一维硅纳米材料及镍硅异质结纳米线的制备和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维纳米结构的硅材料是一类新型的半导体光电材料,由于它具有体硅材料稳定的半导体性,能和当代成熟的微电子技术相兼容,有望将来能够在纳米器件中得到广泛的应用。本文对硅的一维纳米结构材料进行了制备、表征及性能测试的研究。
     首先,采用高压裂解法对小直径自主生长的硅纳米线合成进行了研究,实验中制备了直径小于10nm、硅晶核仅为5nm左右小尺寸硅纳米线,受量子效应的影响,样品拉曼特征峰发生了明显的红移,这种小直径纳米线极具研究价值,因为它更能反映纳米线所特有的性能。在高压裂解条件下,加入少量去离子水并在保温过程中释放少量的保护气体,首创性地成功制备了自主生长的硅纳米针状结构。
     其次,采用热蒸发法研究了超长硅纳米线的制备,实验中制备的硅纳米线长度可达150μm,这种超长的硅纳米线在纳米电子器件应用中更具有优势,能够有效提高器件的集成度。文中还对硅氧化合物的半空心结构以及金刚石结构单晶硅纳米管的合成进行了研究。硅纳米管的成功制备是继模板法和水热发之后,又一重大实验突破。
     硅纳米线在合成过程中是团聚在一起的,并且还伴随着大量的纳米颗粒生成,本文中采用十二烷基硫酸钠、乳化剂OP、二甲基甲酰胺等溶剂为表面分散剂在超声震荡条件下实现了对团聚纳米线的分散,结合离心技术,在不同的离心转速下实现了硅纳米线的分离.
     最后,研究了硅纳米线表面镀镍工艺以及镍硅异质结纳米线的特性,即在除氧化层后的硅纳米线表面采用磁控溅射的方法对其镀镍,不同条件下的退火处理,分别得到了Ni/Ni_xSi_y/Si异质结纳米线和NiSi_2纳米线。通过对纳米线高分辨图像(HRTEM)的分析,研究了纳米线异质结的退火行为,应用FIB等实验设备对单根异质结纳米线进行操控和测试,研究了异质结纳米线的电学性能,为将来纳米线在互连及器件化应用中奠定了基础。
One dimension silicon nanomaterials are new kinds of optoelectronic materials. Since silicon nanomaterials are stabile with semiconductor property and compatible with modern silicon technology, they are promising in nanodevices. The synthesis, characterization and test of the one dimension silicon nanomaterials were studied in this paper.
     At first, The self-assembled silicon nanowires ( SiNWs) with small diameter were studied. The SiNWs were synthesized by decomposition of silicon monoxide under high pressure. Their diameters were no more than 10nm and the silicon cores were about 5nm. Influenced by the quantum effect, Raman spectrum of the SiNWs was found to be downshifted. The research of the small size SiNWs was valuable for nanodevices. The silicon nanoneedles (SiNNs) were firstly reported by us with the similar growth method. SiNNs were synthesized with a small quantity of deionized water as the reaction medium. During the nanoneedles growth, some protection gas was released.
     Secondly, synthesis of very long SiNWs was studied by thermal decomposition method. The SiNWs with the length more than 150μm were prepared in this work. They were promising for nanodevices, since the integrated level of device based on those nanowires would be effectively improved. The synthesis of half hollow silica nanomaterials and single crystal silicon nanotube (SiNTs) were also studied in this paper.
     The as-grown SiNWs were agglomerated with lots of nanoparticles. By using ultrasonic agitation, the agglomerated SiNWs were dispersed in traditional organic solvents incorporated with various surfactants or surfactantmixtures, such as sodium dodecyl sulfate, emulsifier-OP, N,N-dimethylformamide. The SiNWs with different length and nanoparticles were separated by centrifugal machine.
     In the end, the properties of nickel silicide heterostructure nanowires were studied. When the nickel implanted SiNWs were annealed at different temperature, Ni/Ni_xSi_y/Si core-shell heterostructure nanowires and NiSi_2 nanowires were formed. The formation and annealing behavior of the heterostructure nanowires were researched with the help of HRTEM images. Single heterostructure nanowire was manipulated in the FIB system and the I-V curve was tested in micro-current detection station. The research of the heterostructure nanowires was useful for the application of interconnection and nanodevices.
引文
[1]陈敬忠,刘剑洪,纳米材料科学导论[M],北京:高等教育出版社,2006:6-8.
    [2]赵大庆,杨锋,“top down”和“bottom up”--评我国纳米科技发展的导向问题[J],材料导报,2001,15(11):1-3.
    [3]S.Iijima,Helical microtubles ofgraphitic carbon[J].Nature,1991,354(12):56-58.
    [4]A.Govindaraj,B.C.Satishkumar,M.Nath,et al.Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles[J],Chem.Mater.,2000,12(1):202-205.
    [5]Y.Zhang,J.Liu,R.He,et al.Synthesis of aluminum nitride nanowires from carbon nanotubes[J],Chem.Mater.,2001,13(11):3899-3905.
    [6]Z.W.Pan,S.S.Xie,L.Lu,et al.Tensile tests of ropes of very long aligned multiwall carbon nanotubes[J],Appl.Phys.Lett.,1999,74(21):3152-3154.
    [7]D.H.Hao,H.W.Zhu,X.F.Zhang,et al.Electrochemical hydrogen storage of aligned multiwalled carbon nanotubes[J],Chinese Science Bulletin,2003,48(6):538-542.
    [8]L.M.Sheng,M.Liu,P.Liu,et al.Field emission from self-assembly structure of carbon-nanotube films[J],Applied Surface Science,2005,250(1-4):9-13
    [9]P.S.Guo,T.Chen,Y.W.Chen,et al.Fabrication of field emission display prototype utilizing printed carbon nanotubes/nanofibers emitters[J],Solid-State Electronics,2008,52(6):877-881
    [10]H.M.Manohara,M.J.Bronikowski,M.Hoenk,et al.High-current-density field emitters based on arrays of carbon nanotube bundles[J],Journal of Vacuum &Technology B,2005,23(1):157-161.
    [11]J.H.Park,S.Y.Jeon,P.S.Alegaonkar,et al.Improvement of emission reliability of carbon nanotube emitters by electrical conditioning[J],Thin Solid Films,2008,516(11):3618-3621
    [12]R.S.Wagner,W.C.Ellis,Vapor-liquid-Solid mechanism of single crystal growth [J],Appl.Phys.Lett.,1964,4:89-90.
    [13]A.M.Morales,C.M.Lieber,A laser ablation method for the synthesis of crystalline semiconductor nanowires[J].Science,1998,279(534):208-211.
    [14]Y.F.Zhang,Y.H.Tang,N.Wang,et al.Silicon nanowires prepared by laser ablation at high temperature.Appl.Phys.Lett.,1998,72(15):1835-1837.
    [15]X.Y.Zhang,L.D.Zhang,G.W.Meng,et al.Synthesis of ordered single crystal silicon nanowire arrays[J],Adv.Mater.,2001,13(16):1238-1241.
    [16]Y.Wu,P.Yang,Germanium nanowire growth via simple vapor transport[J]Chem.Mater.,2000,12(3):605-607.
    [17]Y.Chang,M.L Lye,H.C.Zeng,Large-scale synthesis of high-quality ultralong copper nanowires[J],Langmuir,2005,21(9):3746-3748.
    [18]Z.W.Pan,Z.R.Dai,Z.L.Wang,Nanobelts of semiconducting oxides[J]Science,2001,291:1947-1949
    [19]M.Law,H.Kind,B.Messer,et al.Photochemical sensing of NO_2 with SnO_2nanoribbon nanosensors at room temperature[J],Angew.Chem.Int.Ed.2002,41(13):2405-2408
    [20]W.Shi,J.Y u,H.Wang,et al.Hydrothermal synthesis of single-crystalline antimony telluride nanobelts[J],J.Am.Chem.Soc.2006,128(51):16490-16491.
    [21]X.R.Wang,H.J.Dai,X.Li,Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors[J],Phys.Rev.Lett.,2008,100:206803-,
    [22]K.Suenaga,C.Colliex,N.Demoncy,et al.Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon[J],Science 1997,278:653-655
    [23]G.W.Meng,L.D.Zhang,C.M.Mo,et al.Synthesis of"A 13-SIC nanorod within a SiO_2 nanorod" one dimensional composite nanostructures[J],Solid State Commun.,1998,106(4):215-219
    [24]Y.Zhang,K.Suenaga,C.Colliex,et al.Coaxial nanocable:silicon carbide and silicon oxide sheathed with boron nitride and carbon[J],Science,1998,281(5379):973-975
    [25]董映璧,利用纳米同轴电缆技术美研制出高性能太阳能电池[N],科技日报,2007,5(21):4
    [26]A.G.Cullis,L.T.Canham,P.D.J.Calcott,The stractural and luminescence properties of porous silicon[J].Appl.Phys.,1997,82(3):909-965
    [27]廖良生,袁泽亮,刘小兵,多孔硅在液体中的两种电致发光光谱[J].物理学报,1997,46(6):1223-1229
    [28]W.M.Bullis,Silicon for Microelectronics[M],Oxford,England:Elsevier Sci.Ltd,1994,2478-2495 )
    [29]D.P.Yu,C.S.Lee,I.Bello,et al.Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature[J].Solid State Commun.,1998,105(6):403-407.
    [30]裴立宅,唐元洪.硅纳米线的制备与生长机理[J].材料科学与工程学报,2004,22(6):922-928
    [31]Y.L.Zhang,Y.G.Guo,D.T.Sun.Research progress of nanowires:preparation and growth mechanism[J].Mater.Sci.Eng.,2001,19(3):131-136.
    [32]Y.H.Tang,Y.F.Zhang,N.Wang,et al.Morphology of Si nanowires synthesized by high temperature laser ablation[J].JAppl Phys,1999,85(11):7981-7983
    [33]N.Wang,Y.H.Tang,Y.F.Zhang,et al.Si nanowires grown from silicon oxide[J],Chem.Phy.Lett.1999,299:237-242.
    [34]Zhang Y F,Tang Y H,Wang N,et al.One-demensional growth mechanism of crystalline silicon nanowires[J],J Cryst.Growth,1999,197:136 - 140.
    [35]Y.Wu,Y.Cui,L.Huynh,et al.Controlled growth and structures of molecular-scale silicon nanowires[J].Nano Let-t,2004,4(3):433-436
    [36]H.Abed,A.Charrier,H.Dallaporta,et al.Directed growth of horizontal silicon nanowires by laser induced decomposition of silane[J].J Vac Sci Technol B,2006,243:1248-1253
    [37]K.K.Lew,J.M.Redwing,Growth characteristics of silicon nanowires synthesized by vapor-liquid-solid growth in nanoporous alumina templates[J].J Cryst.Growth,2003,254:14-22
    [38]S.Christiansen,R.Schneider,R.Scholz,et al.Vapor-liquid-solid growth of silicon nanowires by chemical vapor deposition on implanted templates[J].J Appl Phys,2006,100:084323
    [39]T.Rajh,O.I.Micic,A.J.Nozik,Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots[J]J.Phys.Chem.1993,97(46):11999-12003.
    [40]D.H.Justin,P.J.Keith,R.Christopher;Control of thickness and orientation of solution-grown sil icon nanowires[J].Science,2000,287(5):1471-1473
    [41]元如林,施尔畏,夏长泰等,水热条件下钛酸钡晶粒生长基元模型研究[J],物理学报,1996,45(12):2082-2890
    [42]施尔畏,夏长泰,王步国,水热法的应用与发展[J],无机材料学报,1996,11(2):193-206
    [43]M.J.Calderon,S.S.Swamy,T.Fujino,et al.Carbon nanocells and nanotubes grown in hydrothermal fluids[J].Chem Phys Lett,2000,329(4):317-322
    [44]GS.Duesberg,R.Graupner,A.I.Minett,et al.Hydrothermal functionalisation of single-wailed carbon nanotubes[J],Synthetic Metals,2004,142(2):263-366
    [45]L.Z.Pei,Y.H.Tang,Y.W.Chen,et al.Silicon nanowires grown from silicon monoxide under hydrothermal conditions[J].J Cryst Growth,2006,289(2):423-427.
    [46]邢英杰,奚中和,俞大鹏,硅纳米线的固-液-固热生长及升温特性研究[J],电子与信息学报,2003,25(2):259-262
    [47]吴茵,胡崛隽,许颖等,硅纳米线阵列的制备及其光伏应用[J],太阳能学报,2006,27(8):811-818
    [48]K.M.Chang,K.S.You,J.H.Lin,et al.An alternative process for silicon nanowire fabrication with SPL and wet Etching system[J],J.Electrochem.Soc.,2004,151(10):G679-G682.
    [49]J.Sha,J.J.Niu,X.Y.Ma,et al.Silicon nanotubes[J].Adv Mater,2002,14(17):1219-1221.
    [50]S.Y.Jeong,J.Y.Kim,H.D.Yang,et al.Synthesis of silicon nanotubes on porous alumina using molecular beam epitaxy[J].Adv Mater,2003,15(14):1172-1176.
    [51]J.Q.Hu,Y..S.Bando,Z.W.Liu,et al.Synthesis of crystalline silicon tubular nanostructures with ZnS nanowires as removable templates[J].Angew Chem Int Ed,2004,43(1):63-66
    [52]Y.W.Chen,Y.H.Tang,L.Z.Pei,et al.Self-assembled silicon nanotubes grown from SiO[J],Adv.Mater.,2005,17:564-567
    [53]Y.H Tang,L.Z.Pei,Y.W.Chen,et al.Self-assembled silicon nanotubes under supercritically hydrothermal conditions[J].Phys.Rev.Lett.2005,95:116102-1-112106-4.
    [54]G.W.Zhou,Z.Zhang,Z.G.Bai,et al.Transmission electron microscopy study of Si nanowire[J].Appl Phys Lett,1998,73(5):677-679
    [55]J.C.Wang,C.Z.Zhan,F.G.Li.The synthesis of silica nanowires arrays[J].Solid State Communications,2003,125(11 ):629-931
    [56]Y.F.Zhang,X.H.Fan,L.Xu,et al.Morphology and growth mechanism study of self-assembled silicon nanowires synthesized by thermal evaporation[J],Chem Phys Lett,2001,337(1):18-24.
    [57] Q. Cai, J. S. Yang, Y. Fu, et al. STM and LEED observations of erbium silicide nanostructures grows on Si surfaces atomic-scale understandings [J]. Applied Surface science, 2002, 190(12):157-160
    [58] J.Z. He, J.B. Xu, Z. Xie, et al. Sample refinement and manipulation of silicon nanowires A setp towards single wire characterization [J], Materials Characterizaton, 2002, 48(12): 177-181
    [59] Z. Y. Wang, J. L. Coffer. Erbium surface -enriched silicon nanowires [J]. Nano Lett, 2002, 2(11): 1303-1305
    [60] H. Fujii, T. Matsukawa, S. Kanemaru, et al. Characterization of electrical conduction in silicon nanowire by scanning Maxwell-stress microscopy[J]. Appl Phys Lett, 2001, 78(17):2560-2562.
    [61] N. Wang, Y. H. Tang, Y. F. Zhang, et al. Transmission electron microscopy evidence of defect structure in Si nanowires synthesized by laser ablation[J].Chem. Phys. Lett., 1998, 283(3):368-372.
    [62] C. P. Li, X. H. Sun, N. B. Wong, et al. Ultrafine and uniform silicon nanowires grown with zeolites[J]. Chem. Phys. Lett., 2002, 365(1):22-26.
    [63] Y. H. Yang, S. J. Wu, H. S. Chiu, et al. Catalytic growth of silicon nanowires assisted by laser ablation[J]. J. Phys. Chem. B, 2004, 108(6):846-852
    [64] J. Qi. Optical spectroscopy of silicon nanowires [J]. Chem Phys Lett, 2003,372(4):763-766
    [65] Y. H. Tang, T. K. Sham, A. Jurgensen, et al. Phosphorus-doped silicon nanowires studied by near edge x-ray absorption fine structure spectroscopy[J]. Appl Phys Lett, 2002, 80(20):3709-3711.
    [66] Y. H. Tang, X. H. Sun, F. C. K. Au, et al. Microstructure and field-emission characteristics of boron-doped Si nanoparticle chains,[J], Appl. Phys. Lett.2001,79: 1673-1675
    [67] X. H. Sun, Y. H. Tang, P. Zhang, et al. X-ray absorption fine structure and electron energy loss spectroscopy study of silicon nanowires at the Si L_(3 2) edge[J]. JAppl Phys, 2001, 90(12):6379-6383.
    [68] W. S. Shi, H. Y. Peng, L. Xu, et al. Coaxial three-layer nanocables synthesized by combining laser ablation and thermal evaporation [J]. Adv Mater, 2000,12(24): 1927-1930.
    
    [69] X. H. Sun, H. Y. Peng, Y. H. Tang, et al. Surface reactivity of Si nanowires[J]. J Appl Phys, 2001, 89(11):6396-6399
    [70] Y. Huang, X. F. Duan, Q. Q. Wei, et al. Directed assembly of one-dimensional nanostructures into functional networks [J], Science, 2001, 291:630
    [71] R. W. Corkery, Langmuir-Blodgett (L-B) multilayer films [J], Langmuir, 1997,13 (14): 3591-3594.
    [72]J. Kumaki, T. Hashimoto, Two-dimensional microphase separation of a block copolymer in a Langmuir-Blodgett film[J], J. Am. Chem. Soc, 1998, 120(2):423-424.
    [73] F. Kim, S. Kwan, P. D. Yang. Langmuir-blodgett nanorod assembly [J]. J.Am.Chem. Soc, 2001, 123(18): 4360-4361
    [74] E. Garnett, W. Liang, P. Yang, Growth and electrical characteristics of platinum nanoparticle catalyzed silicon nanowires [J], Adv. Mater. 2007, 19: 2946-2949
    [75] X. F. Duan, Y. Huang, Y. Cui, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J], nature,2001,409:66-69
    [76] P. A. Smith, C. D. Nordquist, T. N. Jackson, et al.Electric-field assisted assembly and alignment of metallic nanowires [J], Appl. Phys. Lett. 2000, 77: 1399-1401.
    [77] Y. Huang, X. F. Duan, Y. Cui, et al. Logic Gates and computation from assembled nanowire building blocks [J].Science, 2001, 294(5545): 1313-1317
    
    [78] Y. Cui, Q. Q. Wei, H. K. Park, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J]. Science, 2001,293(5533): 1289-1292
    
    [79] X. T. Zhou, J. Q. Hu, C. P. Li, et al. Silicon nanowires as chemical sensors[J].Chem Phys Lett, 2003, 369(2):220-224.
    
    [80] J. Y. Yu, S. W. Chung, J. R. Heath, Silicon nanowires preparation device fabrication and transport properties [J]. J Phys Chem B, 2000, 104(50):11864-11870
    [81] Y. Cui, Z. H. Zhong, D. L. Wang, et al. High performance silicon nanowire field effect transistors [J]. Nano Lett, 2003, 3(2): 149-152.
    [82] Y. Cui, Q. Q. Wei, H. K. Park, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J], Science, 2001,293(5533): 1289-1292
    [83] I. Park , Z. Y. Li, X. M. Li, et al. Towards the siliconnanowire-based sensor for intracellular biochemical detection [ J ] . Biosensor and Bioelectronics , 2007,22(9) :2065-22070
    [84] M. W. Shao, H. Yao, M. L. Zhang, et al. Fabrication and application of long strands of silicon nanowires as sensors for bovine serum albumn detection[J] .Appl. Phys. Lett . ,2005 ,87 :183106212-18310623.
    [85] Y. L. Bunimovich, Y. S. Shin , W. S. Yeo, et al. Quantitative real-time of DNA hybridization with alkylated nonoxidized silicon nanowires in elect rolyte solution [J] . J. Am. Chem. Soc., 2006,128 (50): 163232-16331.
    [86] B. Z.Tian, X. L. Zheng, T. J. Kempa, et al. Coaxial silicon nanowires as solar cells and. nanoelectronic power sources[J], nature,2007, 449(18):885-890
    [87] E. C.Garnett, P.Yang, Silicon nanowire radial p-n junction solar cells [J], J. Am.Chem. Soc, 2008, 130(29): 9224-9225.
    [88] C. Yang , C. J. Barrelet, F. Capasso, et al. Single p2type/intrinsic/ n2type silicon nanowires as nanoscale avalanche photodetectors [J] . Nano Lett., 2006,6(12):2292-2934.
    [89] N. J. Stone, H. Ahmed, Silicon single electron memory cell[J]. Appl Phys Lett,1998, 73(15):2134-2136
    [90] C. P. Li, X. H. Sun, N. B. Wang, et al. Silicon nanowires wrapped with Au film[J], J. Phy. Chem. B, 2002, 106: 6980-6984.
    [91] X. H. Sun, R. Samnyaiken, S. J. Naftel et al. Ag nanostructures on a silicon nanowire template: preparation and x-ray absorption fine structure study at the Sik-edge and Ag L_(3,2)-edge[J], Chem. Mater., 2002, 14: 2519-2521.
    [92] Q. Jifa, M. Yasuaki, Copper silicide nanocrystals in silicon nanowires[J] [J],Materials Research Bulletin, 2001, 36(7): 1407-1405.
    [93] Y. Wu, J. Xiang, C. Yang, et al. Single-crystal metallic nanowires and metal/semicondutor nanowire hetrostructures[J]. Naure, 2004,430(6995):61-65.
    [94]S. Y. Chen, L. J.Chen, Nitride-mediated epitaxy of self-assembled NiSi_2 nanowires on (001) Si [J], Appl. Phys. Lett. 2005, 87:253111
    [95]Y. Song, A. L. Schmitt, S. Jin, Utralong single crystal metallic Ni_2Si nanowires with low resistivity [J], Nano Lett., 2007,7(4):965-969.
    [96]B. Liu, Y. Wang, S. Dilts, et al. Silicidation of silicon nanowires by platinum,Nano Lett., 2007,7(3):818-824.
    [97] M.Ouyang, J.L.Huang, C. M.Lieber, Fundamental electronic properties and applications of single-walled carbon nanotubes [J],Acc. Chem. Res., 2002,35(12): 1018-1025
    [98] J.Cioslowski, N.Rao, D. Moncrieff, Electronic structures and energetics of [5,5] and[9,0]single-walled carbon nanotubes[J],J.Am.Chem.Soc.,2002,124(28):8485-8489.
    [99]许杨,王贤保,万丽等,碳纳米管的选择性分离[J],材料导报,2006,20(7):109-111
    [100]Y.Maeda,M.Kanda,M.Hashimoto,et al.Dispersion and separation of small-diameter single-walled carbon nanotubes[J],J.Am.Chem.Soc.,2006;128(37):12239-12242.
    [101]Y.Cui,X.Duan,J.Hu,Doping and electrical transport in silicon nanowires[J],J.Phys.Chem.B.,2000,104(22):5213-5216.
    [102]S.Q.Feng,D.P.Yu,H.Z.Zhang,et al.The growth mechanism of silicon nanowires and their quantum confinement effect[J],J Cryst.Growth,2000,209:513-517.
    [103]M.Lu,M.K.Li,L.B.Kong,et al.Silicon quantum-wires arrays synthesized by chemical vapor deposition and its micro-structural properties[J],Chem.Phys.Lett.,2003,374(5):542-547
    [104]J.Albuschies,M.Baus,O.Winkler,et ai.High-density silicon nanowire growth from self-assembled Au nanoparticles[J],Microelectronic Engineering,2006,83:1530-1533
    [105]H.Griffiths,C.Xu,T.Barrass,M.Cooke,et al.Plasma assisted growth of nanotubes and nanowires[J],Surface and Coatings Technology,2007,201(22):9215-9220
    [106]X.B.Zeng,Y.Y.Xu,S.B.Zhang,et al.Silicon nanowires grown on a pre-annealed Si substrate[J],J Cryst.Growth,2003,247(1):13-16
    [107]A.J.Lu,R.Q.Zhang,S T Lee,Unique electronic band structures of hydrogen terminated <112> silicon nanowires[J],Nanotechnology,2008,19:035708
    [108]C.Harris,E.P.O'Reilly,Nature of the band gap of silicon and germanium nanowires[J],Physica E:2006,32(2):341-345
    [109]D.D.D.Ma,C.S.Lee,F.C.K.Au,et al.Small diameter silicon nanowire surface[J],Science,2003,299:874-1877.
    [110]B.B.Li,D.P.Yu,S.L.Zhang,Raman spectral study of silicon nanowires[J],Phys.Rev.B.1999,59:1645-1648
    [111]J.X.Liu,J.J.Niu,D.R.Yang,et al.Raman spectrum of array-ordered crystalline siliconnanowires[J],Physica E,2004,23(2):221-225
    [112]S.Piscanec,M.Cantoro,A.C.Ferrari et al,Raman spectroscopy of silicon nanowires:phonon confinement and anharmonic phonon processes[J],Phys.Rev.B,2003,68:241312.
    [113]于灵敏,控制纳米线生长的研究[D],西安:西安工业学院,2004
    [114]Y.F.Zhang,Y.H.Tang,H.Y.Peng,et al.Diameter modification of silicon nanowires by ambient gas,Appl.Phys.Lett,1999,75:1842-1844.
    [115]张克从,张乐德,晶体生长[M],上海:科学出版社,1981:51
    [116]C.C.Yang,J.C.Li,Q.Jiang,Effect of pressure on melting temperature of silicon determined by Clapeyron equation[J],Chem.Phys.Lett.2003,372(1):156-159
    [117]F.P.Bundy,Phase diagrams of silicon and germanium to 200 kbar,1000℃[J],J.Chem.Phys.,1964,41:3809-3814.
    [118]闵乃本,晶体生长的物理基础[M],上海:科技出版社,1982:341
    [119]张立德,解思深,纳米材料和纳米结构[M],北京:化学工业出版社,2005:117
    [120]J.Q.Xi,J.K.Kim,E.F.Schubert,Silica nanorod-array films with very low refractive indices[J],Nano Lett.,2005,5(7):1385-1387.
    [121]Z.R.Tian,J.A.Voigt,J.Liu,et al.Biomimetic arrays of oriented helical zno nanorods and columns[J],J.Am.Chem.Soc.,2002,124(44):12954-12955.
    [122]W.Barthlott,C.Neinhuis,Purity of the scared lotus or escape from contamination in biological surfaces[J].Planta,1997,202:1-8.
    [123]郭志光,刘维民,仿生超疏水性表面的研究进展[J],化学进展,2006,18(6):721-726
    [124]S.Xiong,B.Xi,W.Wang,et al.The fabrication and characterization of single crystal selenium nanoneedles[J],Crystal Growth and Design,2006,6(7):1711-1716
    [125]Y.W.Zhu,H.Z.Zhang,X.C.Sun,et al.Efficient filed emission from ZnO nanoneedle arrays[J],Appl.Phys.Lett.,2003,83(1):144146.
    [126]Q.Zhao,H.Z.Zhang,Y.W.Zhu,et al.Morphological effects on the filed emission of ZnO nanorod arrays[J],Appl.Phys.Lett.,2005,86:203115-1-3.
    [127]W.I.Park,G.C.Yi,M.Kim,et al.ZnO nanoneedles growth vertically by non-catalytic vapor-phase epitaxy[J],Adv.Mater.,2002,24(17):1841 - 1843
    [128]T.L.Sounart,J.Liu,J.A.Voigt,et al.Sequential nucleation and growth of complex nanostructure films[J],Adv.Funct.Mater.,2006,16:335-344.
    [129]徐剑,钨纳米针的制备及生长机理研究[D],长沙:中南大学,2006.
    [130]徐剑,贺跃辉,王世良等,一种制备金属钨纳米针的新方法[J].材料研究学报,2006,20(6):576-580.
    [131]Y.Z.Huang,D.J.Cockayne,J.Ana-Vanessa et al.Rapid fabrication of nanoneedle arrays by ion sputtering[J],Nanotechnology,2008,19:015303
    [132]S.Mahajan,M.Redigolo,D.Koktysh,et al.Self assembly of Eu_2O_3nanocrystals and nanoneedles[J],Phys.Stat.Sol.(c) 2007,4(2):409-411
    [133]C.C.Weng,C.P.Chen,C.H.Hing,et al,Using a solution crystal growth method to grow arrays of aligned,individually distinct single crystalline TiO_2nanoneedles within nanocavities[J],Chem.Mater,2005,17:3328-3330.
    [134]S.Jung,J.Yoo,Y.Kim,et al.Electronic properties of silicon nanoneedle structure obtained by RIE for nonvolatile memory applications,Mater.Sci.Eng.C,2006,26:813-817
    [135]陈扬文,硅纳米线及硅纳米管的水热法制备及其生长机理[D],长沙:湖南大学,2005.
    [136]张克从,张乐德,晶体生长科学与技术[M],上海:科学出版社,1997:82
    [137]L.W.Lin,Y.H.Tang,L.Z.Pei,et al.Smooth silicon oxide nanowires under supercritically hydrothermal conditions[J],J.Non-Crys.Solids,2007,353(1):159-163
    [138]A.Rabenau,The role of hydrothermal synthesis in preparative chemistry[J],Angew Chem.Int.Ed.,1985,24:1026-1040.
    [139]Y.Wang,T.Herricks,Y.Xia,Single crystalline nanowires of lead can be synthesized through thermal decomposition of lead acetate in ethylene glycol[J],Nano Lett.,2003,3(8):1163-1166.
    [140]Z.Dong,Y.Fu,Q.Han,et al.Synthesis and physical properties of Co_3O_4nanowires[J],J.Phys.Chem.C.2007,111(50):18475-18478.
    [141]W.Wang,C.Xu,G.Wang,et al,Synthesis and Raman scattering study of rutile SnO_2 nanowires[J],J.Appl.Phys.2002,92:2740-2742.
    [142]韩红梅,王太宏,纳米线、纳米管的制备、表征及其应用[J],微纳电子技术,2002,5:1-10
    [143]曹东,周泽华,曾效舒,分散剂对阵列式碳纳米管分散性的影响[J].新技术新工艺.材料与表面处理,2003,10:48-49.
    [144]庞真丽,蒋武锋,郝素菊等,碳纳米管在水中分散性能[J],河北理工学院学报,2007,29(1):97-101
    [145]李直蔓,康玉清,金海波等,碳纳米管的分散与表面化学修饰[J],中国 表向工程,2006,19(4):36-39
    [146]高滚,刘阳桥,碳纳米管的分散及表面改性[J],硅酸盐通报,2005,5:114-119
    [147]龚晓钟,汤皎宁,古坤明等,碳纳米管分散性的研究[J],广州化工2005,4:7-9
    [148]曹建明,碳纳米管在水中的分散性[J],1广州化学,2005,3(3):12-17
    [149]R.Q.Zhang,S.T.Lee,C.K.Law,et al.Silicon nanotubes:Why not?[J].Chem Phys Lett,2002,364(2):251-258.
    [150]S.B.Fagan,R.J.Baierle,R.Mota.Ab initio calculation for a hypothetical material silicon nanotubes[J].Phys.Rev.B,2000,61(15):9994-9996
    [151]G.Seifert,T.Kohler,H.M.Urbassek,et al.Tubular structures of silicon[J].Phys.Rev.B,2001,63(2):1934061-1934063
    [152]R.Q.Zhang,Y.Lifshitz,S.T.Lee,Oxide-Assisted Growth of Semiconducting nanowires[J],Adv.Mater.,2003,15,635-640
    [153]G.Du,S.Feng,J.Zhao,et al.Particle-wire-tube mechanism for carbon nanotube evolution[J].J.Am.Chem.Sot.,2006,128:15405-15414.
    [154]M.Yoon,S.Han,G.Kim,et al.Zipper mechanism of nanotube fusion:theory and experiment[J],Phys.Rev.Lett.,2004,92,075504.
    [155]M.Terrones,H.Terrones,F.Banhart,et al.Coalescence of single-walled carbon nanotubes[J],Science,2000,288:1226-1229
    [156]M.E.Alperin,T.C.Holloway,R.A.Haken et al.Development of the self-aligned titanium silicide process for VLSI applications[J],Electron Device,1985,32(2):141-149
    [157]S.P.Murarka,D.B.Fraser,A.K.Sinha,et al.Refractory silicides of titanium and tantalum for low-resistivity gates and interconnects[J-J,Solid State Circuits,1980,15(4):474-482
    [158]B.Y.Tsui,M.D.Wu;T.C.Gan,Impact of silicide formation on the resistance of common source/drain region[J],Electron Device Letter,2001,22(10):463-465
    [159]J.D.Lee;B.C.Shim;B.G.Park,et al.Silicide application on gated single-crystal,polycrystalline and amorphous silicon FEAs.Ⅱ.Co silicide[J],Electron Device,2001,4(1):155-160
    [160]M.Bain,H.A.W.El Mubarek,J.M.Bonar et al.SiGe HBTs on bonded SOI incorporating buried silicide layers[J].Electron Device,2005,52(3):317 - 324
    [161]G.Verma,C.Gelatos,S.Talwar et al.Formation of titanium silicide on narrow gates using laser thermal processing[J],Electron Device,2002,49(1):42-47
    [162]M.A.Pawlak,A.Lauwers,T.Janssens et al.Modulation of the workfunction of Ni fully silicided gates by doping:dielectric and silicide phase effects[J],Electron Device Letter,2006,27(2):99-101
    [163]G.T.Sarcona,M.Stewart,M.K.Hatalis,Polysilicon thin-film transistors using self-aligned cobalt and nickel silicide source and drain contacts[J],Electron Device Letter,20(7):332 - 334
    [164]L.T.Su,M.J.Sherony,H Hang,Optimization of series resistance in sub-0.2μm SOI MOSFET's[J],Electron Device Letter,15(9):363 - 365
    [165]S.L.Zhang,F.M.d'Heurle,C.Lavoie et al.Enhanced thermal stability of TiSi2 in the presence of aluminum[J],Appl.Phys.Lett.,1998,73:312-314.
    [166]S.L.Cheng,H.Y.Huang,Y.C.Peng et al.Effects of stress on the growth of TiSi2 thin films on(001)Si[J],Appl.Phys.Lett.,1999,74:1406-1408
    [167]P.S.Lee,D.Mangelinck,K.L.Pey,et al.On the Ni-Si phase transformation with/without native oxide[J],Microelectronic Engineering,2000,51:583-594
    [168]D.Z.Chi,D.Mangelinck,A.S.Zuruzi et al.Nickel silicide as a contact materials for submicron CMOS devices[J],J.Elect.Mater.,2001,30(12):1483-1488
    [169]C.M.Liu,W.L.Liu,S.H.Hsieh et al.Interfacial reactions of electroless nicklel thin film on silicon[J],Applied Surface Science,2005,243:259-264
    [170]W.R.Chen,T.C.Chang,J.L.Yeh et al.Reliability characteristics of NiSi nanocrystals embedded in oxide and nitride layers for nonvolatile memory application[J],Appl.Phys.Lett.2008,92:152114
    [171]N.Biswas,B.Lee,V.Misra,On the issue of work function tuning of nickel silicide gates[J],ECS Trans.2006,3:317-321
    [172]王良,一种磁控溅射镀膜电源的设计方法[J],辽宁工学院学报,1997,17(1)49-52
    [173]M.C.Poon,C.H.Ho,F.Deng,S.S.Lau,et al.Thermal stability of cobalt and nickel silicides[J],Microelectronics and Reliability,1998,38(9):1495-1498.
    [174]J.M.Poate,K.N.Tu,J.W.Mayer著,张永康译,薄膜的互相扩散和反映[M],北京:国防工业出版社,1983:403.
    [175]K.N.Tu,Selective growth of metal-rich silicide of near-noble metals[J],Appl.Phys.Lett.1975,27:221-214
    [176] N. Biaswas, J. Gurganus, V. Misra, Work function tuning of nickel silicide by co-sputtering nickel and silicon [J], Appl. Phys. Lett. 2005, 87:171908-1-171908-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700