合金成分及热处理对锆合金腐蚀和吸氢行为影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在水冷核动力反应堆中,锆合金是一种重要的结构材料,用作核燃料的包壳,腐蚀和吸氢是其应用中遇到的两个重要问题,这涉及核燃料元件的寿命和反应堆运行的安全可靠性。随着燃料组件燃耗的进一步提高,如何提高锆合金包壳的耐腐蚀性能和降低腐蚀时的吸氢量是两个值得深入研究的问题。本工作以Zr-2(Zr-1.5Sn-0.2Fe-0.1Cr-0.05Ni)、Zr-4(Zr-1.5Sn-0.2Fe-0.1Cr)、N36(Zr-1Sn-1Nb-0.3Fe)和N18(Zr-1Sn-0.35Nb-0.3Fe-0.1Cr)四种成分锆合金为研究对象,采用不同的热处理制备第二相尺寸和数量不同的样品,研究了这些样品在400℃/10.3MPa过热蒸汽和360℃/18.6MPa/0.01M LiOH水溶液中的腐蚀和吸氢行为,探讨了第二相影响锆合金腐蚀时吸氢行为的机理。得到的主要实验结果和结论如下:
     1.经β相水淬处理的Zr-4样品在360℃/LiOH水溶液中腐蚀时表现出非常优良的耐腐蚀性能,在长达529d的腐蚀试验中,腐蚀增重一直与ZIRLO和N18合金的相当。β相水淬处理后Zr-4合金基体中过饱和固溶的Fe和Cr含量分别达到700μg/g左右,这是β相水淬处理提高Zr-4合金在360℃/LiOH水溶液中耐腐蚀性能的主要原因,这为开发新锆合金提供了新的思路。
     2.热处理对Zr-Sn系的Zr-2和Zr04合金在400℃过热蒸汽中耐腐蚀性能的影响规律与在360℃/LiOH水溶液中腐蚀时的不同:从β相快冷和α上限温区处理使Zr-4和Zr-2合金在400℃过热蒸汽中的耐腐蚀性能变坏,但却能改善Zr-4合金在360℃/LiOH水溶液中的耐腐蚀性能。这说明提高α-Zr基体中过饱和固溶的Fe、Cr或Ni合金元素含量会对Zr-4和Zr-2合金在400℃过热蒸汽中的耐腐蚀性能产生有害影响。
     3.含Nb较高的N36合金在820℃保温2h处理后晶粒内残留的棒状β-Zr在随后偏析温度(610℃)以下580℃时效处理时并未发生分解,但时效处理之前的冷轧变形可促进它的分解,形成条带状分布的第二相;冷轧之前的β相水淬处理可以获得纳米大小、弥散分布的第二相。腐蚀试验表明,显微组织对N18和N36合金在400℃过热蒸汽中耐腐蚀性能的影响规律与360℃/LiOH水溶液中的基本相同:β-Zr的存在对耐腐性能都是有害的,β-Zr分解并获得纳米大小、弥散分布的第二相后可明显改善它们的耐腐蚀性能。
     4.无论是在400℃过热蒸汽中,还是在360℃/LiOH水溶液中,N18合金的耐腐蚀性能均优于N36合金。N18和N36合金经700~1020℃处理、冷轧和580℃/50h时效处理后,基体中固溶的Nb含量分别为0.15~0.3%和0.55~0.57%,前者更接近腐蚀温度时Nb在α-Zr基体中的平衡固溶度,这是N18合金耐腐蚀性能优于N36合金的原因。从合金元素对锆合金耐腐蚀性能影响的角度来说,添加的Nb含量不宜太高。
     5.在400℃过热蒸汽中腐蚀时,Zr-Sn-Nb系的N18合金的耐腐蚀性能略低于常规处理的Zr-4合金,但N36合金的耐腐蚀性能明显不如常规处理的Zr-4合金,而在360℃/LiOH水溶液中腐蚀时,N18和N36合金的耐腐蚀性能明显优于常规处理的Zr-4合金,这进一步证实不同水化学条件下合金元素影响锆合金耐腐蚀性能的规律是不同的。
     6.合金成分对锆合金腐蚀时的吸氢行为有很大影响。用腐蚀增重对样品腐蚀后的氢含量进行归一化处理后,可以看出在相同的腐蚀增重情况下,Zr-2合金腐蚀时的吸氢量最大,其次是Zr-4和N18合金,而N36合金的吸氢量最小,这与不同合金中的第二相种类和成分密切相关。Zr-2合金中含有Ni、Fe、Cr,它们与Zr形成的第二相有Zr_2(Fe,Ni)和Zr(Fe,Cr)_2:Zr-4合金中含有Fe、Cr,它们与Zr形成的第二相有Zr(Fe,Cr)_2;N18合金是在Zr-4合金基础上添加少量Nb的新合金,其中也含有Zr(Fe,Cr)_2第二相;N36合金也是一种含Nb锆合金,与N18合金相比,Nb含量更高但不含Cr,形成的第二相主要为β-Nb和Zr-Nb-Fe第二相。众所周知,Zr_2(Fe,Ni)和Zr(Fe,Cr)_2本身是一种强烈吸氢的金属间化合物,这说明如果添加的合金元素与Zr形成的第二相是一种比Zr吸氢能力更强的物质,那么它对锆合金腐蚀时的吸氢行为会产生显著影响,从减少腐蚀时吸氢的角度来考虑,这种合金元素要尽量少加。这一结果可为开发新锆合金时选择合金元素提供有价值的参考。
     7.热处理对不同成分锆合金腐蚀时的吸氢行为影响程度不一样,其中对Zr-2合金的影响最大,其次是Zr-4合金,而对N18和N36合金的影响都比较小,这除与第二相的种类有关外,还与第二相的尺寸和数量密切相关。当合金中的第二相本身是一种强烈吸氢的物质时,要尽量减小这种第二相的尺寸,这对减少腐蚀时的吸氢是有利的。这一结果可为优化锆材成型加工工艺,控制显微组织,并获得最佳的使用性能提供依据。
     8.腐蚀温度对吸氢的影响非常大。锆合金在400℃过热蒸汽中腐蚀时的吸氢分数(20~40%)明显大于360℃/LiOH水溶液中的吸氢分数(10~20%),前者比后者高出一倍。这给我们的启示是如果要发展超临界水堆核燃料包壳用锆合金,那么除了需要解决耐腐蚀性能以外,吸氢问题应给予更大关注。
     9.二次离子质谱分析证实Zr-4合金样品无论是在400℃过热蒸汽还是360℃/LiOH水溶液中腐蚀后形成的氧化膜中均存在H~+和OH~-。基于这一事实,提出了锆合金腐蚀时的吸氢机制如下:腐蚀介质中的水分子得到从金属/氧化膜界面处扩散到氧化膜表面的电子发生H_2O+e→H+OH~-的反应,OH~-通过氧化膜扩散到金属/氧化膜界面处与锆发生2OH~-+Zr→ZrO_2+2H+2e的反应直接生成氢,一部分氢可以被α-Zr基体吸收。基于这一吸氢机制,提出了第二相影响锆合金腐蚀时吸氢行为的机理:当第二相是一种比锆吸氢能力更强的物质时,金属/氧化膜界面处未被氧化的这些第二相可作为吸氢的优先通道,这类第二相的尺寸和数量会对锆合金腐蚀时的吸氢行为产生明显影响;当第二相是一种比锆吸氢能力弱的物质时,锆合金腐蚀时的吸氢行为主要取决于α-Zr基体本身,这类第二相的尺寸和数量对锆合金腐蚀时的吸氢行为影响不大。
Zirconium alloys are used as the fuel cladding materials in water-cooled nuclear power reactors. Corrosion and hydrogen uptake are two important issues in the application of zirconium alloys, which involves the lifetime of fuel assembles, and the safety and reliability of the operation for nuclear power reactors. Hence, how to improve the corrosion resistance and reduce the amount of hydrogen uptake of the fuel cladding for high burn-up of fuel assemblies need to be further investigated. In this study, Zr-2 (Zr-1.5Sn-0.2Fe-0.1Cr-0.05Ni), Zr-4 (Zr-1.5Sn-0.2Fe-0.1Cr), N36 (Zr-1Sn-1Nb-0.3Fe) and N18 (Zr-1Sn-0.35Nb-0.3Fe-0.1Cr) alloys were prepared to obtain specimens with different second phase particles (SPPs) in size and number by different heat treatments, respectively. The corrosion and hydrogen uptake behaviors of these specimens were investigated after autoclave testing in superheated steam at 400℃/10.3MPa and in 0.01 M LiOH aqueous solution at 360℃/18.6MPa, respectively. The mechanism on the impact of SPPs on hydrogen uptake behavior during corrosion tests was discussed. The main experimental results and conclusions are as follows:
     1. Theβ-quenched Zr-4 specimens possess superior corrosion resistance in lithiated water at 360℃, the weight gain of which is consistently comparable to that of ZIRLO and N18 alloys during 529 days exposure. The supersaturated solid solution contents of Fe and Cr inα-Zr matrix amount to about 700μg/g after P-quenching respectively. This is responsible for the improvement of corrosion resistance by P-quenching treatment. It provides a new thought in developing advanced zirconium alloys.
     2. The impact of heat treatment on the corrosion resistance of Zr-2 and Zr-4 alloys in superheated steam at 400℃is different from that in lithiated water at 360℃. The heat treatments by fast cooling from P-phase and upper temperature in a-phase are of benefit to improve the corrosion resistance in lithiated water at 360℃, but degrade the corrosion resistance in superheated steam at 400℃. This illustrates that the increase of supersaturated solid solution contents of Fe, Cr and Ni inα-Zr matrix is detrimental to the corrosion resistance of Zr-2 and Zr-4 testing in superheated steam at 400℃.
     3. In the case of N36 alloy with higher Nb content, the residualβ-Zr inα-Zr grains, which is formed during 820℃/2h treatment, doesn't occur to decompose after ageing treatment at 580℃for 50h. However, the cold-rolling before the ageing treatment promotes its decomposition to form a banding distribution of SPPs. Andβ-quenching treatment before cold-rolling can obtain the SPPs with nano-meter size and uniform distribution. Corrosion testing shows that the impact of the microstructure on the corrosion resistance of Zr-Sn-Nb alloys in superheated steam at 400℃is similar to in lithiated water at 360℃, i.e., residualβ-Zr inα-Zr matrix is detrimental to the corrosion resistance; the decomposition ofβZr and the SPPs with nano-meter size and uniform distribution can significantly improve their corrosion resistance.
     4. The corrosion resistance of N18 alloy is superior to N36 alloy, whether corroded in super-heated steam at 400℃or in lithiated water at 360℃. After N18 and N36 alloys are heat-treated by 700-1020℃, cold rolling and 580℃/50h aging, the Nb contents inα-Zr matrix are 0.15-0.3% and 0.55-0.57%, respectively, the former of which is closer to the equilibrium solubility at the corrosion testing temperature. This is responsible for the superior corrosion resistance of N18 to N36. From the standpoint of improving corrosion resistance, the addition content of Nb shouldn't be too high.
     5. When corroded in superheated steam at 400℃, the corrosion resistance of N18 and N36 alloys is inferior to Zr-4 alloy prepared by conventional procedure, but when corroded in lithiated water at 360℃, the corrosion resistance of the two former alloys is superior to the latter one. This further confirms that the impact of alloying composition on the corrosion resistance is different in different water chemistry.
     6. The composition of alloying elements has a significant impact on hydrogen uptake behavior during corrosion testing. Comparing the hydrogen content in the specimens normalized by weight gains after corrosion testing, the hydrogen uptake amount of Zr-2 alloy is the highest, followed by Zr-4 and N18 alloys, and that of N36 alloy is the lowest, which is closely related to the kinds and composition of SPPs. Zr-2 alloy contains Ni, Fe, Cr, which will form Zr_2(Fe, Ni) and Zr(Fe,Cr)_2 SPPs with Zr; Zr-4 alloy contains Fe, Cr, which will form Zr(Fe,Cr)_2 SPPs with Zr; N18 alloy is an advanced alloy by adding Nb to Zr-4, which also contains Zr(Fe,Cr)_2 SPPs; Compared with N18, N36 alloy doesn't contain Cr, but the Nb content is higher, in which the SPPs areβ-Nb and Nb-Zr-Fe. It is well known that Zr_2(Fe,Ni) and Zr(Fe,Cr)_2 intermetallics are extremely reactive with hydrogen in their metallic state and their hydrogen absorption are faster than that of Zr. This indicates that if the SPPs inα-Zr matrix are more reactive with hydrogen than Zr does, they will have a significant impact on the hydrogen uptake behavior of zirconium alloys during corrosion testing. From the standpoint of reducing hydrogen uptake during corrosion testing, the contents of alloying elements precipitated as such kind of SPPs should be as low as possible. This result provides a useful reference for the selection of alloying elements in developing advanced zirconium alloys.
     7. The impact degree of heat treatment on the hydrogen uptake behavior during corrosion testing is different for different zirconium alloys. It is the largest for Zr-2 alloy, followed by Zr-4, N18 and 36 alloys. This is related to the size and number of SPPs, besides the kind of SPPs. From the standpoint of reducing hydrogen uptake during corrosion testing, when the SPPs in zirconium alloys are strong hydrogen absorption materials, heat treatment should be used to minimize the size of this kind of SPPs. This result provides a guide for the optimization of heat treatment procedure, control of the microstructure to obtain excellent comprehensive properties of zirconium alloys during their processing.
     8. The corrosion temperature has a very significant impact on the hydrogen uptake behavior of zirconium alloys. The hydrogen uptake fraction of zirconium alloys corroded in superheated steam at 400℃(20-40%) is twofold as high as that corroded in lithiatd water at 360℃(10-20%). This indicates that if the development of advanced zirconium alloy for fuel cladding used in supercritical water reactors is considered, the issue of hydrogen uptake should be given more attention, in addition to improving corrosion resistance of zirconium alloys.
     9. The results of SIMS analysis verify that H~+ and OH~- exist in Zr-4 oxide film formed whether corroded in superheated steam at 400℃or in lithiated water at 360℃. Based on this phenomena, a mechanism on hydrogen uptake of zirconium alloys during corrosion testing is proposed as follows: the water molecules in corrosion mediums get electrons diffusing from metal / oxide film interface to the outer surface of oxide film and occur to the reaction of H_2O+e→H +OH~+; OH~- goes through the oxide film to metal / oxide film interface and react with zirconium ( 2OH~- + Zr→ZrO_2 +2H+2e) to generate hydrogen, a part of which can be absorbed byα-Zr matrix. Based on such hydrogen uptake mechanism, the mechanism on the impact of SPPs on hydrogen uptake behavior of zirconium alloys during corrosion testing is proposed as follows: when the SPPs are more reactive with hydrogen than Zr does, the kind of SPPs embedded inα-Zr matrix and exposed at the metal/oxide interface could act as a preferred path for hydrogen uptake, thus their size and number will have a significant impact on the hydrogen uptake behavior during corrosion testing; when the SPPs are less reactive with hydrogen than Zr does, the hydrogen uptake behavior depends largely on matrix ofα-Zr itself, and the size and number of this kind of SPPs have a little impact on the hydrogen behavior during corrosion testing.
引文
[1] 杨文斗主编,反应堆材料学[M],北京:原子能出版社,2006.
    
    [2] 周邦新,改善锆合金耐腐蚀性能的概述[J].金属热处理学报,1997,18(3):8-15.
    
    [3] 2006年中国核电行业分析及投资咨询报告.
    
    [4] 能源发展战略及“十一五”的重点咨询研究报告.2004.12, 中国工程院能源与矿业 工程学部.
    
    [5] 中国电力百科全书:核能及新能源发电卷[M].北京:中国电力出版社,1995.
    
    [6] Kearns, J. J., Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4 [J]. J. Nucl. Mater., 1967,22: 292-303.
    
    [7] 卡恩,R.W.,哈森,P.,克雷默,E.J.主编,周邦新等译.核应用中的锆合金[M],在 ‘材料科学与技术丛书-核材料(10B卷)中.北京:科学出版社,1999,pp.1-45.
    
    [8] Perryman, E. C. W., Pickering Pressure Tube Cracking Experience [J]. Nucl. Energy,1978, 17: 95.
    
    [9] Simpson, C. J., Ells, C. E., Delayed Hydrogen Embrittlement in Zr-2.5Nb% [J]. J. Nucl.Mat., 1974,52:289.
    
    [10] 周邦新,郑斯奎,汪顺新,Zr-2合金中应力和应变诱发氢化锆析出过程的电子显微 镜原位研究[J].金属学报,1989,25:A190-195.
    
    [11] 周邦新,姚美意等,氧化-氢化引起的锆合金焊接件开裂问题[J].核动力工程,2006, 27(1):34-36.
    
    [12] 陈鹤鸣,马春来,白新德主编,核反应堆材料腐蚀及其防护[M].北京:原子能出 版社,1984,pp.188-235.
    
    [13] Shcbaldov, P. V., Perregud, M. M., et al., E110 alloy cladding tube properties and their interrelation with alloy structure-phase condition and impurity content [C]. Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, 2000, pp.545-559.
    
    [14] Mardon, J. P., Charquet, D., and Senevat, J., Influence of composition and fabrication process on out-of-pile and in-pile properties of M5 alloy [C]. Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, 2000, pp. 505-524.
    
    [15] Warr, B. D., Van Der Heidi, P. A. W., and Maguire, M. A., Oxide characteristics and corrosion and hydrogen uptake in Zr-2.5Nb CANDU pressure tubes [C]. Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, 1996, pp.265-291.
    
    [16] Sabol, G. P., Kilp, G. R., Balfour, M. G, et al., Development of a cladding alloy forhigher burnup[C]. Zirconium in the Nuclear Industry: Eighth International Symposium,ASTM STP 1023,1989, pp. 227-244.
    
    [17] Sabol, G. P., Comstock, R. J., Weiner, R. A., et al, In-reactor corrosion performance ofZIRLO~(TM)and Zircaloy-4 [C]. Zirconium in the Nuclear Industry: Tenth InternationalSymposium, ASTM STP 1245,1994, pp. 724-744.
    
    [18] Comstock, R. J., Schoenberger, G., and Sable, G. P., Influence of processing variablesand alloy chemistry on the corrosion behavior of ZIRLO nuclear fuel cladding[C].Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP1295,1996:710-725.
    
    [19] Sabol, G. P., ZIRLO~(TM)- An alloy development success [C]. Zirconium in the NuclearIndustry: Fourteenth International Symposium, ASTM STP 1467, 2004, pp. 3-24.
    
    [20] Nikulina, A. V., Markelov, V. A., Peregud, M. M., et al., Zirconium alloy E635 asa material for fuel rod cladding and other components of VVER and RBMKcores [C]. Zirconium in the nuclear industry: Eleventh International Symposium, ASTMSTP 1295,1996, pp. 785-804.
    
    [21] 刘建章,国内核动力堆用锆合金的研究动向[J].稀有金属材料与工程,1990,6: 32-35.
    
    [22] 郑杰,牛惠玲等,Zr-4合金工艺改进的研究[J].稀有金属,1995,19(4):260-263.
    
    [23] 李佩志,邝用庚等,Nb含量对锆合金腐蚀性能的影响[C].“96中国材料研讨会,生 物及环境材料,Ⅲ-2”,北京:化学工业出版社,1997,pp.179-182.
    
    [24] 周邦新,郑斯奎,汪顺新,真空电子束焊接对锆-2合金熔区中成分、组织及腐蚀性 能的影响[J].核科学与工程,1988,8(2):130-137.
    
    [25] 周邦新,赵文金等,新锆合金的研究[C].“96中国材料研讨会,生物及环境材料,Ⅲ -2”,北京:化学工业出版社,1997,pp.183-186.
    
    [26] 周邦新,Zr-Sn-Nb系合金的显微组织研究[C].“96中国材料研讨会,生物及环境材 料,Ⅲ-2”,北京:化学工业出版社,1997,pp.187-191.
    
    [27] 周邦新,李强,黄强等,水化学对锆合金耐腐蚀性能影响的研究[J].核动力工程, 2000,21(5):439-447.
    
    [28] 周邦新,赵文金,蒋有荣等,Zr-4合金元素的表面偏聚[J].核动力工程,1998,19(6): 506-508.
    
    [29] 赵文金,苗志,蒋宏曼等,Zr-Sn-Nb合金的腐蚀行为研究[J].中国腐蚀与防护学报, 2002,22(2):124-128.
    
    [30] 李佩志,李中奎等,合金元素对Zr-Nb合金耐蚀性能的影响[J].稀有金属材料与工 程,1998,27(6):356-359.
    
    [31] 李中奎,刘建章等,新锆合金在两种不同介质中的耐蚀性能[J].稀有金属材料与工 程,1999,28(2):101-104
    
    [32] 朱梅生,刘建章等,8#新锆合金的组织与耐蚀性能的研究[J].稀有金属材料与工程, 1996,25(4):34-38.
    
    [33] 邝用庚,Zr-Nb系合金耐蚀性能研究[J].稀有金属材料与工程,1995,24(3):41-45.
    
    [34] 刘文庆,合金元素及水化学对锆合金耐腐蚀性能影响的研究[D].上海大学博士学 位论文,2002.
    
    [35] 李中奎,刘建章等,合金元素对Zr-Sn-Fe-Cr-Nb合金性能的影响[J].稀有金属材料 与工程,1996,25(5):43-48.
    
    [36] Eucken, C. M., Finden, P. T., et al, Influence of chemical composition on uniform corrosion of zirconium-base alloys in autoclave tests [C]. Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023,1989, pp.113-127.
    
    [37] 周邦新,李强,姚美意等,锆-4合金在高压釜中腐蚀时氧化膜显微组织的演化[J]. 核动力工程,2005,26(4):364-371
    
    [38] Yilmazbayhan, A., Motta, A. T., Comstock, R. J., et al., Structure of zirconium alloyoxides formed in pure water studied with synchrotron radiation and optical microscopy:relation to corrosion rate [J]. J. Nucl. Mater., 2004, 324: 6-22.
    
    [39] Schefold, J., Lincot, D., et al., The cyclic nature of corrosion of Zr and Zr-Sn inhigh-temperature water (633K) - A long-term in situ impedance spectroscopic study[J]. J. Electrochem. Soc, 2003,150(10): B451-461.
    
    [40] 周邦新,李强等,水化学及合金成分对锆合金腐蚀时氧化膜显微组织演化的影响 [J].稀有金属材料与工程,2006,35(7):1009-1016.
    
    [41] Ramasubramania, N., Precoanin, N., and Ling, V. C, Lithium uptake and the accelerated corrosion of zirconium alloys [C]. Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023,1989, pp. 187-201.
    
    [42] 周邦新,水化学对燃料元件包壳腐蚀行为的影响[J].核动力工程,1998,19(4): 353-359.
    
    [43] Ramasubramania, N., Balakrishnan, P. V., Aqueous chemistry of lithium hydroxide and boric acid and corrosion of Zircaloy-4 and Zr-2.5Nb alloy[C]. Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, 1994, pp.378-399.
    
    [44] Han, J. H., Rheem, K. S., The corrosion characteristics of Zircaloy-4 fuel cladding in LiOH-H_3BO_3 solution[J]. J. Nucl. Mat., 1994,217: 197.
    
    [45] Cox, B., Wong Y. -M., Effect of LiOH on pretransition zirconium oxide films[C]. Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP 1132, 1991, pp. 643-662
    
    [46] Pecheur, D., Godlewski, J., et al., Contribution to the understanding of the effect of the water chemistry on the oxidation kinetics of Zircaloy-4 cladding [C]. Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, 2000, pp.793-811.
    
    [47] Bramwell, I. L, Parsons, P. D., and Tice, D. R., Corrosion of Zircaloy-4 PWR fuel cladding in Lithiated and borated water environments[C]. Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP 1132,1991, pp. 628-642.
    
    [48] Billot, P., Yagnik, S., Ramasubramanian, N., et al., The role of lithium and boron on the corrosion of Zircaloy-4 under demanding PWR-type conditions[C]. Zirconium in the Nuclear Industry: Thirteenth International Symposium, ASTM STP 1423, 2002,pp. 169-189.
    
    [49] 刘文庆,周邦新,Zr-4合金在LiOH水溶液中腐蚀机理的概述[J].核动力工程,2001, 22(1):65-69.
    
    [50] Hillner, E., Chirigos, J. N., The effect of lithium hydroxide and related solution on thecorrosion rate of Zircaloy in 680(?) water [R]. Report WAPD-TM-307, Bettis AtomicPower Laboratory, West Mifflin, PA, 1962.
    
    [51] Cox, B., Ungurela, M., et al., Mechanisms of LiOH degradation and H_3BO_3 repair ofZrO_2 films [C]. Zirconium in the Nuclear Industry: Eleventh International Symposium,ASTM STP 1295,1996, pp. 114 -136.
    
    [52] Ramasubramanian, N., Lithium uptake and the corrosion of zirconium alloys in aqueouslithium hydroxide solution [C]. Zirconium in the Nuclear Industry: Ninth InternationalSymposium, ASTM STP 1132,1991, pp. 613-627.
    
    [53] Pecheur, D., Godlewski, J., et al., Microstructure of oxide films formed during thewaterside corrosion of the Zircaloy-4 cladding in lithiated environment [C]. Zirconiumin the nuclear industry: Eleventh International Symposium, ASTM STP 1295, 1996,pp.94-113
    
    [54] Beie, H. J., Mitwalsky, A., Garazorlli, E, et al., Examinations of the corrosionmechanism of zirconium alloys [C]. Zirconium in the Nuclear Industry: TenthInternational Symposium, ASTM STP 1245,1994, p.615-613.
    
    [55] Zhou, B. X., Li, Q., Yao, M. Y, et al., Effect of Water Chemistry and Composition onMicrostructural Evolution of Oxide on Zr-Alloys [C]. 15th International Symposiumon Zirconium in the Nuclear Industry, Sponsored by ASTM Committee B10 on reactiveand refractory metal and alloy, June 24-28, 2007, Sunriver, Oregon, USA (in press).
    
    [56] 刘文庆,李强等,LiOH水溶液加速Zr-4合金腐蚀的研究[J].稀有金属材料与工程, 2004,33(7):728-730.
    
    [57] Saario, T., Tahtinen, S., In-situ measurement of the effect of LiOH on the stability of Zircaloy-2 surface film in PWR water [R]. Rez, Oct. 4-8, 1993.
    [58] Takeda, K., and Anada, H., Mechanism of corrosion rate degradation due to tin[C]. Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, 2000, pp. 592-608.
    [59] Garzarolli, F., Broy, Y., and Busch, R. A., Comparison of the long-time corrosion behavior of certain Zr alloys in PWR, BWR, and laboratory [C]. Zirconium in the nuclear industry: Eleventh International Symposium, ASTM STP 1295, 1996, pp.850-864.
    [60] Graham, R. A., Tosdale, J. P., and Finden, P. T., Influence of chemical composition and manufacturing variables on autoclave corrosion of the Zircaloys [C]. Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023, 1989, pp.334-345.
    [61] Harada, M., Kimpara, M., and Abe, K., Effect of alloying elements on uniform corrosion resistance of zirconium-based alloys in 360℃ water and 400℃ steam [C]. Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP 1132, 1991, pp. 368-391.
    [62] Isobe, T., and Matsuo, Y., Development of highly corrosion resistant zirconium-based alloys [C]. Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP 1132,1991, pp. 346-367.
    [63] Isobe, T., Matsuo, Y., and Mae, Y., Micro-characterization of corrosion resistant zirconium-based alloys [C]. Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, 1994, pp. 437-449.
    [64] Broy, Y., Garzarolli, F., Seibold, A., et al., Influence of transition elements Fe, Cr and V on long-time corrosion in PWRs [C]. Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354,2000, pp.609-622.
    [65] Hong, H. S., Moon, J. S., et al., Investigation on the oxidation characteristics of copper-added modified Zircaloy-4 alloys in pressurized water at 360℃ [J]. J. Nucl. Mater., 2001,297: 113-119.
    [66] Park, J. Y., Choi, B. K., et al., Corrosion behavior of Zr alloys with a high Nb content [J]. J. Nucl. Mater., 2005, 340: 237-246.
    [67] Yueh, H. K., Kesterson, R. L., Comstock, R. J., et al., Improved ZIRLO~(TM) cladding performance through chemistry and process modifications [C]. Zirconium in the Nuclear Industry: Fourteenth International Symposium, ASTM STP 1467, 2004, pp. 330-346.
    [68] Charquet, D., Hahn, R., et al., Solubility limits and formation of intermetallic precipitates in ZrSnFeCr alloys [C]. Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023, 1989,pp.405-422.
    [69] Steinberg, E., Weidinger, H. G., and Schaa, A., Analytical approachs and experimental verification to describe the influence of cold work and heat treatment on the mechanical properties of Zircaloy cladding tubes [C]. Zirconium in the Nuclear Industry: Sixth International Symposium, ASTM STP 824,1984, pp. 106-122.
    [70] Garzarolli, G., Steinberg, E., and Weiginger, H. G., Microstructure and corrosion studies for PWR and BWR Zircaloy cladding [C]. Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023,1989, pp. 202-212.
    [71] Thorvaldsson, T., Andersson, T. et al., Corrosion between 400℃ steam corrosion behavior, heat treatment and microstructure of Zircaloy-4 tubing [C]. Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023, 1989, pp. 128-140.
    [72] Franklin, D. G., and Lang P. M., Zirconium-alloy corrosion: a review based on an international atomic energy agency (IAEA) meeting [C]. Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP 1132, 1991, pp.3-32.
    [73] Foster, P., Dougherty, J., Burke, M. G., et al., Influence of final recrystallization heat treatment on Zircaloy-4 strip corrosion.[J]. J. Nucl. Mat., 1990, 173(2): 164-178.
    [74] Wadman, B., and Andrén, H. Q., Direct measurement of matrix composition in Zircaloy-4 by atom probe microanalysis [C]. Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023, 1989, pp.423-434.
    [75] Cox, B., Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys [J]. J. Nucl. Mat., 2005, 336: 331-368.
    [76] Garzarolli, F., Schumann, R., and Steinberg, E., Corrosion optimized zircaloy for boiling water reactor (BWR) fuel elements [C]. Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245,1994, pp.709-723.
    [77] Zhou, Bangxin, Zhao Wenjin, Miao Zhi, et al., The effect of heat treatment on the corrosion behavior of Zircaloy-4 [R]. China Nuclear Science and Technology Report, CNIC-01074, SINRE-0066, China Nuclear Information Centre Atomic Energy Press, 1996.
    [78] Li, C., Zhou, B. X., et al., Determination of Fe and Cr content in α-Zr solid solution of Zircaloy-4 with different heat-treated states [J]. J. Nucl. Mater., 2002,134-138.
    [79] Kim, J. M., Jeong, Y. H., and Jung, Y. H., Correlation of heat treatment and corrosion behavior of Zr-Nb-Sn-Fe-Cu alloys [J]. J. Mater. Proc. Tech., 2000,104: 145-149.
    [80] Choo, K. N., Kang, Y. H., Pyun, S. I., et al. Effect of composition and heat treatment on the microstructure and corrosion behavior of Zr-Nb alloys [J]. J. Nucl. Mater., 1994, 209: 226-235.
    [81] Jeong, Y. H., Lee, K. O., Kim, H. G., Correlation between microstructure and corrosion behavior of Zr-Nb binary [J]. J. Nucl. Mater., 2002, 302: 9-19.
    [82] Jeong, Y. H., Kim, H. G., and Kim, T. H., Effect of β phase, precipitate and Nb-concentration in matrix on corrosion and oxide characteristics of Zr-xNb alloys [J]. J.??Nucl. Mater, 2003, 317: 1-12.
    
    [83] Jeong, Y. H., Kim, H. G, and Kim, D. J., Influence of Nb concentration in the α-matrixon the corrosion behavior of Zr-xNb binary alloys [J]. J. Nucl. Mater., 2003, 323: 72-80.
    
    [84] Kim, H. G, Jeong, Y. H., and Kim, T. H., Effect of isothermal annealing on the corrosionbehavior of Zr-xNb alloys [J]. J. Nucl. Mater., 2004,326:125-131.
    
    [85] Li,Z.K.,Zhou,L.,Zhao,W.J.,et al.,Effect of intermediate annealing on out-of pile corrosion resistance of zirconium-based alloy[J].稀有金属材料与工程,2001,30(增 刊1):52-54.
    
    [86] 刘文庆,李强,周邦新等,显微组织对ZIRLO锆合金耐腐蚀性的影响[J].核动力 工程,2003,24(1):33-36.
    
    [87] Toffolon-Masclet, C, Brachet, J. -C, Jago, G, Studies of second phase particles in different zirconium alloys using extractive carbon replica and an electrolytic anodic dissolution procedure [J]. J. Nucl. Mater., 2002, 305: 224-231.
    
    [88] Toffolon-Masclet, C, Barberis, P., Brachet, J. -C, et al, Study of Nb and Fe precipitation in a-phase temperature range (400 to 500 ℃ ) in Zr-Nb-(Fe-Sn) alloys [C]. Zirconium in the Nuclear Industry: Fourteenth International Symposium, ASTM STP 1467, 2004, pp.81-101.
    
    [89] Sabol, G. P., Comstock, R. J., and Nayak, U. P., Effect of dilute alloy additions of molybdenum, niobium, and vanadium on zirconium corrosion [C]. Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, 2000, pp.525-544.
    
    [90] 刘文庆,李强,周邦新等,热处理制度对N18新合金耐腐蚀性能的影响[J].核动力 工程,2005,26(3):249-253.
    
    [91] Charquet, D., Rudling, P., et al., Hydrogen absorption kinetics during zircaloy oxidationin steam [C]. Zirconium in the nuclear industry: Tenth International Symposium, ASTMSTP 1245,1994, pp. 80-97.
    
    [92] Shaltiel, D., Jacob, I., and Davidov, D., Hydrogen absorption and desprption propertiesof AB_2 laves-phase pseudobinary compounds [J]. J. Less-commom metals, 1977, 53:117-131.
    
    [93] Rudling, P., Wikmark, G, A unified model of Zircaloy BWR corrosion and hydridingmechanisms [J]. J. Nucl. Mater., 1999,265: 44-59.
    
    [94] Rudling, P., Wikmark, G, et al, Impact of second phase particles on BWR Zr-2 corrosionand hydriding performance [C]. Zirconium in Nuclear Industry: Twelfth InternationalSymposium, ASTM STP 1354,2000, pp.678-706.
    
    [95] Cox, B., Hydrogen uptake during oxidation of zirconium alloys [J]. J. Alloys Comp.,1997,256:244-246.
    [96] Cox, B., A mechanism for the hydrogen uptake process in zirconium alloys [J]. J. Nucl. Mater., 1999,264: 283-294.
    [97] Cox, B., Wong, Y.-M., A hydrogen uptake micro-mechanisum for Zr alloys [J]. J. Nucl. Mater., 1999,270: 134-146.
    [98] Ramasubramanian, N., Billot, P., and Yagnik, S., Hydrogen evolution and pickup during the corrosion of zirconium alloys : a critical evolution of the solid state and porous evolution oxide electrochemistry [C]. Zirconium in Nuclear Industry: Thirteenth International Symposium, ASTM STP 1423, 2002, pp. 222-244.
    [99] Hatano, H., Hitaka, R., et al., Influence of size distribution of Zr(Fe, Cr)_2 precipitates on hydrogen transport through oxide film of Zircaloy-4 [J]. J. Nucl. Mater., 1997, 248: 311-314.
    [100] Isobe, K., Hatano, Y., et al, Observation of spatial distribution of tritium in zirconium alloy with microautoradiography [J]. J. Nucl. Mater., 1999, 271-272: 326-329.
    [101] T(a|¨)gstrom, P., Limb(a|¨)ck, M., et al., Effect of hydrogen pickup and second-phase particles dissolution on the in-reactor corroison performance of BWR claddings [C]. Thirteenth International Symposium, ASTM STP 1423,2002, pp. 96-118.
    [102] Lelièvre, G., Tessier, C., et al., Impact of intermetallic precipitates on hydrogen distribution in the oxide layers formed on zirconium alloys in a steam atmosphere: a D (~3He, p)∝ nuclear analysis studt in microbeam mode [J]. J. Alloys Comp., 1998, 268: 308-317.
    [103] Lim, B. H., Hong, H. S., Lee, K. S., Measurement of hydrogen permeation and absorption in Zirconium oxide scales [J]. J. Nucl. Mater., 2003, 312: 134-140.
    [104] Choo, K. N., Pyum, S. I., Kim, Y. S., Oxidation and hydrogen uptake of Zr based Nb alloys at 400℃ under 10MPa H_2O steam atmosphere [J]. J. Nucl. Mater., 1995, 226: 9-14.
    [105] Ivanova, S. V., Effect of hydrogen on zirconium alloys used for core parts of VVER and RBMK reactors [J]. Metal Sci. Heat Treat., 2002,44(9-10): 418-421
    [106] McMinn, A., Darby, E. C., and Schofield, J. S., The terminal solid solubility of Hydrogen in zirconium alloys [C]. Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354,2000, pp. 173-195
    [107] Kammenzind, B. F., Frankin, D. G., Peters, H. R., et al., Hydrogen pickup and redistribution in alpha-annealed Zircaloy-4 [C]. Zirconium in the nuclear industry: Eleventh International Symposium, ASTM STP 1295, 1996, pp. 338-370.
    [108] Khatamian, D., Ling, V. C., Hydrogen solubility limits in a- and p-zirconium [J]. J. Alloys Comp., 1997, 253-254: 162-166.
    [109] Khatamian, D., Solubility and partitioning of hydrogen in metastable Zr-based allous used in the nuclear industry [J]. J. Alloys Comp., 1999, 293-295: 893-899.
    
    [110] Khatamian, D., Effect of P-Zr decomposition on the solubility limits for H in Zr-2.5Nb[J]. J. Alloys Comp., 2003,356-357:22-26.
    
    [111] Steinbriick, M., Hydrogen absorption by zirconium alloys at high temperatures [J]. J.Nucl. Mater., 2004, 334:58-64.
    
    [112] Miyake, M., Uno, M., and Yamanaka, S., On the zirconium-oxygen-hydrogen ternarysystem [J]. J. Nucl. Mater., 1999,207:233-241.
    
    [113] Root, J. H., Small, W. M., et al., Kinetics of the 8 to y zirconium hydride transformationin Zr-2.5Nb [J]. Acta Mater., 2003,51: 2041-2053.
    
    [114] Small, W. M., Root, J. H., and Khatamian, D., Observation of kinetics of y zirconiumhydride formation in Zr-2.5Nb by neutron diffraction [J]. J. Nucl. Mater., 1998, 256:102-107.
    
    [115] Dupin, N., Ansara, I., et al., A thermodynamic database for zirconium alloys [J]. J. Nucl.Mater., 1999,275:287-295.
    
    [116] Kim, Y. S., Wang, W.-E., et al., High-pressure hydriding of Zircaloy-4 [J]. J. Nucl.Mater., 1996,240:27-31.
    
    [117] Kim, Y. S., Ann, S. B., Cheong, Y. M., et al. Precipitation of cracking tip hydrides inzirconium alloys [J]. J. Alloys Comp., 2007,429: 221-226.
    
    [118]蒋有荣,锆合金中氢化物应力再取向的研究.硕士论文,中国核动力研究设计院, 1992.
    
    [119] Singh, R. N., Kishore, R., et al., Stress-reoriention of hydrides and hydrideembrittlement of Zr-2.5 Nb wt% pressure tube alloy [J]. J. Nucl. Mater., 2004,325:26-33.
    
    [120] Wikmark, G, Ruding, P., et al., The importance of oxide morphology for the oxidationrate of zirconium alloys [C]. Zirconium in the Nuclear Industry: Eleventh InternationalSymposium, ASTM STP 1295, 1996, pp.55-73.
    
    [121]周邦新,李强,姚美意等,锆-4合金氧化膜中的的晶粒形貌观察[J].稀有金属材 料与工程,2003,32(6):417-419.
    
    [122] Garzarolli, E, Pohlmeyer, I., et al., Long term out of pile corrosion of Zircaloy-4 in 350 ℃ water [C]. In: External Cladding Corrosion in Water Power Reactors, Proceeding of a Technical Committee Meeting, Organized by the International Atomic Energy Agency, Cadarache, France, 1985, pp.66-69.
    
    [123] Kubo, T., and Uno, M., Precipitate behavior in Zircaloy-2 oxide films and its relevance to corrosion resistance [C]. Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP 1132, 1991, pp.476-498.
    
    [124]周邦新,李强,姚美意等,热处理影响Zr-4合金耐疖状腐蚀性能的机理[J].稀有金 属材料与工程,2007,36(7):1129-1134..
    
    [125] Pettersson, K., Bergqvist, H., Influence of secpnd phase particles on the nodular corrosion of Zircaloy-2 [C]. In: External Cladding Corrosion in Water Power Reactors, Proceeding of a Technical Committee Meeting, Organized by the International Atomic Energy Agency, Cadarache, France, 1985, pp.53-65.
    
    [126] Anada, H., and Takeda, K., Microstructure of oxides on Zircaloy-4, 1.0Nb Zircaloy-4, and Zircaloy-2 formed in 10.3-MPa steam at 673 K [C]. Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295,1996, pp.35-54.
    
    [127] Anada, H., Herb, B. J., et al., Effect of annealing temperature on corrosion behavior and ZrO2 microstructure of Zircaloy-4 cladding tube [C]. Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, 1996, pp.74-93.
    
    [128] Yilmazbayhan, A., Breval, E., et al., Transmission electron microscopy examination of oxide layers formed on Zr alooys [J]. J. Nucl .Mat., 2006, 349: 265-281.
    
    [129] Wadman, B., Lei, Z. et al., Microstructure of oxide layers formed during autoclave testing of zirconium alloys [C]. Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245,1994,pp.579-598.
    
    [130] Gros, J. P., Wader, J. F., Precipitate growth kinetics in Zircaloy-4[J]. J. Nucl .Mat., 1990,172:85-96.
    
    [131]周邦新,杨晓林,热处理对Zr-4合金中第二相结构和成分的影响[J].核动力工程, 1997,18(6):511-516.
    
    [132]李聪,李蓓,周邦新等.Zr-4合金α-Zr固溶体中的Fe、Cr含量分析[J].核动力工程, 2002,23(4):20-24.
    
    [133] Godlewski J, How the tetragonal zirconia is stabilized in the oxide scale that is formed on a zirconium alloy corroded at 400 ℃ in steam [C]. Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, 1994, pp. 663-686.
    
    [134] Schemel, J. H., Charquet, D., and Wadier, J. E, Influence of the manufacturing process on the corrosion resstance of Zircaloy-4 cladding [C]. Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023, 1989, pp. 141-152.
    
    [135]周邦新,李强,苗志,β水淬对锆-4合金耐腐蚀性能的影响[J].核动力工程,2000, 21(4):339-343.
    
    [136]潘淑芳,苗志,李文才,Zr-4合金在高温水蒸汽中的腐蚀[C].核材料会议文集:动 力堆燃料材料的辐照和腐蚀,原子能出版社,1989,pp.1-6.
    
    [137] Li, C, Zuo, R. L., Li, Z. K. et al, Transmission electron microscopy investigation of Zr_2(Fe,Ni) particles incorporated in the oxide film formed on a zirconium alloy [J]. Thin Solid Films, 2004,461: 272-276.
    
    [138] Rudling, P., Pettersson, H., et al, Corrosion performance of Zircaloy-2 and Zircaloy-4 PWR fuel cladding [C]. Zirconium in the Nuclear Industry: Eighth International??Symposium, ASTM STP 1023,1989, pp.213-226.
    
    [139] Hood, G M., and Schultz, R. J., Diffusion of 3D transition elements in a-Zr and zirconium alloys [C]. Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023,1989, pp. 435-450.
    
    [140]李强,刘文庆,周邦新,变形及热处理对Zr-Sn-Nb合金中β-Zr分解的影响[J].稀 有金属材料与工程,2002,31(5):389-392.
    
    [141]严青松,热处理制度对N36锆合金耐腐蚀性能影响的研究[M].上海大学,硕士论 文,2006.
    
    [142]雷鸣,显微组织对N36锆合金耐腐蚀性能影响的研究[M].上海大学,硕士论文, 2007.
    
    [143]周邦新,姚美意,李强等,Zr-Sn-Nb合金耐疖状腐蚀性能的研究[J],稀有金属材料 与工程,2007,36(8):1317-1321.
    
    [144]刘彦章,赵文金等,热加工对Zr-Sn-Nb合金显微组织的影响研究[J].核动力工程, 2005.26:158-162
    
    [145] Ruhmann, H., Manzel, R., et al., In-BWR and out-of-pile nodular corrosion behavior ofZry-2/4 type metals with varing Fe, Cr, and Ni content and varing process histpry [C].Zirconium in the nuclear industry: Eleventh International Symposium, ASTM STP 1295,1996, pp. 865-883
    
    [146] Zhang, C. S., Norton, P. R., The dissolution of oxide on     
    [147] Lin, Y. P., Woo, O. T., Oxidation of P-Zr and related phases in Zr-Nb alloys: an electronmicroscopy investigation [J]. J. Nucl .Mat., 2000,277:11-27.
    
    [148] Yao, M. Y., Zhou, B.X., Li, Q., et al., The effect of alloying modifications on hydrogenuptake of zirconium-alloy welding specimens during corrosion tests. Journal of NuclearMaterials 2006, 350,195-201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700