基于白光干涉轮廓尺寸与形貌非接触测量方法和系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着表面测量技术的发展,表面的三维测量和评定已经成为研究的重点。接触式和光学探针式测量仪器大多是逐点扫描,在三维表面测量的应用中受到一定限制。垂直扫描白光干涉测量技术具有高精度、大量程、无相位模糊等特点,而且为面扫描,测量效率高,是一种较为理想的超光滑表面的三维形貌测量方法,已开始在表面微观形貌测量中应用,特别是有阶梯、沟槽等不连续表面的微电子器件和光学器件的表面特征测量。本文根据垂直扫描白光干涉的特点,提出了一种基于白光零级干涉条纹跟踪法测量三维表面的绝对坐标值的新方法,突破白光干涉显微物镜视场的限制,可实现大量程大范围的三维表面轮廓测量。在具有垂直扫描功能的三维测量工作台的基础上,研制出垂直扫描白光干涉三维表面轮廓测量系统,同时满足形貌测量和轮廓尺寸测量的要求。
     本文的主要内容和创新点如下:
     (1)提出了一种基于垂直扫描白光零级干涉条纹跟踪法测量三维表面轮廓的绝对坐标值的方法,该方法已被国外专家认可。建立了白光干涉显微技术的测量模型,分析了光源带宽、数值孔径、曲面斜率对白光干涉条纹的光强分布的影响。
     (2)研制了一种基于垂直扫描白光干涉测量表面微观形貌和垂直扫描白光零级干涉条纹跟踪法测量表面三维轮廓的垂直扫描白光干涉三维表面轮廓测量系统,测量系统的主要技术指标为:垂直测量范围:8mm;垂直扫描分辨率:0.002μm;水平测量范围:40mmX40mm;水平位移分辨率:0.2μm;显微物镜放大倍数:40X;显微物镜数值孔径:0.65;横向分辨率:0.52μm;微观形貌重复性测量误差小于5%;轮廓测量误差小于2%。
     (3)研制了适用于垂直扫描白光干涉三维表面轮廓测量系统的高精度、大量程三维测量工作台。三维测量工作台的垂直扫描位移机构采用了共衍射光栅计量系统,伺服电机和压电微驱动器分别驱动的粗、精两级定位机构,满足垂直扫描白光干涉跟踪原理测量表面轮廓的要求,该垂直扫描位移机构已申请发明专利(申请号:200510018618.1);水平位移机构采用共基面结构,伺服电机驱动,衍射光栅计量系统控制定位。通过双频激光干涉仪对三维测量工作台的位移性能进行定量分析,三维测量工作台垂直方向的扫描范围为8mm,扫描分辨率0.002μm;水平位移范围为40mm×40mm,位移分辨率0.2μm;平面运动误差小于0.2μm。
     (4)系统研究了白光干涉算法及其误差因素,提出线性拟合包络线算法。同时针对垂直扫描白光干涉法测量涂有透明介质的表面时出现的双干涉条纹进行了分析,并且根据双干涉条纹的干涉相干图特点,提出了干涉条纹的双干涉条纹分离算法。
     (5)开发了表面三维轮廓测量和评定软件分析系统,用于表面微观形貌的垂直扫描白光干涉测量和基于垂直扫描白光零级干涉条纹跟踪原理的三维表面轮廓测量,介绍了相应的数据处理方法和参数评定体系,给出了测量实例。
With the development of surface measurement technology, more attentions are focused on the surface measurement and evaluation in three dimensions. The point-scanning mode of the contact measurement instruments and the optical probe instruments limit their applications in three dimensional surface measurements. With the advantages of high-precision, large and unambiguous measurement range, and the line-scanning mode, vertical scanning white-light interferometric technology had been thought as a preferable method to measure super smooth surface in three dimension, and began to be applied for the surface measurements of micro-electronic component and optical component with such discontinuous characteristic as step, groove. Based on vertical scanning white-light interferometric characteristic, a new method for the absolute ordinate measurement by tracing the zero-order fringe is proposed in this dissertation. The new method broke through the limitation of the viewfield of microscope objective to measurement area, which could accomplish the large-range and large area measurement of three-dimensional surface. A surface profile measurement system for three-dimensional surface is also developed to meet the requirement of shape and profile dimension.
     Main outlines and innovations of this dissertation include:
     (1) A method for the absolute ordinate measurement by tracing the zero-order fringe based on the vertical scanning white-light interferometric technology is proposed. The model for white-light interference microscope is derived, which is helpful to analyze the influences of the bandwidth of light source, numerical aperture (NA) of microscope objective, the slope of the measured surface on the intensity contribution of white-light interference fringe.
     (2) A surface profile measurement system for three-dimensional surface is developed based on vertical scanning white-light interferometric measurement method and the zero-order fringe tracing method for the large-range and large area measurement of surface shape. Its measurement range is 8mm, and scanning resolution is 0.002μm in the vertical direction; while the measurement range is 40mm×40mm and the resolution is 0.2μm in the horizontal X-Y direction. The microscope objective has the magnification of 40, NA of 0.65, and the lateral resolution of 0.52μm. The repeatable measurement error for the surface profile is less than 5%, and the measurement error for the surface shape and dimension is less than 2%.
     (3) A three-dimensional measurement stage with a high precision and a large displacement range is developed for the surface profile measurement system. In this stage, two-grade positioning accomplished by vertical scanning displacement function mechanism with the common standard measuring system and driven by servo-motor and piezo-electronic transducer respectively, which meets the requirements to measure large range surface according to the zero-order interference fringe tracing measurement method. An invention patent for this mechanism has applied (Patent application number: 200510018618.1). The horizontal displacement mechanisms with the common baseplane are driven by servo-motor and are controlled by diffraction grating standard measuring system. The displacement performance of three-dimensional measurement stage is calibrated by double-frequency laser interferometry. Its displacement range is 8mm, and displacement resolution is 0.002μm in the vertical direction; its displacement range is 40mm×40mm and the resolution is 0.2μm in the horizontal X-Y direction; the plane error is less than 2μm.
     (4) The white-light interference extracting algorithms and the influences to their extracting precision are analyzed, and a linearly envelope fitting algorithm is proposed. The phenomenon of double fringe caused by the surface covered with transparent film is analyzed, and the fringe separating algorithms are developed according to its characteristic of correlogram.
     (5) A measurement and evaluation software system is developed for the profile and shape measurement of three-dimensional surface using vertical scanning measurement method and zero-order interference fringe tracing method. This software system also includes data pre-processing and parameter evaluation function, and the measurement and evaluation results are provided.
引文
[1] Ashraf A. Kassim, M.A.Mannan, Ma Jing. Machine tool condition monitoring using workpiece surface texture analysis, machine vision and applications, 2004, 11: 257~263
    [2] D.J. Whitehouse. Surfaces—a link between manufacure and function, Proc Inst Mech Eng, 1978, 192:178~188
    [3] D.J. Whitehouse. Typology of manufactured surfaces. Ann CIRP, 1971, 18:417~420.
    [4] D.J. Whitehouse. Assessment of surface typology analysis techniques in turing. Ann CIRP, 1974, 23(2): 265-274.
    [5] Dragos A Axinte, Nabil Ginby, Kate Fox, Iker Unanue. Process monitoring to assist the workpiee surface quality in machining, Int. J. of Mach. Tools & Manu. 2004, 44: 1091-1108
    [6]谢铁邦,李柱,席宏卓.互换性与技术测量(第三版).武汉:华中理工大学出版社,1998
    [7] Galyer J. F. W., Shotbolt C. R. Metrology for engineers (5th Edition). London:Cassell Publishers Limited,1993
    [8]赵旭辉,曲兴华,叶声华等. MEMS的光学检测方法和仪器.光学技术,2003,29(2):197~200
    [9] Gordon S. Kino, Stanley S. Chin. Mirau correlation microscope. Appl. Opt, 1990, 29(26): 3775~3783
    [10] Thomas Dresel, Gerd H?usler, Holger Venzke. Three-dimensional sensing of rough surfaces by coherence radar. Appl. Opt, 1992, 31(7): 919~925
    [11] Paul J. Caber. Interferometric profiler for rough surfaces. Appl. Opt, 1993, 32(19): 3438~3441
    [12] Peter de Groot, Les Deck. Three-dimensional imaging by sub-Nyquist sampling of white-light interferograms. Opt. Lett., 1993, 18(17): 1462~1464
    [13] Paul J. Caber, Stephen J. Martinek, Robert J. Niemann. A new interferometric profiler for smooth and rough surfaces. SPIE, 1994, 2088: 195~203
    [14] L. Deck, P. de Groot. High-speed non-contact profiler based on scanning white lightinterferometry. Int. J. Mach. Tools Manufact, 1995, 35(2):147~150.
    [15]毛起广.表面粗糙度的评定和测量.北京:机械工业出版社,1991
    [16] E.Clayton Eague, Fredric E.Scire. Three-dimension stylus profilometry. Wear, 1982,83: 1~12
    [17] J.D.Garratt. Applications for a wide range stylus instrument in surface metrology. Wear, 1982, 83:13~23
    [18] E.J.Davis ,K.J.Stout. Stylus measurement techniques: a contribution to the problem of parameter variation. Wear, 1982, 83:49~60
    [19] J. M. Bennett and J. H. Dancy. Stylus profiling instrument for measuring statistical properties of smooth optical surfaces. APPLIED OPTICS. 1981, 20(10):1785~1802 D.G.Chetwynd, X.Liu, S.T.Smith. Signal fidelity and tracking force in stylus profilometry. Int. J. Mach. Tools Manufact., 1992,38:239~245
    [20] Wennerberg A., R. Ohlsson, B.-G Rosén, B. Andersson, Characterizing 3D Topography of Engineering and Biomaterial Surfaces by Confocal Laser Scanning and Stylus Techniques, Medical Engineering and Physics, 1997,18(7):548~556
    [21] B.G. Rosén, L. Blunt, T. R. Thomas. On in-vivo skin topography metrology and replication techniques.Journal of Physics: Conference Series. 2005,13:325~329
    [22]杨练根.基于微恒力位移传感器的表面形貌测量系统和Motif评定方法:华中科技大学博士学位论文.2003
    [23]肖虹,王选择,谢铁邦.一种用于测量曲面轮廓的表面粗糙度测量仪.计量技术2004,(8):15~17
    [24] Jiang Xiangqian,Li Zhu. Grating technology for topography Measurement of curved surface. Proceedings of the SPIE-The International Society for Optical Engineering, 1993, 2101( n1): 554~557
    [25]蒋向前,肖少军,谢铁邦等.一种新型触针式曲面形貌测量系统.华中理工大学学报,1994,22(9):4~8
    [26]蒋向前.曲面表面形貌检测理论与方法的研究:华中理工大学博士学位论文.1995
    [27] K.J. Stout, P.J. Sullivan, W.P. Dong, E. Mainsah, N. Luo, T. Mathia. The development of methods for the characterisation of roughness in three dimensions, 1st edn, Commission of the European Communities, 1993.
    [28]孙艳玲.基于垂直位移扫描的表面轮廓综合测量仪.华中科技大学硕士学位论文.2006
    [29]何贡等.几何量实用测试手册.北京:机械工业出版社,1985
    [30] P. HARIHARAN. Optical Interferometry. Australia:ACADEMIC PRESS, 1985
    [31] J. H. Bruning, D. R. Herriott, J. E. Gallagher, etc. Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses. APPLIED OPTICS, 1974, 13(11): 2693~2703
    [32] J.C.Wyant,C.L.Koliopoulos and D.Bhushan.Development of a Three-dimensional Noncontact Digital Optical Profiler,Journal of,Tribology,Transaction of the ASME,1986,108(1):20~27
    [33]冯斌,王建华.表面形貌光学法测量技术.计量与测试技术,2005,32(6):4~6
    [34]迟桂纯,周肇飞,周卫东.激光干涉轮廓测量技术的发展.现代科学仪器,1996,(4):33~35
    [35]周肇飞,王世华,周卫东等.同轴式高分辨率激光轮廓仪.仪器仪表学报,1994,15(3):250~254
    [36]冯斌,王建华.表面形貌光学法测量技术.计量与测试技术, 2005, 32(6): 4~6
    [37] Wyant J C , NEILL P K. Computer Generated Hologram Null Lens Test of Aspheric Wavefronts. Appl Opt , 1974 ,13 : 2762~2768
    [38]王晓辉,曹根瑞,梅文辉.激光数字波面干涉仪傅里叶变换移相干涉术.光电工程, 1997, 24 (4) : 52~55.
    [39]程灏波,王英伟.非球面零件光学检测技术研究.航空精密制造技术, 2004, 40(8): 8~10
    [40] Paul E.M. Interferometric metrology of aspheric surfaces, Doctoral dissertation of university of Rochester., 2000
    [41] Andrew Everett Lowman. Calibration of a non-null interferometer for aspheric testing. Doctoral dissertation of university of Arizona,1995
    [42] Ge B Z, Luo W G. the study of numerical reconstruction of Fresnel CGH of a 3D object. Journal of Optoelectronics Laser, 2002, 13(12): 1289~1292
    [43] LISA C. IEONARD, VINCENT TOAL. Roughness measurement of metallic surfaces based on the laser speckle contrast method. Optics and Laser Engineering. 1998. 30(5): 433~440
    [44] C, J, TAY. S. L. TOH, H. M. SHANG, J, ZHANG. Whole-field determination of surface by speckle correlation. Appl. Opt., 1995, 34(13): 2324~2335.
    [45] S. L. TOH, H. M. SHANG, C. J. TAY. Surface roughness study using laser speckle method.Optics and lasers in Engineering,1998, 29 (3):217~225.
    [46] ULF PERSON. Measurement of surface roughness on rough machined surfaces using spectral speckle correlation and image analysis. Wear. 1993,160(2): 221~225
    [47]谢峰,谢铁邦,张新宝.表面形貌焦点跟踪测量方法的研究.计量学报, 2000, 21(3): 173~177
    [48]孔健,万德安.表面微观形貌测量中的光聚焦检测法.上海机床, 2000, (1):28~30
    [49] Tsuguo Kohno, Norimitsu Ozawa, Kozo Miyamoto,etc. High precision optical surface sensor. APPLIED OPTICS ,1988,27(1 ):103~108
    [50]王永红,余晓芬,俞建卫,等.高精度非扫描三维光聚焦探测系统的研究.应用科学学报, 2004, 22(6): 187~190
    [51] U PERSSON. Measurement of surface roughness using infrared scattering. Measurement. 1996, 18(2): 109~116.
    [52]陈天明,孙荣明.超光滑表面的微分散射测量.现代科学仪器,1995,(2): 42~44
    [53] K. E. PEIPONEN, T. TSUBOI. Metal surface roughness and optical reflectance. Optics and Laser Technology, 1990, 22 (2):127~130.
    [54] DAVID E, GILSINN, THEODORE V ,etc. Surface Roughness Metrology by Angular Distributions of Scattered Light. SPIE, 1985, 525: 2~15.
    [55] T. V. VORBURGER , E. C. TEAGUE , F. E. SCIRE, etc. Surface Roughness Studies with DALLAS-Detector Array for Laser Light Angular Scattering. Journal of Research of Standards. 1984, 89(1): 3~16.
    [56] Sheppard C J R, Shotton D M. Confocal laser scanning microscopy. BIOS Scientific Publishers, 1997
    [57] Jordan H. J , Wegner M, Tiziani H J . Highly accurate non-contact characterization of engineering surfaces using confocal microscopy. Meas Sci Technol. 1998,9:1142~1151.
    [58] Gu M.共焦显微术的三维成像原理.王桂英,陈侦,杨莉松译.北京:新时代出版社, 2000.
    [59]邵宏伟,徐毅,高思田等.激光干涉共焦显微镜.计量学报,2004,25(2):104~106
    [60]干蜀毅.常规扫描电子显微镜的特点和发展.分析仪器,2000,(1):51~53
    [61]郭云昌,蔡颖谦.扫描探针显微镜的进展.现代科学仪器,2005,(3):21~23
    [62]何光宏,杨学恒.基于扫描探针显微镜的纳米加工技术研究进展.微电子学,2005,135.(2):169~173
    [63]李智,王向军.MEMS中几何量的测试方法.微细加工技术,2003,(1):51~56
    [64] Jong-Ahn Kim, Jae Wan Kim, Byong Chon Park,Tae Bong Eom. Measurement of microscope calibration standards in nanometrology using a metrological atomic force microscope. Meas. Sci. Technol, 2006, (17):1792–1800
    [65] G.Reiss, J. Vancea, H.W ittmarm, etc, Scanning tunneling microscopy on rough surfaces:Tip-shape-limited resolution. J. Appl.Phy,1990,67(3):1156~1159
    [66] http://www.namo-optics.ethz.ch/research/AFM-SNOM.htm.
    [67]杨旭东.大量程轮廓综合测量系统研究:华中科技大学博士学位论文.2007
    [68]周明宝.干涉法表面形貌测量使用的扩展深度测量范围的方法.光学精密工程,1999, 7(4):48
    [69] Biegen J F. Step height measurement range extended for an interference microscope utilizing the obliquity effect. Proc SPIE , Surface Characterization and Testing II , 1989 , 1164: 8590
    [70] Matsui K, Kawata S. Fringe scanning white-light microscope for surface profile measurement and material identification. Proc SPIE , 1992, 1720 :124132
    [71] Thomas Dresel, Gerd H?usler, Holger Venzke. Three-dimensional sensing of rough surfaces by coherence radar. Appl. Opt, 1992, 31(7): 919~925
    [72] Joanna Schmit, Artur Olszak. High-precision shape measurement by white-light interferometry with real-time scanner error correction, Applied optics, 2002, 41(28): 5943~5950
    [73]周明宝,林大键.用白光相移干涉增大表面形貌可测范围的研究.光学学报,2000,20(8):1065~1071
    [74]孙杰,刘铁根,张以谟,等.白光干涉零光程差位置的五步测量法.光电子·激光,2003,14(12) :1320~1324
    [75]李朝辉.基于相移干涉法的微表面轮廓仪的研究.天津大学,博士学位论文,2004
    [76]何永辉,蒋剑峰,赵万生.基于扫描白光干涉法的表面三维轮廓仪.光学技术,2001,2:150-155
    [77] Artur Olszak. Lateral scanning white-light interferometer. APPLIED OPTICS, 2000,39 (22) : 3906~3913
    [78]惠梅.表面微观形貌测量中相移干涉术的算法与实验研究.中国科学院西安光学精密机械研究所,博士学位论文, 2001
    [79]光切显微镜和干涉显微镜.北京:机械工业出版社,1978
    [80]常素萍,谢铁邦. WIVS三维表面形貌测量仪.计量技术, 2006, (12): 39~41
    [81] Fang Cheng Chang, Gordon S. Kino. 325-nm interference microscope. Applied Optics, 1998, 37(16): 3471~3479
    [82] M.玻恩E.沃耳夫.光学原理.(第五版),杨葭荪译.北京:科学出版社1981
    [83] H. Takajo, Takahashi. Least-squares phase estimation in interferogram analysis. J. Opt. Soc. Am. A, 1988, 5: 416~425
    [84] Hongwei Guo and Mingyi Chen. Least-squares algorithm for phase-stepping interferometry with an unknown relative step. APPLIED OPTICS. 2005, 44(23): 4854~4859
    [85] Paul J. Caber, Interferometric profile for rough surfaces, Applied Optics, 1993, 32, 3438~3440
    [86] J. Schmit, K. Creath. Extended averaging technique for derivation of error compensating algorithm in phase shifting interferometry. Applied Optics, 1995, 34(19):3610~3619
    [87]惠梅,王东生,邓年茂等.对移相误差不敏感的四帧相位算法.清华大学学报(自然科学版).2003, 43(8):1017~1019
    [88]孙杰,刘铁根,张以谟等.白光干涉零光程差位置四步测量法及其精度分析.天津大学学报, 2004, 37(4):363~367
    [89] Chiayu Ai and James C. Wyant, Effect of piezoelectric transducer nonlinearity on phase shift interferometry. APPLIED OPTICS, 1987,26(6):1112~1116
    [90] J. Schwider, R. R.Burrow, K. E. Elsman, etc. Digital wave-front measuring interferometry: some systematic error sources. Applied Optics, 1983(22):3421
    [91] P.Hariharan,B.Oreb,T. Eiju . Digital phase-shifting interferometry: a simple error- compensating phase calculations algorithm. Appl. Opt., 1987 (26) :2540- 2505
    [92] Kieran G. Larkin. Efficient nonlinear algorithm for envelopedetection in white light interferometry, J. Opt. Soc. Am. A, 1996, Vol. 13(4):832-843
    [93] Kenichi Hibino. Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts. J. Opt. Soc. Am. A.1997, 14,(4):918~930
    [94] R.D?ndliker, E.Zimmermann, G.Frosio. Electronically scanned white-light interferometry: a novel noise-resistant signal processing. Opt. Lett., 1992, 17(9): 679-681.
    [95] C. Ai, E. L. Novac. Centroid approach for estimating modulation peak in broad-bandwidth interferometry. U. S. Patent #5633715.
    [96] Leslie Deck and Peter de Groot. High-speed noncontact profiler based on scanning white-light interferometry, Applied optics, 1994, Vol33(31):7334-7338
    [97] Peter de Groot and Leslie Deck, Surface profiling by analysis of white-light interferograms in the spatial frequency domain, J.Mod.Opt. ,1995,42,389-401
    [98] Stanley S.C.Chim and Gordon S.Kino, Three-dimensional image realization in interference microscopy , Appl. Opt. ,1992,31,2550-2553
    [99] D.A.Zweing, R.E.Hufnagel. A Hilbert transform algorithm for fringe-pattern analysis. Advanced Optical Manufacturing and Testing, Proc. SPIE,1990, 1333,295-302
    [100] B. Bowe, V. Toal. White light interferometric surface profiler. Opt. Eng., 1998, 37(6): 1796~1799
    [101] R.J. Recknagel. Analysis of white light interferograms using wavelet methods.Optics Communications, 1998, 148: 122-128
    [102] P.Sandoz.Wevelet transform as processing tool in white-light interferometry. Opt.Lett., 1997, 22, 1065-1067
    [103] Akiko Harasaki, Joanna Schmit, James C. Wyant. Improved vertical-scanning interferometry. Appl. Opt, 2000, 39(13): 2107~2115
    [104]曾丹华,肖体乔,席再军,等.相移干涉仪中探测器非线性误差及其补偿.光学学报. 2006,26(9):1358~1362
    [105]章毓晋.图像分割.北京:科学出版社,2001.
    [106] N.Otsu. A Threshold Selection Method From Gray Level Histograms. IEEE Transactions on System,Man and Cybernetics ,SMC-9, 1979, (1): 62-66.
    [107] http://www.sipat.com
    [108]王选择.正交衍射光栅计量原理及在超精密工作台上的应用.华中科技大学博土学位论文,2004
    [109] Traunreut A T. Technology and applications of grating interferometers in high precision measurement. Precision Engineering , 1992 , 14 (3) : 147~154
    [110]张善锺.计量光栅技术.北京.机械工业出版社. 1985.
    [111]费业泰.误差理论与数据处理.北京:机械工业出版社,2003
    [112]沈文.关于冲击信号的数字处理方法研究.航空计测技术. 1999, 19(2): 19~22
    [113]郭军.激光干涉表面形貌测量系统及3D-MOTIF评定研究.华中科技大学博土学位论文,2004
    [114]曾文涵.双树复小波表面分析模型及加工过程形貌辨识方法研究.华中科技大学博土学位论文,2005
    [115] K.J. Stout, P.J. Sullivan, W.P. Dong, E. Mainsah, N. Luo, T. Mathia. The development of methods for the characterisation of roughness in three dimensions, 1st edn, Commission of the European Communities (ISBN 0 70441 313 2), 1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700