纳米结构金属及合金热力学性能的原子模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以几种典型金属及合金的纳米结构为研究对象,运用分析型嵌入原子模型,从原子尺度系统地研究了纳米结构的一些基本热力学性能,如熔化、热膨胀、热振动、原子扩散等。得到了与已有实验相一致的结果,并对一些实验结果进行了解释。
     本文首先简要地介绍了纳米结构的一些基本概念和当前有关纳米材料结构和热力学性能的研究进展,及用到的理论与方法,包括分析型嵌入原子模型,分子动力学方法和结构分析技术等,然后说明了运动上述理论和技术计算热力学性能的基本方法。
     利用静态计算方法,从能量的角度计算了Ag、Pt纳米颗粒的晶格常数。计算的结果与热力学的预测值符合得很好。在高比表面率的作用下,纳米颗粒的平均晶格常数随颗粒尺寸的降低而减小,晶格收缩率与颗粒粒径的倒数间存在近似线性关系。采用分子动力学弛豫技术,从平均原子键长的角度研究了纳米颗粒的非均匀晶格畸变。发现纳米颗粒的表层晶格收缩量明显比内核区域大,并且表层区表现出明显的非均匀晶格收缩。当颗粒尺寸大到一定值时,非均匀的表层晶格收缩主要集中于表层2– 3个晶格常数的厚度。受非均匀晶格畸变的影响,实验上测量的颗粒晶格收缩量介于计算的系统平均收缩量与内核平均收缩量之间。
     采用分子动力学方法计算了颗粒直径介于2– 9 nm (颗粒包含原子数从537–28475)的BCC结构难熔金属V纳米颗粒的熔化行为。发现受表面效应的影响,V纳米颗粒的熔化温度比常规晶体V低,并且随颗粒尺寸的减小而减小,计算的结果与热力学液滴模型的预测值符合得很好。对于V纳米颗粒的熔化过程,可以描述为两个阶段:首先是表层的逐步预熔,预熔层的厚度大约为2–3个晶格常数;其后就是整个颗粒的瞬间完全熔化。纳米颗粒熔化时的熔化焓与颗粒粒径的倒数间存在近似线性反比的关系。颗粒在低温时的扩散主要局限于表层原子的扩散,由于随颗粒尺寸的减小,表面原子占有数增加,所以小尺寸颗粒的扩散系数大。利用原子径向均方振动幅度(RMSVA)研究了颗粒表层原子的热振动,表层原子的非谐效应明显增强。纳米液滴的凝固结晶模拟表明,相对于同尺寸纳米颗粒的熔化温度而言,纳米液滴凝固时所需的有效过冷度随液滴尺寸的减小而降低。液滴凝固时在其表面处形核。受颗粒内部密堆积结构和表面效应的影响,FCC结构金属的小尺寸液滴凝固后得到了二十面体结构。
     从计算原子的Voronoi胞体积出发,研究了纳米晶体Ag的热膨胀性能。受无序晶界结构的影响,相对于晶粒内部原子,晶界原子表现出一定的过剩体积。纳米晶体的热膨胀与完整晶体基本接近。纳米晶体中晶粒的热膨胀比完整晶体略高,而晶界的热膨胀比完整晶体低。晶粒与晶界的相互作用致使纳米晶体的热膨胀与平均晶粒尺寸基本无关。
     利用分子动力学方法计算了纳米晶体Ni的原子振动性能。结果表明,随温度的升高,纳米晶体表现出与常规晶体类似的声子软化现象,并且其软化效应主要由晶粒相原子的振动所引起。从300 K到900 K的温度范围内,晶界相的偏振动态密度基本上与温度无关。在简谐近似条件下计算了纳米晶体的基本热力学量,发现同常规晶体相比,纳米晶体的比热和振动熵升高,振动自由能降低。如果将纳米晶体看作是由晶粒相和晶界相构成的一种复合材料,纳米晶体的振动热力学量可以从对应两相的热力学量线性叠加得到。由于纳米晶体中界面增强的非谐效应,纳米晶体的德拜温度比常规晶体低,并且随平均晶粒尺寸的减小而减小。
     采用纳米晶体的Voronoi元胞构建法,通过外推纳米晶体的平均晶粒尺寸至无限小值,得到了非晶相结构。利用分子动力学方法模拟了纳米晶体Ag (平均晶粒尺寸介于1.31– 12.12 nm)的熔化行为。结果表明纳米晶体中连续的熔化过程起始于晶界。随着纳米晶体的熔化,表征液态结构的三种典型键对(1551)、(1431)和(1541)迅速增加。纳米晶体的熔化温度比常规晶体低,纳米晶体的熔化温度随晶体平均晶粒尺寸的变化表现为两个特征区域。对于纳米晶体Ag,当平均晶粒尺寸大于约4 nm时,熔化温度随晶粒尺寸的减小而减小;随着平均晶粒尺寸的进一步减小,纳米晶体Ag的熔化温度基本上不再随晶粒尺寸而变化。这是因为支配纳米晶体熔化温度的主导相由晶粒部分转变为晶界部分。由于晶体和非晶体之间的本质结构差异,导致非晶体Ag的固液转变温度明显比纳米晶体的熔化温度低。
     对比研究了常规过冷液体凝固结晶和纳米晶体熔化过程中的微观结构演变。过冷态液体凝固结晶时的过程表现为三个特征阶段:形核、核的快速长大和缓慢的结构弛豫过程。根据经典形核理论,液体凝固时的均匀形核需要达到一定的过冷度,研究了过冷度对凝固结晶过程和结晶后材料织构的影响。运用Johnson-Mehl-Avrami (JMA)方程讨论了液体结晶到固体的转变动力学。
     利用分子动力学方法结合分析型EAM模型,研究了纳米晶体Ag的等温晶粒生长行为,分析讨论了退火温度和晶粒尺寸对纳米晶体晶粒生长行为的影响。同常规多晶体材料的晶粒生长一样,高退火温度和小晶粒尺寸增强了纳米晶体的晶粒生长。纳米晶体Ag的等温晶粒生长曲线大致可以描述为两个阶段:指数生长和线性弛豫阶段。在纳米晶体的晶粒生长过程中,除了晶界迁移机制外,还存在颗粒的旋转机制。另外,晶体生长过程中形成的位错或层错在纳米晶体的生长过程中起到了一个类似中介的作用。
     通过构建一个简单的热力学模型,结合分析型EAM理论,计算了Au和Pt的自由纳米颗粒形成AuPt合金纳米颗粒的形成焓。讨论了在纳米尺度下表面效应对常规不互溶金属的合金纳米颗粒的合金化能力和相稳定性的影响。结果表明,合金纳米颗粒的形成焓除表现出与常规体合金类似的随合金组分变化的规律外,还表现出显著的尺寸相关性,并且存在尺寸效应和组分效应间的竞争。对比常规不互溶合金的正形成焓,合金纳米颗粒在小尺寸和稀固溶组分的条件下具有负的形成焓,这表明在纳米尺度下,不互溶体系的合金化能力和相稳定性增强。另外,表面偏聚作用导致不互溶体系的合金纳米颗粒在比较大的尺寸范围表现出负形成焓。分子动力学模拟表明,成分和结构均匀的AuPt合金纳米颗粒在升温时趋向于形成核壳结构。
     研究了FeAl合金纳米颗粒熔化及其纳米液滴的冷却凝固过程。同单元素的金属纳米颗粒类似,颗粒表层存在明显的预熔现象。合金纳米颗粒的熔化温度随颗粒尺寸的减小而减小,与热力学模型预测的纳米颗粒的熔化温度随颗粒尺寸的变化规律一致。合金纳米液滴的冷却凝固表明,液滴的合金组分对其冷却凝固性能有着重要的影响。对于Fe、Al成分比(Fe : Al)接近3 : 1的纳米液滴,凝固后得到类似于无序固溶体结构的晶态纳米颗粒,结晶过程中于液滴的表层形核;而对于成分比接近1 : 1的液滴,在比较低的冷却速率下仍然得到了非晶态结构。
     本文所使用的分析型嵌入原子方法通过拟合体原子的性质得到,但无需调整任何参数即能预测纳米结构的热力学性质,并且得到与实验相符合的结果,说明该理论简便可行、具有普适性和系统性。为系统建立普适的原子尺度材料设计理论奠定了基础。
In the present thesis, with the analytic embedded atom method (EAM), thethermodynamic properties, such as melting behavior, thermal expansion, atomicthermal vibration and atomic self-diffusion of typical nanostructured metals andalloys are studied systematically. Some of the results have a good agreement withexperimental data and theoretical predictions.
     According to the theory that a stable system has a minimum energy, themean lattice contraction of nanoparticles have been calculated with a static method.It is found that the lattice contraction ratio decreases linearly with the reciprocalof particle size. The size and temperature effects on lattice distortion of Ag andPt nanoparticles have been investigated in terms of atomic mean bond length us-ing molecular dynamics simulations. The average values of lattice contractionover the whole system are larger than that of the experimental data, and the av-erage value of lattice contraction in the inner core has a better agreement withthe experiment results. This phenomenon is mainly resulted by inhomogeneouslattice distortion. The surface distortion and the size effect on the inner core dis-tortion are remarkable. As the grain size increases to a certain degree, the inho-mogeneous surface lattice distortion is mainly localized to the outer shell with athickness of 2-3 lattice parameters.
     Molecular dynamics has been performed to study the melting evolution,atomic diffusion and vibrational behavior of BCC metal vanadium nanoparticleswith number of atoms ranging from 537 to 28475 (diameters around 2-9 nm). Theresults reveal that the melting temperature of nanoparticle is in inverse propor-tion to the reciprocal of nanoparticle size linearly, and in good agreement with theprediction of thermodynamic liquid-drop model. For the vanadium nanoparticle,the melting process can be described as two stages, firstly the stepwise premelt-ing on the surface layer with a thickness of 2-3 perfect lattice constant, and thenthe abrupt overall melting of the whole cluster. The heat of fusion of nanoparticleis also in linearly inverse proportion to the reciprocal of nanoparticle size. Thediffusion is mainly localized to the surface layer at low temperature and increasewith the reduction of nanoparticle size at the same temperature. The radial meansquare vibration amplitude (RMSVA) is developed to study the anharmonic effect on surface shells. The simulation of solidification of nanodroplets indicates thatthe effective supercooled degree decreases with the reduction of droplet size. Thenucleation in the process of solidification occurs on the surface layer of droplet.Affected by close packed structure and surface effect, the small droplets of FCCmetals exhibit structural characteristic of icosahedron after solidification.
     The thermal expansion of nanocrystalline Ag is investigated by calculatingatomic Voronoi volume. Affected by grain boundary structure, the atoms ongrain boundary exhibit excess volume against atoms in the interior of grain. Thethermal expansion of grains in nanocrystal is slightly higher than that of a perfectlattice, while the thermal expansion of grain boundaries in nanocrystal is lowerthan that of a perfect lattice. The thermal expansion of nanocrystals is almostindependent on mean grain size.
     The molecular dynamics simulations have been performed to study the vi-brational properties of nanocrystalline nickels. The obtained results reveal thatthe similar phonon softening as in the perfect lattice mainly focuses on grainsin nanocrystalline materials, and the partial vibrational density of states of grainboundary phase is almost insensitive to temperature from 300 K to 900 K, espe-cially within the range of low frequency. The nanocrystalline materials have ahigher specific heat and vibrational entropy, and lower vibrational free energyrelative to the conventional crystals. Supposing the nanocrystalline material canbe treated as a composite constituted by grain and grain boundary (GB) phases,the vibrational thermodynamic properties can be well determined from the pro-portion of GBs and the corresponding thermodynamic properties of grain andGB phases. The Debye temperature of nanocrystalline materials is quantitativelylower than that of the conventional crystals and decreases with the reduction ofmean grain size.
     In the atomic scale, the melting behaviors of nanocrystalline Ag with themean grain size ranging from 1.21 to 12.12 nm have been investigated with themolecular dynamics simulations, and a method to determine the melting temper-atures of the infinite polycrystalline nanostructured materials are presented. It isfound that the melting in the nanostructured polycrystals starts from their grainboundaries, and the relative numbers of the three typical bonded-pairs, (1551),(1431) and (1541) existing in the liquid phase increase rapidly with the evolve-ment of melting. The grain size variation of melting temperature exhibits twocharacteristic regions. As mean grain size above about 4 nm for Ag, the melt- ing temperatures decrease with decreasing grain size, and it can be estimatedfrom the size dependent melting temperature of the corresponding nanoparti-cles. However, with grain size further shrinking, the melting temperatures almostkeep a constant. This is because the dominant factor on the melting temperatureof nanocrystal shifts from grain phase to grain boundary. By extrapolating themean grain size of nanocrystal to an infinitesimal value, an amorphous phasehas been obtained from the Voronoi construction. As a result of fundamentaldifference in structure, the amorphous phase has a much lower solid-to-liquidtransformation temperature than that of nanocrystal.
     Molecular dynamics simulations have been performed to obtain the atomic-scale details of crystallization from supercooled liquid. The radial distributionfunction and common neighbor analysis provide a visible scenario of structuralevolution in the process of phase transition. The crystallization from supercooledliquid is characterized by three characteristic stages: nucleation, rapid growth ofnucleus and slow structural relaxation. The homogeneous nucleation occurs at alarger supercooling temperature, which has an important effect on the process ofcrystallization and the subsequent crystalline texture. The kinetics of transitionfrom liquid to solid is well described by Johnson-Mehl-Avrami equation.
     Isothermal grain growth behaviors, including the effect of temperature andmean grain size, of nanocrystalline Ag are investigated using the molecular dy-namics simulations. The small grain size and high temperature accelerate thegrain growth, it is the same as the conventional polycrystalline materials. Thegrain growth processes of nanocrystalline Ag are well characterized by an expo-nent growth curve, followed by a linear relaxation stage. Beside grain boundarymigration and grain rotation mechanisms, the dislocations (or stacking faults)sever as the intermediate role in the grain growth process.
     The surface and size effects on the alloying ability and phase stability of im-miscible alloy nanoparticles have been studied with calculating the heats of for-mation of Au-Pt alloy nanoparticles from the single element nanoparticles of theirconstituents (Au and Pt) with a simple thermodynamic model and an analyticembedded atom method. The results indicated that, besides the similar composi-tional dependence of heat of formation as in bulk alloys, the heat of formation ofalloy nanoparticles exhibits notable size-dependence, and there exists a competi-tion between size effect and compositional effect on the heat of formation of im-miscible system. Contrary to the positive heat of formation for bulk-immiscible alloys, a negative heat of formation may be obtained for the alloy nanoparticleswith a small size or dilute solute component, which implies a promotion of thealloying ability and phase stability of immiscible system on a nanoscale. Thesurface segregation results in an extension of the size range of particles with anegative heat of formation. The molecular dynamics simulations have indicatedthat the structurally and compositionally homogeneous AuPt nanoparticles tendto form a core-shell structure with temperature increasing. The melting tempera-ture of FeAl alloy nanoparticles decreases linearly with the reciprocal of particlesize. In the solidification of alloy nanodroplets, the alloy component has an im-portant effect on the process of solidification and final structure.
     Only by fitting the bulk properties of metals, the analytic EAM can predictthermodynamical properties of nanostructured materials without any parameterabout nanostructure. This work is helpful to establish the theory of materials de-sign in the atomic scale systematically.
引文
[1] 张立德, 牟季美. 纳米材料和纳米结构. 北京: 科学出版社, 2001: 1-45
    [2] Gleiter H. Nanostructured materials: Basic concepts and microstructure.Acta Mater, 2000, 48(1):1–29
    [3] 文玉华, 周富信, 刘曰武, et al. 纳米材料的研究进展. 力学进展, 2001,31(1):47–61
    [4] Gusev A E. Effects of the nanocrystalline state in solids. Physics-Uspekhi,1998, 41(1):49–76
    [5] Lu K. Nanocrystalline metals crystallized from amorphous solids:nanocrystalline, structure, and properties. Mater Sci Eng R, 1996, 16(4):161–221
    [6] 曹茂盛, 曹传宝, 徐甲强. 纳米材料学. 哈尔滨: 哈尔滨工程大学出版社, 2002:1-38
    [7] Lamber R, Wetjen S, Jaeger N I. Size dependence of the lattice parameter ofsmall particles. Phys Rev B, 1995, 51(16):10968–10971
    [8] Solliard C, Flueli M. Surface stress and size effect on the lattice parameterin small particles of gold and platinum. Surf Sci, 1985, 156(1):487–494
    [9] Apai G, Hamilton J F, Stohr J, et al. Extended X-ray-absorption fine struc-ture of small Cu and Ni clusters: binding-energy and bond-length changeswith cluster size. Phys Rev Lett, 1979, 43(2):165–169
    [10] Montano P A, Schulze W, Tesche B, et al. Extended x-ray-absorption fine-structure study of Ag particles isolated in solid argon. Phys Rev B, 1984,30(2):672–677
    [11] Jiang Q, Liang L H, Zhao D S. Lattice Contraction and Surface Stress ofFCC Nanocrystals. J Phys Chem B, 2001, 105(27):6275–6277
    [12] Liang L H, Li J C, Jiang Q. Size-dependent melting depression and latticecontraction of Bi nanocrystals. Physica B, 2003, 334(1):49–53
    [13] Yu X F, Liu X, Zhang K, et al. The lattice contraction of nanometre-sized Snand Bi particles produced by an electrohydrodynamic technique. J Phys:Condens Mater, 1999, 11(4):937–944
    [14] Kim M D, Lee H S, Lee J Y, et al. Formation process and lattice parameterof InAs/GaAs quantum dots. J Mater Sci Lett, 2003, 22(24):1767–1770
    [15] Nanda K K, Behera S N, Sahu S N. The lattice contraction of nanometer-sized Sn and Bi particles produced by an electrohydrodynamic technique.J Phys: Condens Matter, 2001, 13(12):2861–2864
    [16] 齐卫宏. 金属纳米微粒热力学性能的尺寸效应和形状效应研究:[博士]. 长沙: 中南大学, 2004: 1-36
    [17] Hu W Y, Xiao S F, Yang J Y, et al. Inhomogeneous lattice distortion in metal-lic nanoparticles. Solid State Phenomena, 2007, 121-123(1):1045–1048
    [18] Tolman R C. The effect of droplet size on surface tension. J Chem Phys,1949, 17(3):333–337
    [19] Giessen E V, Blokhuis E M, Bukman D J. Mean field curvature correctionsto the surface tension. J Chem Phys, 1998, 108(3):1148–1156
    [20] Nanda K K, Maisels A, Kruis F E, et al. Hihger surface energy of freenanoparticles. Phys Rev Lett, 2003, 91(10):106102–4
    [21] Lu H M, Jiang Q. Comment on ”Higher surface energy of free nanoparti-cles”. Phys Rev Lett, 2004, 92(17):179601–1
    [22] Kim H K, Huh S H, Park J W, et al. The cluster size dependence of thermalstabilities of both molybdenum and tungsten nanoclusters. Chem PhysLett, 2002, 354(1):165–172
    [23] 蒋青, 梁立红. 纳米晶体的熔化与过热. 世界科技研究与发展, 2002, 24(6):57–67
    [24] Qi W H, Wang M P, Xu G Y. The particle size dependence of cohesive energyof metallic nanoparticles. Chem Phys Lett, 2003, 372(5):632–634
    [25] Nanda K K, Sahu S N Behera S N. Liquid-drop model for the size-dependent melting of low-dimensional system. Phys Rev A, 2002,66(1):013208–8
    [26] 肖时芳. Fe、Ni、Zr 纳米晶体微观结构与力学性能的分子动力学模拟:[硕士]. 长沙: 湖南大学, 2004: 1-43
    [27] Takagi M. Electron diffraction study of liquid-solid transition of thin metalfilms. J Phys Soc Japan, 1954, 9(3):359–363
    [28] Ercolessi F, Andreoni W, Tosatti. Melting of small gold particles: Mecha-nism and size effects. Phys Rev Lett, 1991, 66(7):911–914
    [29] Jiang Q, Zhang S, Zhao M. Size-dependent melting point of noble metals.Mater Chem Phys, 2003, 82(11):225–227
    [30] Shvartsburg A A, Jarrold M F. Solid Clusters above the Bulk Melting Point.Phys Rev Lett, 2000, 85(12):2530–2532
    [31] 徐祖耀, 李麟. 材料热力学. 北京: 科学出版社, 2001: 1-67
    [32] Lai S L, Guo J Y, Petrova V. Size dependent melting properties of small tinparticles: Nanocalorimetric measurements. Phys Rev Lett, 1996, 77(1):99–102
    [33] Eckert J, Holzer J C, Ahn C C, et al. Melting behavior of nanocrystallinealuminum powders. Nanostruct Mater, 1993, 2(4):407–413
    [34] Derlet P M, Swygenhoven H V. Atomic positional disorder in fcc metalnanocrystalline grain boundaries. Phys Rev B, 2003, 67(1):014202–8
    [35] 梁海弋, 王秀喜, 吴恒安, et al. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10):2308–2314
    [36] Zhao Y H, Zhang K, Lu K. Structure characteristics of nanocrystalline ele-ment selenium with different grain sizes. Phys Rev B, 1997, 56(14):322–329
    [37] Gleiter H. Nanocrystalline materials. Prog Mater Sci, 1989, 33(4):223–315
    [38] Thomas G J, Siegel R W Eastman J A. Grian boundary in nanophase palla-dium: high resolution electron microscope and image simulation. ScriptaMetall Mater, 1990, 24(1):201–206
    [39] Li D X, Ping D H, Ye H Q, et al. HREM study of the microstructure innanocrystalline materials. Mater Lett, 1993, 18(1-2):29–34
    [40] 杨卫, 马新玲, 王宏涛. 纳米力学进展. 力学进展, 2002, 32(2):161–174
    [41] Zhao Y H, Lu K, Liu T. EXAFS study of structural characteristics ofnanocrystalline selenium with different grain sizes. Phys Rev B, 1999,59(17):11117–11120
    [42] Wang J, Wolf D, Phillpot S R. Computer simulation of the structure andthermo-elastic properties of a model nanocrystalline materials. Phil MagA, 1996, 73(3):517–555
    [43] 常明, 杨保和, 常皓. 纳米晶体微观畸变与弹性模量的模拟研究. 物理学报,1999, 48(7):1215–1222
    [44] 常明, 孙伟, 邢金华, et al. 模拟纳米晶体原子分布及X射线散射理论图案. 物理学报, 1997, 46(7):1319–1325
    [45] 常明, 杨保和, 郭长海, et al. 纳米晶体结构与性能的模拟研究. 物理学报,1997, 46(7):1326–1331
    [46] Lu K, Sun N X. Grain-boundary enthalpy of nanocrystalline selenium. PhilMag Lett, 1997, 75(6):389–395
    [47] Lu K, Luck R, Predel B. The interfacial execess energy in nanocrystallinenickel-phosphorus materials with different grain size. Script Metall Mater,1993, 28(11):1387–1392
    [48] 孙伟, 常明, 杨保和. 分子动力学模拟纳米晶体铜的结构和性能. 物理学报,1998, 47(4):591–597
    [49] Qin X Y, Wu X J, Cheng L F. The microhardness of nanocrystalline silver.Nanostruct Mater, 1995, 5(1):101–110
    [50] Zhang H Y, Hu Z Q, Lu K. Hall-Petch relationship in the nanocrystallineSelenium prepared by crystallization from the amorphous state. J ApplPhys, 1995, 77(6):2811–2813
    [51] 王广厚, 韩民. 纳米晶体材料的结构和性质. 物理学进展, 1990, 10(2):248–289
    [52] Xiao S F, Hu W Y, Yang J Y. Melting Behaviors of Nanocrystalline Ag. JPhys Chem B, 2005, 109(43):20339–20342
    [53] Xiao S F, Hu W Y, Yang J Y. Melting temperature: From nanocrystalline toamorphous phase. J Chem Phys, 2006, 125(18):184504–4
    [54] Birringer R. Nanocrystalline Materials. Mater Sci Eng A, 1989, 117(1-2):33–34
    [55] Eastman J A, Fitzsimmons M R, Thompson L J. The thermal properties ofnanocrystalline Pd from 16 to 300 K. Phil Mag B, 1992, 66(1):667–696
    [56] Lu K, Sui M L. Thermal expansion behaviors in nanocrystalline materialswith a wide grain size range. Acta Metall Mater, 1995, 43(9):3325–3332
    [57] Zhang H Y, Michell B S. Thermal expansion behavior and microstructurein bulk nanocrystalline selenium by thermomechanical analysis. Mater SciEng A, 1999, 270(2):237–243
    [58] Turi T, Erb U. Thermal expansion and heat capacity of porosity-freenanocrystalline materials. Mater Sci Eng A, 1995, 204(1):34–38
    [59] Szpunar B, Lewis L J, Swainson I, et al. Thermal expansion and hydrogendiffusion in nanocrystalline nickel. Phys Rev B, 1999, 60(14):10107–10113
    [60] Shewmon P G. Transformation in metals. New York: McGraw-Hill, 1969:1-95
    [61] Zhang J F, Wu X J. Thermal stability and grain growth of nanocrystallinematerial silver. Acta Physica Sinica, 1993, 2(2):583–590
    [62] Lu J H, Yang H B, Liu B B, et al. Preparation and physical properties of nano-sized simiconducting CrSi2 powers. Mater Chem Phys, 1999, 59(2):101–106
    [63] Valiev R Z. Superplastic behaviour of nanocrystalline metallic materials.Mater Sci Forum, 1997, 243-245(1):207–216
    [64] Gunther B, Kumpmann A, Kunze H D. Configurational entropy of ratio-nal approximates of a decagonal quasi-lattice in a pure phason approach.Scripta Metall Mater, 1992, 27(1):83–88
    [65] Krasilnikov N A, Raab G I. Grain boundary effects in nanocrystalline cop-per. Mater Sci Forum, 1999, 294-296(1):701–706
    [66] Torres M, Pastor F, Jimenez I, et al. Configurational entropy of rationalapproximates of a decagonal quasilattice in a pure Phason approach. ScriptMetall Mater, 1999, 27(1):83–88
    [67] Daw M S, Baskes M I. Embedded-atom method: Derivation and applica-tion to impurities, surfaces, and other defects in metals. Phys Rev B, 1984,29(12):6443–6453
    [68] 张邦维, 胡望宇, 舒小林. 嵌入原子方法理论及其在材料科学中的应用 —- 原子尺度材料设计理论. 长沙: 湖南大学出版社, 2003: 1-20
    [69] Daw M S, Foiles S M, Baskes M I. The embedded-atom method:a review oftheory and applications. Mater Sci Rep, 1993, 9(7-8):251–340
    [70] Honenberg P, Kohn W. Inhomogeneous Electron Gas. Phys Rev, 1964,136:B864–B871
    [71] Stott M J, Zaremba E. Quasiatoms: An Approach to Atoms in NonuniformElectronic Systems. Phys Rev B, 1980, 22(4):1564–1583
    [72] Puska M J, Nieminen R M, Manninen M. Atoms Embedded in an ElectronGas: Immersion Energies. Phys Rev B, 1981, 24(6):3037–3047
    [73] N?rskov J K. Covalent Effects in the Effective-medium Theory of ChemicalBinding: Hydrogen Heats of Solution in the 3d Metals. Phys Rev B, 1982,26(6):2875–2885
    [74] Daw M S, Baskes M I. Semiempirical, Quantum Mechanical Calculation ofHydrogen Embrittlement in Metals. Phys Rev B, 1983, 50(17):1285–1288
    [75] Johnson R A. Analytic Nearest-neighbor Model for FCC Metals. Phys RevB, 1989, 37(12):3924–3931
    [76] Zhang B W, Ouyang Y F, Liao S Z, et al. An Analytic MEAM Mode for allBCC Transition Metals. Physica B, 1999, 262(3-4):218–225
    [77] Hu W Y, Zhang B W, Huang B Y, et al. Analytic Modified Embedded AtomPotentials for HCP Metals. J Phys: Conden Mater, 2001, 13(6):1193–1213
    [78] Hu W Y, Masahiro F. The Application of the Analytic Embedded AtomPotentials to Alkali Metals. Modelling Simul Sci Eng, 2002, 10(6):707–726
    [79] Wu Y R, Hu W Y, Han S C. Theoretical calculation of thermodynamic datafor gold-rare earth alloys with the embedded-atom method. J Alloy Com-pound, 2006, 420(1-2):83–93
    [80] Alder B J, Wainwright T E. Phase Transition for a Hard-sphere System. JChem Phys, 1957, 27(5):1208–1209
    [81] 文玉华, 朱如曾, 周富信, 王崇愚. 分子动力学模拟的主要技术. 力学进展,2003, 33(1):65–73
    [82] Verlet L. Computer ’Experiments’ on Classical Fluids I ThermodynamicalProperties of Lennard-Jones Molecules. Phys Rev, 1967, 159(1):98–103
    [83] Honeycutt R W. The potential Calculation and Some Applications. Meth inCompu Phys, 1970, 9(2):136–211
    [84] Swope W C, Anderson H C, Berens P H, et al. A Computer SimulationMethod for the Calculation of Equilibrium Constants for the Formation ofPhysical Clusters of Molecules: application to small warter clusters. J ChemPhys, 1982, 76(1):637–649
    [85] Beeman D. Some Multistep Methods for Use in Molecular Dynamics Cal-culations. J comput Phys, 1976, 20(1):130–139
    [86] Gear C W. Numerical Initial Value Problems in Ordinary Differential Equa-tion. Englewood Cliffs, NJ:Prentice-Hall, 1971
    [87] Nose′ S. A Unified Formulation of the Constant Temperature MolecularDynamics Methods. J Chem Phys, 1984, 81(1):511–519
    [88] Hoover W G. Canonical Dynamics: Equilibrium Phase-space Distributions.Phys Rev A, 1985, 31(3):1695–1702
    [89] Anderson H C. Molecular Dynamics Simulations at Constant Press and/orTemperature. J Chem Phys, 1980, 72(4):2384–2393
    [90] Nose′ S. A Molecular Dynamics Method for Simulations in the CanonicalEnsemble. Mole Phys, 1984, 52(2):255–268
    [91] Phillpot S R, Wolf D, Gleiter H. Molecular-dynamics study of the synthe-sis and characterization of a fully dense, three-dimensional nanocrystallinematerial. J Appl Phys, 1995, 78(2):847–861
    [92] Okabe A, Boots B, Sugihara K. Spatial Tesselations: Concepts and Applica-tions of Voronoi Diagrams. Chichester: Wiley, 1992: 78-125
    [93] 陈达. 纳米晶体的结构模型及性质研究. 金属学报, 1994, 30(8):348–354
    [94] Honeycutt J D, Andersen H C. Molecular dynamics study of melting andfreezing of small Lennard-Jones clusters. J Phys Chem, 1987, 91(19):4950–4963
    [95] 胡壮麒, 王鲁红, 刘轶事. 电子和原子层次材料行为的计算机模拟. 材料研究学报, 1998, 12(1):1–19
    [96] Yang L, Rahman T S. Surface Vibrations of Ag(100) and Cu(100): AMmolecular-dynamics Study. Phys Rev B, 1991, 44(24):13725–13733
    [97] 卡恩 R W, 哈森P, 克雷默 E J. 材料科学与技术从书(第1卷): 固体结构. 北京:科学出版社, 1998: 36-92
    [98] Henry C R. Surface studies of supported model catalysts. Surf Sci Rep,1998, 31(7):231–325
    [99] Alivisatos A P, Johnsson K P, Peng X G, et al. Organization of ’nanocrystalmolecules’ using DNA. Nature, 1996, 382(1):609–611
    [100] Mirkin C A, Letsinger R L, Mucic R C, et al. A DNA-Based Method forRationally Assembling Nanoparticles Into Macroscopic Materials. Nature,1996, 382(1):607–609
    [101] Buffat P, Borel J P. Size effect on the melting temperature of gold particles.Phys Rev A, 1976, 13(6):2287–2298
    [102] Cleveland C L, Landman U, Luedtke. Phase Coexistence in Clusters. J PhysChem, 1994, 98(25):6272–6279
    [103] Bachels T, Guntherodt H J, Schafer R. Melting of Isolated Tin Nanoparticles.Phys Rev Lett, 2000, 85(6):1250–1253
    [104] Zhao S J, Wang S Q, Cheng D Y ang et al. Three Distinctive Melting Mecha-nisms in Isolated Nanoparticles. J Phys Chem B, 2001, 105(51):12857–12860
    [105] Cleveland C L, Luedtke W D, Landman U. Melting of Gold Clusters: Icosa-hedral Precursors. Phys Rev Lett, 1998, 81(10):2036–2039
    [106] Cleveland C L, Luedtke W D, Landman U. Melting of gold clusters. PhysRev B, 1999, 60(7):5065–5077
    [107] Lei H. Melting of free copper clusters. J Phys: Condens Matter, 2001,13(13):3023–3030
    [108] Wang L, Zhang Y, Bian X, et al. Melting of Cu Nanonclusters by MolecularDynamics Simulation. Phys Lett A, 2003, 310(2):197–202
    [109] Ozcelik S, Guvenc Z B. Structures and melting of Cun (n=13, 14, 19, 55, 56)clusters. Surf Sci, 2003, 532-535(1):312–316
    [110] Lewis L J, Jensen P, Barrat J L. Melting, freezing, and coalescence of goldnanoclusters. Phys Rev B, 1997, 56(4):2248–2257
    [111] Baletto F, Rapallo A, Rossi G, et al. Dynamical effects in the formation ofmagic cluster structures. Phys Rev B, 2004, 69(23):235421–6
    [112] Schmidt M, Kusche R, Issendorff von B, Haberland H. Irregular varia-tions in the melting point of size-selected atomic clusters. Nature, 1998,393(1):238–240
    [113] Lide D R. Handbook of Chemistry and Physics. New York: CRC Press,1997: 98-129
    [114] Shibata T, Bunker B A, Zhang Z, et al. Size-dependent spontaneous alloyingof Au-Ag nanoparticles. J Am Chem Soc, 2002, 124(40):11989–11996
    [115] Lindemann F A. über die Berechnung Molecularer Eigenfrequenzen. PhysZ, 1910, 11(1):609–612
    [116] 潘金生, 仝健民, 田民波. 材料科学基础. 北京: 清华大学出版社, 1998:434-484
    [117] Jian Z Y, Chang F, Ma W H, et al. Nucleation and undecooling of metalmelt. Sci in China E, 2000, 43(1):113–119
    [118] 卢柯, 周飞. 纳米晶体材料的研究现状. 金属学报, 1997, 33(1):99–106
    [119] Sun N S, Lu K. Heat-capacity comparison among the nanocrystalline, amor-phous, and coarse-grained polycrystalline states in element selenium. PhysRev B, 1996, 54(9):6058–6061
    [120] Erb U. Electrodeposited nanocrystals: synthesis, properties and industrialapplications. Nanostruct Mater, 1995, 6(5):533–538
    [121] Birgeneau R J, Cordes J, Dolling G, et al. Normal Modes of Vibration inNickel. Phys Rev, 1964, 136(5A):A1359–A1365
    [122] Gilat G, Raubenheimer L J. Accurate Numerical Method for CalculatingFrequency-Distribution Functions in Solids. Phys Rev, 1966, 144(2):390–395
    [123] Bonetti E, Pasquini L, Sampaolesi E. Vibrational density of states ofnanocrystalline iron and nickel. J Appl Phys, 2000, 88(8):4571–4575
    [124] Wolf D, Wang J, Philpot S R, et al. Phonon-Induced Anomalous SpecificHeat of a Nanocrystalline Model Material by Computer Simulation. PhysRev Lett, 1995, 74(23):4686–4689
    [125] Stuhr U, Wipf H, Andersen K H, et al. Low-Frequency Modes in Nanocrys-talline Pd. Phys Rev Lett, 1998, 81(7):1449–1452
    [126] Derlet P M, Swygenhoven H V. High-Frequency Vibrational Proper-ties of Metallic Nanocrystalline Grain Boundaries. Phys Rev Lett, 2004,92(3):035505–4
    [127] Derlet P M, Meyer R, Lewis L J. Low-Frequency Vibrational Properties ofNanocrystalline Materials. Phys Rev Lett, 2001, 87(20):205501–4
    [128] Fultz B, Ahn C C, Alp E E, et al. Phonons in Nanocrystalline 57Fe. PhysRev Lett, 1997, 79(5):937–940
    [129] Singh R, Prakash S. SERS studies on the structure of thioglycolic acid mono-layers on silver and gold. Surf Sci, 2003, 532-535(1):272–232
    [130] Rupp J, Birriger R. Enhanced specific-heat-capacity (cp) measurements(150–300 K) of nanometer-sized crystalline materials. Phys Rev B, 1987,36(15):7888–7890
    [131] Wang J, Wolf D, Phillpot S R, et al. Phonon-induced anomalous specific heatof a model nanocrystal by computer simulation. NanoStructured Mater,1995, 6(5-8):747–750
    [132] Jiang J, Ramasamy S, Birringer R, et al. Structure and antiferromagneticphase transformtion in nanocrystalline FeF2. Solid State Commun, 1991,80(7):525–528
    [133] Zhao Y H, Lu K. Grain-size dependence of thermal properties of nanocrys-talline elemental selenium studied by x-ray diffraction. Phys Rev B, 1997,56(22):14330–14337
    [134] 王丽, 杨华, 边秀芳, et al. 有自由表面的Ni原子团簇的熔化. 物理化学学报,2001, 17(12):10971101
    [135] Li H, Wang L, Wang J L, et al. Melting behavior of one-dimensional zirco-nium nanowire. J Chem Phys, 2004, 120(7):3431–3438
    [136] Sheng H W, Lu K, Ma E. Melting of embedded Pb nanoparticles monitoredusing high-temperature in situ XRD. Nanostruct Mater, 1998, 10(2):865–873
    [137] Baeri P, Foti G, Poate J M, et al. Phase Transitions in Amorphous Si Pro-duced by Rapid Heating. Phys Rev Lett, 1980, 45(25):2036–2039
    [138] Luedtke W D, Landman U. Preparation and melting of amorphous siliconby molecular-dynamics simulations. Phys Rev B, 1988, 37(9):4656–4663
    [139] Iida T, Guthrie R I L. The Physical Properties of Liquid Metals. Oxford:Oxford University Press, 1988:
    [140] Nguyen T, Ho P S, Kwok T, et al. Grain-Boundary Melting Transition in anAtomistic Simulation Model. Phys Rev Lett, 1986, 57(15):1919–1922
    [141] Qi W H, Wang M P. Size and shape dependent melting temperature ofmetallic nanoparticles. Mater Chem Phys, 2004, 88(2):280–284
    [142] Murr L E. Interfacial Phenomena in Metals and Alloys. Addison-Wesley:New York, 1975: 134-167
    [143] Tyson W R, Miller W A. Surface free energies of solid metals: Estimationfrom liquid surface tension measurements. Surf Sci, 1977, 62(1):267–276
    [144] Schiotz J, Jacobsen K W. A maximum in the strength of nanocrystallinecopper. Science, 2003, 301(1):1357–1359
    [145] Shi F G. Size dependence thermal vibrations and melting in nanocrystals. JMater Res, 1994, 9(5):1307–1313
    [146] Banuelos E U, Amarillas A P. Effect of temperature on structural and dy-namic properties of liquid silver - A study in molecular dynamics. Rev MexFis, 2004, 50(1):53–59
    [147] Johnson W A, Mehl R F. Reaction kinetics in processes of nucleation andgrowth. Trans Am Inst Min Metall Pet Eng, 1939, 135(2):416–441
    [148] Avrami M. Kinetics of Phase Change. I General Theory. J Chem Phys, 1939,7(12):1103–1112
    [149] Avrami M. Kinetics of Phase Change. II Transformation-Time Relations forRandom Distribution of Nuclei. J Chem Phys, 1940, 8(2):212–224
    [150] Atkinson H V. Theories of normal grain growth in pure single phase sys-tem. Acta Metall, 1988, 36(3):469–491
    [151] Gleiter H. Nanostructured materials: state of the art and perspectives.Nanostruct Mater, 1995, 6(1):3–14
    [152] Kurtz S K, Carpay F M A. Microstructure and normal grain growth inmetals and ceramics. Part I. Theory. J Appl Phys, 1980, 51(11):5725–5744
    [153] Kurtz S K, Carpay F M A. Microstructure and normal grain growth inmetals and ceramics. Part II. Experiment. J Appl Phys, 1980, 51(11):5745–5754
    [154] Krill III C E, Helfen L, Michels D, et al. Size-Dependent Grain-Growth Ki-netics Observed in Nanocrystalline Fe. Phys Rev Lett, 2001, 86(5):842–845
    [155] Malow T R, Koch C C. Grain growth in nanocrystalline iron prepared bymechanical attrition. Acta Mater, 1997, 45(5):2177–2186
    [156] Mullins W W. Two-Dimensional Motion of Idealized Grain Boundaries. JAppl Phys, 1956, 27(8):900–904
    [157] Marder M. Soap-bubble growth. Phys Rev A, 1987, 36(1):438–440
    [158] Beenaakker C W J. Numerical simulation of a coarsening two-dimensionalnetwork. Phys Rev A, 1988, 37(5):1697–1702
    [159] Nunzio Di P E. Grain growth in thin films by a discrete model based onpair interactions. Phys Rev B, 2003, 68(11):115432–9
    [160] Haslam A J, Phillpot S R, Wolf D, et al. Mechanisms of grain growth innanocrystalline fcc metals by molecular-dynamics simulation. Mater SciEng A, 2001, 318(1):293–312
    [161] Moldovan D, Yamakov V, Wolf D, et al. Scaling behavior of grain-rotation-induced grain growth. Phys Rev Lett, 2002, 89(20):206101–4
    [162] Harris K E, Singh V V, King A H. Grain Rotation in Thin Films of Gold.Acta Mater, 1998, 46(8):2623–2633
    [163] Mottet C, Rossi G, Baletto F, et al. Single Impurity Effect on the Melting ofNanoclusters. Phys Rev Lett, 2005, 95(3):035501–4
    [164] Rossi G, Rapallo A, Mottet, et al. Magic Polyicosahedral Core-Shell Clus-ters. Phys Rev Lett, 2004, 93(10):105503–4
    [165] Darby S, Jones T V, Johnston R L, et al. Theoretical study of Cu–Au nanoal-loy clusters using a genetic algorithm. J Chem Phys, 2002, 116(4):1536–1550
    [166] Aguado A, Gonzalez L E, Lopez J M, et al. Thermal Properties of Impurity-Doped Clusters: Orbital-Free Molecular Dynamics Simulations of theMeltinglike Transition in Li1Na54 and Cs1Na54. J Phys Chem B, 2004,108(31):11722–11731
    [167] Baletto F, Mottet G, Ferrandol R, et al. Growth of Three-Shell OnionlikeBimetallic Nanoparticles. Phys Rev Lett, 2003, 90(13):135504–4
    [168] Bai J, Wang J P. High-magnetic-moment core-shell-type FeCo–Au/Agnanoparticles. Appl Phys Lett, 2005, 87(15):152502
    [169] Koutsopoulos S, Eriksen K. Synthesis and characterization of supported Ptand Pt alloys nanoparticles used for the catalytic oxidation of sulfur diox-ide. J Catal, 2006, 238(2):270–276
    [170] Ding F, Rosen A, Bolton. Size dependence of the coalescence and melting ofiron clusters: A molecular-dynamics study. Phys Rev B, 2004, 70(7):075416
    [171] Hultgren R, Desai P D, Hawkins D T, et al. Selected Values of the Thermo-dynamic Properties of Binary Alloys. Ohio: Metals Park, 1973
    [172] Luo J, Maye M M, Petkov V, et al. Phase Properties of Carbon-Supported Gold-Platinum Nanoparticles with Different Bimetallic Compo-sitions. Chem Mater, 2005, 17(12):3086–3091
    [173] Boyen H G, Eghirajan A, Kastle G, et al. Alloy Formation of SupportedGold Nanoparticles at Their Transition from Clusters to Solids: Does SizeMatter? Phys Rev Lett, 2005, 94(1):016804–4
    [174] Christensen A, Stoltze P, Norskov J K. Size dependence of phase separationin small bimetallic clusters. J Phys: Condens Matter, 1995, 7(6):1047–1057
    [175] Liang L H, Yang G W, Li B. Size-Dependent Formation Enthalpy ofNanocompounds. J Phys Chem B, 2005, 109(33):16081–16083
    [176] Johnson R A. Phase stability of fcc alloys with the embedded-atom method.Phys Rev B, 1990, 41(14):9717–9720
    [177] Abrikosov I A, Skriver H L. Self-consistent linear-muffin-tin-orbitalscoherent-potential technique for bulk and surface calculations: Cu-Ni, Ag-Pd, and Au-Pt random alloys. Phys Rev B, 1993, 47(24):16532–16541
    [178] Boer F R de, Boom R, Mattens W C M, et al. Cohesion in Metals. Amster-dam: North-Holland, 1988: 65-78
    [179] Schaller H J. A thermodynamic analysis of the Pt-Au miscibility gap. ZMetallkde, 1979, 70(6):354–358
    [180] Tsong T T, Ng Y S, Mclang J S B. Surface segregation of a Pt–Au alloy:An atom-probe field ion microscope investigation. J Chem Phys, 1980,73(3):1464–1468
    [181] Baletto F, Ferrando R. Structural properties of nanoclusters: energetic, ther-modynamic, and kinetic effects. Rev Mod Phys, 2005, 77(1):371–423
    [182] Hu W, Xiao S, Yang J. Melting evolution and diffusion behavior of vana-dium nanoparticles. Eur Phys J B, 2005, 45(4):547–554
    [183] Sankaranarayanan S K R S, Bhethanabotia V R, Joseph B. Molecular dy-namics simulation study of the melting of Pd-Pt nanoclusters. Phys Rev B,2005, 71(19):195415–15
    [184] Hammer L, Meier W, Blum V, et al. Equilibration processes in surfaces ofthe binary alloy Fe-Al. J Phys: Condens Matter, 2002, 14(16):4145–4164

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700