纳米TiO_2表面化学修饰及其Nafion~(?)复合膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)是燃料电池领域中的研究热点,它采用固体聚合物作为电解质,可以大幅度提高电池的能量密度。质子交换膜是PEMFC的核心部分,该电解质膜的性质决定了电池的构造和运行的主要技术特征。目前广泛应用的全氟磺酸质子交换膜由于成本高,高温保水性能差以及甲醇透过系数高等原因限制了其产业化应用。本论文采用纳米表面工程技术对纳米TiO2表面进行化学修饰得到两种新的纳米颗粒修饰物,再将修饰物添加到Nafion(?)膜中制备了两种新型复合膜,并对膜的结构和性能方面进行了研究。具体研究内容如下:
     1、采用硅烷偶联剂法,成功合成了两种纳米TiO2表面化学修饰物TiO2@苯磺酸衍生物(D1)和TiO2@萘磺酸衍生物(C2)。其结构和粒径大小经过傅里叶红外光谱仪、透射电镜和激光粒度分析仪的表征确认。对于合成路线,我们采用分时段监测法进行了选择。
     2、采用流延成膜法向Nafion(?)膜中添加化合物D1和C2,首次制备了复合膜Nafion(?)/D1和Nafion(?)/C2。扫描电镜测试表明D1和C2在复合膜中均匀分布并且与Nafion(?)界面兼容性较好,没有明显的团聚现象。热重分析表明,D1和C2的加入没有减缓复合膜中磺酸基团的降解,复合膜的失重率变化趋势与吸水率相反。考察了膜的吸水率随温度和填料含量的变化趋势及其对质子电导率的影响,实验证实复合膜具有优异的高温保水性能,吸水率的升高改善了膜的导电性能。考察了复合膜的甲醇透过系数随温度和填料含量的变化趋势,利用隔膜扩散法测定甲醇透过系数,结果表明:D1和C2的加入显著改善了复合膜的阻醇性能,与Nafion(?)膜相比下降了约1个数量级。
Proton exchange membranes are a key component in the development of proton exchange fuel cells(PEMFCs), which are devices for directly transforming chemical energy into electrical energy without producing waste products and environmental problems. Sulfonated perfluoro-polymers like Nafion(?), although having high proton conductivity, have the disadvantage of high cost and high methanol crossover. Consequently, there is a considerable amount of research on seeking alternatives for Nafion(?). Modifications on present PEM materials aimed at property enhancements is also an effective approach to obtain suitable PEMs for PEMFC.
     In this thesis, nano surface engineering technology has been applied to the surface modification of TiO2 and we have prepared two kinds of modificatory nano particles. Then they were added to the Nafion(?) membrane to prepare two new composite membranes, the structure and properties of which were studied later. Specifically, the content in this thesis is listed below:
     1. Two kinds of modificatory nano particles have been synthetized through silane coupling agent treatment, the structure and particle size of which were characterized by FT-IR, TEM and LPSA. The right synthetic routewe was selected and confirmed by the method of monitoring reaction in a period of time.
     2. C2 and D1 were added to the Nafion(?) membrane to prepare composite membranes Nafion(?)/D1 membrane and Nafion(?)/C2 membrane through the method of file casting firstly. D1 and C2 are uniformly distributed in composite membranes and good compatibility with Nafion(?) without obvious phenomenon of reunion as observed by SEM photographs. The TG experiment shows that addition of D1 and C2 to the Nafion(?) have not slowed the degradation of sulfonic acid in composite membranes. Study has focused on the trend of water content with different fillers content at different temperature and change of proton conductivity in impact of water uptake. It was observed that composite membranes have good high water-uptake. Study has also focused on methanol permeability with different fillers content at different temperature, which was measured by membrane diffusion method. The results showed that compared with Nafion(?) membrane, methanol permeability of composite membranes decreased by about one order of magnitude. The presence of D1 and C2 in the compsite membranes significantly decrease the methanol permeability.
引文
[1]朱红译,衣宝廉校,(詹姆斯·拉米尼,安德鲁·狄克斯著).《燃料电池系统—原理·设计·应用》,科学出版社,2006,11-13
    [2]Robertson M A F. The nature of microphase separation in perfluorinated ionomers[D]. Ph.D.Thesis, University of Calgary,1994
    [3]Yeager H L, Steck A. Cation and water diffusion in Nafion(?) ion. exchange membranes: influence of polymer structure[J]. J. Electrochem. Soc.,1981,128:1880-1884
    [4]Eisenberg A, Hird B, Moore, R B. A new multiplet cluster model for the morphology of random ionomers[J]. Macromolecules,1990,23:4098-4114
    [5]Ralph T R and Hogarth M P. Catalysis for low temperature fuel cells, Part Ⅱ:the anode challenges[J]. Platinum Metals Rev.,2002,46(3):117-135
    [6]Gasteiger H A, Markovic N M, Ross P N, et al. H2 and CO electrooxidationon well-characterized Pt, Ru, and Pt-Ru.1. Rotating disk electrode studies of the pure gases including temperature effects[J]. J. Phys. Chem.,1995,99:8290-8301
    [7]Gierke T D,Munn G E,Wilson F C,et al. The morphology in Nafion(?) perfluorinated membrane product, as determined by wide- and small-angle X-ray studies[J]. J. Polym. Sci.,1981,19:1687-1704
    [8]D.M. Xing and J. Kerres. Improved performance of sulfonated polyarylene ethers for proton exchange membrane fuel cells, Polym[J]. Adv. Technol.,2006,17:591-597
    [9]G.M. Haugen, F.Q. Meng, N. Aieta, J. Horan, M.H. Frey, S.J. Hamrock and A.M. Herring. Increased stability of PFSA proton exchange membranes under fuel cell operation by the decomposition of peroxide catalyzed by heteropolyacids. The 210th ECS Meeting Cancun, Mexico, October 29-November 3 (2006).
    [10]N.R. Andrews, S.D. Knights, K.A. Murray, S.J. McDermid, S.M. MacKinnon, S. Ye. Reduced degradation of ion-exchange membranes in electrochemical fuel cells[P]. U.S. Patent,136308.2005
    [11]Xing, D., et al. Investigation of the Ag-SiO2/sulfonated poly(biphenyl ether sulfone) composite membranes for fuel cell[J]. Journal of Membrane Science,2007,296:9-14
    [12]H.P. Dhar. US Patent,5318863.1994
    [13]M. Watanabe, H. Uchida and M. Emori. J. Electrochem. Soc.,1998,145:1137
    [14]T.H. Yang, Y.G. Yoon and C.S. Kim et al. J. Power Sources,2002,106:328
    [15]Wang, C., et al. Preparation and evaluation of a novel self-humidifying Pt/PFSA composite membrane for PEM fuel cell[J]. Chemical Engineering Journal,2005.112(1-3):p.87-91
    [16]Shao, Z.-G., et al. Hybrid Nafion-inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell[J]. Solid State Ionics,2006.177:779-785
    [17]Zhang, Y., et al. Investigation of self-humidifying membranes based on sulfonated poly(ether ether ketone) hybrid with sulfated zirconia supported Pt catalyst for fuel cell applications[J]. Journal of Power Sources,2007,168(2):323-329
    [18]Zhang, Y., et al. An inorganic/organic self-humidifying composite membranes for proton exchange membrane fuel cell application[J]. Electrochimica Acta,2008,53(12): 4096-4103
    [19]Wang, L., et al. Cs2.5Ho.5PW04o/Si02 as addition self-humidifying composite membrane for proton exchange membrane fuel cells[J]. Electrochimica Acta,2007.52(17):5479-5483
    [20]Shen, Y., et al. A new proton conducting membrane based on copolymer of methyl methacrylate and 2-acrylamido-2-methyl-l-propanesulfonic acid for direct methanol fuel cells[J]. Electrochimica Acta,2007,52(24):6956-6961
    [21]Zhang, C., et al. A new and facile approach for the preparation of cross-linked sulfonated poly(sulfide sulfone) membranes for fuel cell application[J]. Journal of Power Sources, 2007,170(1):42-45
    [22]Li, C., et al. Casting Nafion-sulfonated organosilica nano-composite membranes used in direct methanol fuel cells[J]. Journal of Membrane Science,2006,272(1-2):50-57
    [23]Ren, S., et al. Organic silica/Nafion(?)composite membrane for direct methanol fuel cells[J]. Journal of Membrane Science,2006,282(1-2):450-455
    [24]Wu, Z., et al. Nafion(?)and nano-size TiO2-SO42- solid superacid composite membrane for direct methanol fuel cell[J]. Journal of Membrane Science,2008,313(1-2):336-343
    [25]Shen, J., et al. A nanocomposite proton exchange membrane based on PVDF, poly(2-acrylamido-2-methyl propylene sulfonic acid), and nano-Al2O3 for direct methanol fuel cells[J]. Journal of Power Sources,2006,159(2):894-899
    [26]Zhai, F., et al. Synthesis and properties of novel sulfonated polyimide membranes for direct methanol fuel cell application[J]. Journal of Membrane Science,2007,296(1-2):102-109
    [27]Honma I. Organic/inorganic nano-hybrids macromolecules for intermediate temperature proton conducting electrolyte membranes[J]. Membrane,2002,27(3):118-123
    [28]Tang, H., et al. Self-assembled Nafion-silica nanoparticles for elevated-high temperature polymer electrolyte membrane fuel cells[J]. Electrochemistry Communications,2007,9(8): 2003-2008
    [29]Park, K.T., et al. ZrO2-SiO4/Nafion(?)composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity[J]. Journal of Power Sources,2008,177(2):247-253
    [30]Ren, S., et al. Sulfated zirconia-Nafion composite membranes for higher temperature direct methanol fuel cells[J]. Journal of Power Sources,2006,157(2):724-726
    [31]Kim, Y.-T., et al. Nafion/ZrSPP composite membrane for high temperature operation of proton exchange membrane fuel cells[J]. Current Applied Physics,2006,6(4):612-615
    [32]Lufrano F, Squadrito G, Patti A, et al. Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells[J]. Journal of Applied Polymer Science,2000,77:1250-1257
    [33]Zaidi S M J, Mikhailenko S D, Robertson G P, et al. Proton conducting composite membranes from polyether ether ketone and heterpolyacids for fuel cell applications[J]. Journal of Membrane Science,2000,173:17-34
    [34]Kerres J. Development of ionomer membranes for fuel cells[J]. Journal of Membrane Science,2001,185:3-27
    [35]Alberti G, Casciola M, Massinelli L, et al. Polymer proton conducting membranes for medium temperatures fuel cells (110-160℃)[J]. Journal of Membrane Science,2001,185: 73-81
    [36]Hsiao S H, Yang C Y. Synthesis and evaluation of novel polyimides derived from spirobichroman diether anhydride[J]. Journal of Polymer Science, Part A:Polymer Chem., 1997,35:2801-2809
    [37]Krishnan, P., J.-S. Park, and C.-S. Kim. Performance of a poly(2,5-benzimidazole) membrane based high temperature PEM fuel cell in the presence of carbon monoxide[J]. Journal of Power Sources,2006,159(2):817-823
    [38]Lobato, J., et al. PBI-based polymer electrolyte membranes fuel cells:Temperature effects on cell performance and catalyst stability [J]. Electrochimica Acta,2007,52(12): 3910-3920
    [39]Hou, H., et al. Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell[J]. Journal of Power Sources,2008,182(1):95-99
    [40]Li, M.-Q., Z.-G. Shao, and K. Scott. A high conductivity Cs2.5H0.5PMo12O40/PBI/H3PO4 composite membrane for proton exchange membrane fuel cells operating at high temperature[J]. Journal of Power Sources,2008,183:69-75
    [41]Xu, H., et al. Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application [J]. Polymer,2007,48(19):5556-5564
    [42]Ye, X., H. Bai, and W.S.W. Ho. Synthesis and characterization of new sulfonated polyimides as proton-exchange membranes for fuel cells[J]. Journal of Membrane Science, 2006,279(1-2):570-577
    [43]Bai, H. and W.S.W. Ho. New poly(ethylene oxide) soft segment-containing sulfonated polyimide copolymers for high temperature proton-exchange membrane fuel cells [J]. Journal of Membrane Science,2008,313(1-2):75-85
    [44]Zaidi, S.M.J. and M.I. Ahmad. Novel SPEEK/heteropolyacids loaded MCM-41 composite membranes for fuel cell applications [J]. Journal of Membrane Science,2006,279(1-2): 548-557
    [45]Larson, J.M., et al. Membranes based on basic polymers and perfluorinated acids for hotter and drier fuel cell operating conditions[J]. Journal of Power Sources,2007,172(1):108-114
    [46]Marschall, R., et al. Functionalized mesoporous materials used as proton conductive additives for high temperature PEM fuel cell membranes, in Studies in Surface Science and Catalysis[J].2007,1540-1545
    [47]Zhang, X., S. Liu, and J. Yin. Modified sulfonated poly(arylene ether sulfone)-b-polybutadiene (SPAES-b-PB) membrane for fuel cell applications [J]. Journal of Membrane Science,2006,275(1-2):119-126
    [48]Ma, X., et al. Sulfonated poly(arylene thioether phosphine oxide)s copolymers for proton exchange membrane fuel cells[J]. Journal of Membrane Science,2008,310(1-2):303-311
    [49]Kim, E., et al. Nanoscale Building Blocks for the Development of Novel Proton Exchange Membrane Fuel Cells[J]. J. Phys. Chem. B,2008,112(11):3283-3286
    [50]薛茹军.无机纳米材料的表面修饰改性与物性研究[D].安徽:合肥工业大学,2008
    [51]纪小会,李军,杨文胜等.金纳米晶制备和表面修饰中的分子配体[J].化学进展,2008,20(1):11-17
    [52]周学华,李津如,刘春燕等 不同链长表面活性剂修饰的金纳米颗粒的制备、稳定性及二维排列[J].中国科学(B辑),2002,32(3):243-247
    [53]朱磊,江红,王滨等.纳米氧化锌的表面修饰及其机理的研究[J].无机材料学报,2007,22(2):219-222
    [54]王李波,张明.润滑纳米添加剂表面化学修饰研究进展[J].润滑与密封,2008,33(9):95-99
    [55]安长华,何杰,王淑涛.表面修饰纳米ZnS的合成及表征[J].材料科学与工程学报,2008,26(3):347-349
    [56]李明罡.功能型纳米氧化锌及其磷酸酯系列表面修饰剂的合成研究[D].吉林:吉林大学,2008
    [57]聂天琛,姚超,李锦春等.硬脂酸对纳米Al2O3的有机表面修饰研究[J].高校化学工程学报,2008,22(4):655-658
    [58]张付特.多官能团表面修饰金属纳米颗粒的制备及摩擦学性能研究[D].河南:河南大学,2008
    [59]杨家义.多壁碳纳米管的表面修饰及其磺化聚醚醚酮复合膜的制备研究[D].安徽:合肥工业大学,2008
    [60]Y.-H. Su et al. Journal of Power Sources,2009,194(1):206-213
    [61]D. Gomes et al. Journal of Membrane Science,2008,322:406-415
    [62]C.H. Rhee et al. Chem. Mater.,2005,17:1691-1697
    [63]R. Kannan, B.A. Kakade, V.K. Pillai. Angew. Chem. Int. Ed.,2008,47:2653-2656
    [64]吴洪.直接甲醇燃料电池用阻醇质子导电膜的研究[D].天津:天津大学,2000
    [65]Moore R B, Martin C R. Morphology and chemical properties of the Dow perfluorosufonate ionomers[J]. Macromolecules,1989,22:3594-3599
    [66]I.D. Stefanithis and K.A. Mauritz. Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction.3. Thermal analysis studies[J]. Macromolecules,1990,23:2397-2402
    [67]S.-J. Shin et al. Deterioration of Nafion 115 membrane in direct methanol fuel cells[J]. Journal of Power Sources,2009,191:312-319
    [68]L. Sun and J.S. Thrasher. Studies of the thermal behavior of Nafion(?) membranes treated with aluminum (III)[J]. Polym. Degrad. Stabil.,2005,89:43-49
    [69]ALMEIDA S H, KAWANO Y. Thermal behavior of nafion membranes[J]. J. Therm. Anal. Cal.,1999,58:569-577
    [70]高启君等.SPEEK/PES-C、SPEEK/SPES-C共混质子交换膜研究[J].高分子学报,2009,1:45-51
    [71]Yu Jun et al. Nafion/Silicon Oxide Composite Membrane for High Temperature Proton Exchange Membrane Fuel Cell[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed.,2007,22(3):478-481
    [72]Y. Kawano, Y. Wang, R.A. Palmer, S.R. Aubuchon. Stress-strain curves of Nafion(?) membranes in acid and salt forms[J]. Polimeros,2002,12(2):96
    [73]N.H. Jalani, R. Datta. Journal of Membrane Science,2005,264:167-175
    [74]N. Miyake, J.S. Wainright, R.F. Savinell. J. Electrochem. Soc.,2001,148:A898-A904
    [75]D.S. Kim, H.B. Park, J.W. Rhim, Y.M. Lee. Solid State Ionics,2005,176:117-126
    [76]M. Eikerling, A.A. Kornyshev, A.M. Kuznetsov, J. Ulstrup, S. Walbran. J. Phys.Chem., 2001, B105:3646-3662
    [77]K.D. Kreuer. Solid State Ionics,1997,94:55-62
    [78]K.D. Kreuer. Chem. Mater.,1996,8:610-618
    [79]L.E. Karisson, B.Wesslien, P. Jannasch. Electrochim. Acta,2002,47:3269-3275
    [80]S.P. Kusumocahyo, K. Sano, M. Sudoh,M. Kensaka. Sep. Purif. Technol.,2000,18: 141-150
    [81]J.W. Rhim, H.B. Park, C.S. Lee, J.H. Jun, D.S. Kim, Y.M. Lee. J. Membr. Sci.,2004,238: 143-151
    [82]B. Gupta, O. Haas, G.G Scherer. J. Appl. Polym. Sci.,1995,57:855-862
    [83]D.S. Kim, B. Liu, M.D. Guiver. Polymer,2006,47:7871-7880

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700