colon cancer. Cancer research 2009; 69(18):7412-21.
    92. Kondo Y, Shen L, Cheng AS, et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nature genetics 2008; 40(6):741-50.
    93.Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995; 81(3):323-30.
    94. Yamasaki L. Role of the RB tumor suppressor in cancer. Cancer treatment and research 2003;115:209-39.
    95.Kimura H, Nakamura T, Ogawa T, Tanaka S, Shiota K. Transcription of mouse DNA methyltransferase 1 (Dnmt1) is regulated by both E2F-Rb-HDAC-dependent and-independent pathways. Nucleic acids research 2003; 31(12):3101-13.
    96. Ma Y, Lu B, Ruan W, et al. Tumor suppressor gene insulin-like growth factor binding protein-related protein 1 (IGFBP-rP1) induces senescence-like growth arrest in colorectal cancer cells. Experimental and molecular pathology 2008; 85(2):141-5.
    97. Radulescu RT. One for all and all for one:RB defends the cell while IDE, PTEN and IGFBP-7 antagonize insulin and IGFs to protect RB. Medical hypotheses 2007; 69(5):1018-20.
    [1]Goodstadt L, Ponting CP. Phylogenetic reconstruction of orthology, paralogy, and conserved synteny for dog and human. PLoS computational biology 2006; 2:e133.
    [2]Clamp M, Fry B, Kamal M, et al. Distinguishing protein-coding and noncoding genes in the human genome. Proceedings of the National Academy of Sciences of the United States of America 2007; 104:19428-19433.
    [3]Waterston RH, Lindblad-Toh K, Birney E, et al. Initial sequencing and comparative analysis of the mouse genome. Nature 2002; 420:520-562.
    [4]Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 2004; 432:695-716.
    [5]Aparicio S, Chapman J, Stupka E, et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science (New York, NY 2002; 297:1301-1310.
    [6]Taft RJ, Pheasant M, Mattick JS. The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 2007; 29:288-299.
    [7]Costa FF. Non-coding RNAs, epigenetics and complexity. Gene 2008; 410:9-17.
    [8]Mattick JS. Non-coding RNAs:the architects of eukaryotic complexity. EMBO reports 2001; 2:986-991.
    [9]Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J. A new frontier for molecular medicine:noncoding RNAs. Biochimica et biophysica acta 2005; 1756:65-75.
    [10]Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009; 458:223-227.
    [11]Gerstein MB, Bruce C, Rozowsky JS, et al. What is a gene, post-ENCODE? History and updated definition. Genome research 2007; 17:669-681.
    [12]Costa FF. Non-coding RNAs:lost in translation? Gene 2007; 386:1-10.
    [13]Mattick JS, Makunin IV. Small regulatory RNAs in mammals. Human molecular genetics 2005; 14 Spec No 1:R121-132.
    [14]Carninci P, Kasukawa T, Katayama S, et al. The transcriptional landscape of the mammalian genome. Science (New York, NY 2005; 309:1559-1563.
    [15]Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A. The expanding RNA polymerase Ⅲ transcriptome. Trends Genet 2007; 23:614-622.
    [16]Chu CY, Rana TM. Small RNAs:regulators and guardians of the genome. Journal of cellular physiology 2007; 213:412-419.
    [17]Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature 2004; 431:371-378.
    [18]Vazquez F, Vaucheret H, Rajagopalan R, et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Molecular cell 2004; 16:69-79.
    [19]Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes & development 2004; 18:2368-2379.
    [20]Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 2005; 123:1279-1291.
    [21]Katiyar-Agarwal S, Morgan R, Dahlbeck D, et al. A pathogen-inducible endogenous siRNA in plant immunity. Proceedings of the National Academy of Sciences of the United States of America 2006; 103:18002-18007.
    [22]Xie Z, Qi X. Diverse small RNA-directed silencing pathways in plants. Biochimica et biophysica acta 2008; 1779:720-724.
    [23]Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H. A novel class of bacteria-induced small RNAs in Arabidopsis. Genes & development 2007; 21:3123-3134.
    [24]Prasanth KV, Spector DL. Eukaryotic regulatory RNAs:an answer to the 'genome complexity' conundrum. Genes & development 2007; 21:11-42.
    [25]Mochizuki K, Fine NA, Fujisawa T, Gorovsky MA. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell 2002; 110:689-699.
    [26]Liu Y, Mochizuki K, Gorovsky MA. Histone H3 lysine 9 methylation is required for DNA elimination in developing macronuclei in Tetrahymena. Proceedings of the National Academy of Sciences of the United States of America 2004; 101:1679-1684.
    [27]Willingham AT, Gingeras TR. TUF love for "junk" DNA. Cell 2006; 125:1215-1220.
    [28]Storz G. An expanding universe of noncoding RNAs. Science (New York, NY 2002; 296:1260-1263.
    [29]Stuart K, Panigrahi AK. RNA editing:complexity and complications. Molecular microbiology 2002; 45:591-596.
    [30]Xu Z, Wei W, Gagneur J, et al. Bidirectional promoters generate pervasive transcription in yeast. Nature 2009; 457:1033-1037.
    [31]Katayama S, Tomaru Y, Kasukawa T, et al. Antisense transcription in the mammalian transcriptome. Science (New York, NY 2005; 309:1564-1566.
    [32]Chan WY, Wu SM, Ruszczyk L, et al. The complexity of antisense transcription revealed by the study of developing male germ cells. Genomics 2006; 87:681-692.
    [33]Chen J, Sun M, Kent WJ, et al. Over 20% of human transcripts might form sense-antisense pairs. Nucleic acids research 2004; 32:4812-4820.
    [34]He Y, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW. The antisense transcriptomes of human cells. Science (New York, NY 2008; 322:1855-1857.
    [35]Saito K, Nishida KM, Mori T, et al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes & development 2006; 20:2214-2222.
    [36]Reamon-Buettner SM, Borlak J. A new paradigm in toxicology and teratology: altering gene activity in the absence of DNA sequence variation. Reproductive toxicology (Elmsford, NY 2007; 24:20-30.
    [37]Gunawardane LS, Saito K, Nishida KM, et al. A slicer-mediated mechanism for repeat-associated siRNA 5'end formation in Drosophila. Science (New York, NY 2007; 315:1587-1590.
    [38]O'Donnell KA, Boeke JD. Mighty Piwis defend the germline against genome intruders. Cell 2007; 129:37-44.
    [39]Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nature reviews 2008; 9:219-230.
    [40]Houwing S, Kamminga LM, Berezikov E, et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 2007; 129:69-82.
    [41]Brennecke J, Aravin AA, Stark A, et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 2007; 128:1089-1103.
    [42]Richards EJ. Inherited epigenetic variation-revisiting soft inheritance. Nat Rev Genet 2006; 7:395-401.
    [43]Clark SJ. Action at a distance:epigenetic silencing of large chromosomal regions in carcinogenesis. Human molecular genetics 2007; 16 Spec No 1:R88-95.
    [44]Morris KV, Chan SW, Jacobsen SE, Looney DJ. Small interfering RNA-induced transcriptional gene silencing in human cells. Science (New York, NY 2004; 305:1289-1292.
    [45]Castanotto D, Tommasi S, Li M, et al. Short hairpin RNA-directed cytosine (CpG) methylation of the RASSF1A gene promoter in HeLa cells. Mol Ther 2005;
    12:179-183.
    [46]Suzuki K, Shijuuku T, Fukamachi T, et al. Prolonged transcriptional silencing and CpG methylation induced by siRNAs targeted to the HIV-1 promoter region. J RNAi Gene Silencing 2005; 1:66-78.
    [47]Li LC, Okino ST, Zhao H, et al. Small dsRNAs induce transcriptional activation in human cells. Proceedings of the National Academy of Sciences of the United States of America 2006; 103:17337-17342.
    [48]Chen Z, Place RF, Jia ZJ, Pookot D, Dahiya R, Li LC. Antitumor effect of dsRNA-induced p21(WAF1/CIP1) gene activation in human bladder cancer cells. Molecular cancer therapeutics 2008; 7:698-703.
    [49]Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America 2007; 104:15805-15810.
    [50]Benetti R, Gonzalo S, Jaco I, et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nature structural & molecular biology 2008; 15:268-279.
    [51]Sinkkonen L, Hugenschmidt T, Berninger P, et al. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nature structural & molecular biology 2008; 15:259-267.
    [52]Kuramochi-Miyagawa S, Watanabe T, Gotoh K, et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes & development 2008; 22:908-917.
    [53]Costa FF. Non-coding RNAs:new players in eukaryotic biology. Gene 2005; 357:83-94.
    [54]Camblong J, Iglesias N, Fickentscher C, Dieppois G, Stutz F. Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 2007; 131:706-717.
    [55]Houseley J, Rubbi L, Grunstein M, Tollervey D, Vogelauer M. A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Molecular cell 2008; 32:685-695.
    [56]Yu W, Gius D, Onyango P, et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 2008; 451:202-206.
    [57]Fukagawa T, Nogami M, Yoshikawa M, et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nature cell biology 2004; 6:784-791.
    [58]Kanellopoulou C, Muljo SA, Kung AL, et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes & development 2005; 19:489-501.
    [59]Yang PK, Kuroda MI. Noncoding RNAs and intranuclear positioning in monoallelic gene expression. Cell 2007; 128:777-786.
    [60]Heard E, Disteche CM. Dosage compensation in mammals:fine-tuning the expression of the X chromosome. Genes & development 2006; 20:1848-1867.
    [61]Erwin JA, Lee JT. New twists in X-chromosome inactivation. Current opinion in cell biology 2008; 20:349-355.
    [62]Avner P, Heard E. X-chromosome inactivation:counting, choice and initiation. Nat Rev Genet 2001; 2:59-67.
    [63]O'Neill MJ. The influence of non-coding RNAs on allele-specific gene expression in mammals. Human molecular genetics 2005; 14 Spec No 1:R113-120.
    [64]Ogawa Y, Sun BK, Lee JT. Intersection of the RNA interference and X-inactivation pathways. Science (New York, NY 2008; 320:1336-1341.
    [65]Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science (New York, NY 2008; 322:750-756.
    [66]Wan LB, Bartolomei MS. Regulation of imprinting in clusters:noncoding RNAs versus insulators. Advances in genetics 2008; 61:207-223.
    [67]Sleutels F, Zwart R, Barlow DP. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 2002; 415:810-813.
    [68]Mancini-Dinardo D, Steele SJ, Levorse JM, Ingram RS, Tilghman SM. Elongation of the Kcnqlotl transcript is required for genomic imprinting of neighboring genes. Genes & development 2006; 20:1268-1282.
    [69]Wutz A, Theussl HC, Dausman J, Jaenisch R, Barlow DP, Wagner EF. Non-imprinted Igf2r expression decreases growth and rescues the Tme mutation in mice. Development (Cambridge, England) 2001; 128:1881-1887.
    [70]Takahashi N, Okamoto A, Kobayashi R, et al. Deletion of Gt12, imprinted non-coding RNA, with its differentially methylated region induces lethal parent-origin-dependent defects in mice. Human molecular genetics 2009; 18:1879-1888.
    [71]Nagano T, Mitchell JA, Sanz LA, et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science (New York, NY 2008; 322:1717-1720.
    [72]Chandler VL, Stam M. Chromatin conversations:mechanisms and implications of paramutation. Nat Rev Genet 2004; 5:532-544.
    [73]Chandler VL. Paramutation:from maize to mice. Cell 2007; 128:641-645.
    [74]Coe EH. The Properties, Origin, and Mechanism of Conversion-Type Inheritance at the B Locus in Maize. Genetics 1966; 53:1035-1063.
    [75]Stam M. Paramutation:a heritable change in gene expression by allelic interactions in trans. Molecular plant 2009; 2:578-588.
    [76]Dorweiler JE, Carey CC, Kubo KM, Hollick JB, Kermicle JL, Chandler VL. mediator of paramutationl is required for establishment and maintenance of paramutation at multiple maize loci. The Plant cell 2000; 12:2101-2118.
    [77]Alleman M, Sidorenko L, McGinnis K, et al. An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 2006; 442:295-298.
    [78]Woodhouse MR, Freeling M, Lisch D. Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS biology 2006; 4:e339.
    [79]Stam M, Belele C, Dorweiler JE, Chandler VL. Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes & development 2002; 16:1906-1918.
    [80]Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, Cuzin F. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 2006; 441:469-474.
    [81]Cuzin F, Grandjean V, Rassoulzadegan M. Inherited variation at the epigenetic level:paramutation from the plant to the mouse. Current opinion in genetics & development 2008; 18:193-196.
    [82]Uhler JP, Hertel C, Svejstrup JQ. A role for noncoding transcription in activation of the yeast PHO5 gene. Proceedings of the National Academy of Sciences of the United States of America 2007; 104:8011-8016.
    [83]Hirota K, Miyoshi T, Kugou K, Hoffman CS, Shibata T, Ohta K. Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs. Nature 2008; 456:130-134.
    [84]Perez DS, Hoage TR, Pritchett JR, et al. Long, abundantly expressed non-coding transcripts are altered in cancer. Human molecular genetics 2008; 17:642-655.
    [85]Lin R, Maeda S, Liu C, Karin M, Edgington TS. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene 2007; 26:851-858.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700