PAMAM纳米材料及碳纳米管的毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PAMAM G3通过AKT-TSC2-mTOR通路引起A549自噬性细胞死亡,并导致小鼠急性肺损伤
     聚酰胺-胺树枝状大分子纳米材料(PAMAM dendrimer)是一种具有高度支化、对称、呈辐射状的大分子。它由中心核、内层重复的分支亚单位以及表面的功能基团组成。整代的PAMAM纳米材料表面的功能基团为氨基,半代的PAMAM纳米材料表面的功能基团为羧基。由于氨基带有正电荷,整代的PAMAM常被用作载体,递送DNA,进行细胞或生物体内表达。然而,对于这些PAMAM材料的生物安全性却了解甚少。
     在本文中,我们测定了PAMAM G1-G8以及G3.5、G4.5、G5.5和G7.5对A549细胞的影响。发现从PAMAM G3开始,到PAMAM G8均会引起A549细胞的死亡。而表面基团为阴离子的半代PAMAM对A549的活性不会产生影响。我们对PAMAM G3引起的A549死亡进行了分析,发现PAMAMG3引起的A549死亡不是通过凋亡通路,而是引起A549自噬性细胞死亡。自噬的抑制剂3MA或是利用siRNA技术抑制自噬基因ATG 6的表达,可以有效地缓解PAMAM G3引起的A549细胞死亡。同时,自噬性细胞死亡也在PAMAM G4、G5、G6、G7和G8引起的A549细胞死亡中扮演着重要角色。
     同时,我们对PAMAM G3引起的自噬性细胞死亡的信号通路进行了分析。发现PAMAM G3可以通过AKT-TSC2-mTOR的信号通路引起A549发生自噬性细胞死亡。
     而且,我们发现PAMAM G3会导致小鼠死亡,引起小鼠急性肺损伤。而自噬的抑制剂3MA会有效地缓解PAMAM G3引起的小鼠死亡,改善小鼠急性肺损伤程度。说明自噬在PAMAM G3引起的小鼠死亡中发挥着重要作用。
     表面为COOH修饰的单壁碳纳米管引起A549发生自噬性细胞死亡
     碳纳米管(Carbon NanoTubes,CNT)是碳原子之间形成化学键组成的管状结构。CNT通常有两种形式:单壁碳管(single-walled carbon nanotubes,SWCNT),由一层碳原子网组成,直径范围0.6-2.4纳米;多壁碳管(multi-walled carbon nanotubes,MWCNT),由多于一层的同圆心的单壁碳管套叠在一起形成,直径范围10-200纳米。
     由于其表面受到不同功能基团所修饰,碳纳米管可能会表现出截然不同的性质。在本章中,我们发现表面功能基团为COOH的单壁碳管会引起A549细胞发生自噬,并导致A549细胞死亡。而自噬的抑制剂3MA会有效的抑制COOH单壁碳管引起的A549细胞死亡。
     而且,我们发现COOH单壁碳管也会引起A549细胞中磷酸化AKT/总AKT,以及磷酸化mTOR/总mTOR的比值出现下调,与PAMAM G3引起的A549细胞死亡有相同的信号通路。对COOH单壁碳管的进一步研究仍在进行之中。
     多壁碳纳米管通过不依赖于caspase-3的途径引起A549细胞凋亡
     我们研究发现多壁碳管可以引起A549细胞的死亡,而且通过细胞流式的方法判定多壁碳管可以引起A549细胞的凋亡。但是这种凋亡并不激活A549细胞的caspase-3的活性,同时,caspase的光谱抑制剂Z-VAD-fmk对多壁碳管引起的细胞凋亡无缓解作用,说明多壁碳管是通过一条不依赖于caspase-3的信号通路来引起A549细胞凋亡。
     刺突蛋白表达引起HEK 293T细胞内质网应激,并干扰胰岛素信号通路
     内质网是分泌性或是膜定位蛋白质进行修饰、折叠的场所。未折叠或是折叠错误的蛋白过量积累会引起内质网应激。有研究表明,全长的刺突蛋白表达会引起细胞产生内质网应激。在本文中,我们发现刺突蛋白的S2片段(S681-1190)的表达是引起HEK 293T细胞内质网应激的原因。
     而且,我们发现S2或全长刺突蛋白的表达会干扰胰岛素的信号通路,降低胰岛素引起的磷酸化AKT/总AKT的比值。我们推测S2或全长刺突蛋白表达引起的内质网应激是干扰胰岛素信号的原因,相关的研究正在进行之中。
     刺突蛋白中内毒素的去除以及刺突蛋白引起人外周血单核细胞的炎性因子的分析
     SARS冠状病毒的感染可以引起患者体内发生严重的炎性反应,引起血液中炎性因子的升高。我们用最初表达的刺突蛋白刺激人外周血单核细胞,发现可以引起大量TNF-a,IL-1β,IL-6以及IFN-γ的分泌。
     经内毒素检测试剂检测后,我们发现最初表达的刺突蛋白中含有大量的内毒素。经内毒素去除柱去除其中的内毒素后,内毒素指标合格的刺突蛋白也会引起人外周血单核细胞分泌TNF-a与IL-6,但分泌的量较内毒素去除前大为降低。同时,经内毒素去除的刺突蛋白未引起IFN-γ的分泌。
PAMAM dendrimer(polyamidoamine dendrimer) is a polymer with dentritic branching and radial symmetry.It consists of three parts:a central core,an interior dendritic structure(the branches) and an exterior suface(the end group).
     PAMAM dendrimers can be divided in to the whole(cationic) or half (anionic) generation polymers.The surface of the whole generation is functionalized with primary amino surface groups and the half generation is carboxylate surface group.Due to the cationic surface,the whole generation PAMAM could be used for gene delivery for expression in cells or in animals. Therefore,the biosafety of these PAMAMs need to be determined.
     In this dissertation,we determine the cell viability after PAMAM G1 to G8 and G3.5,G4.5,G5.5 and G7.5 treatment.We find that treatment of A549 by cationic PAMAM,from G3 to G8 could cause cell death,while the anionic PAMAMs have no effect on cell viability.Furthermore,we find that PAMAM G3 causes A549 cell death through autophagy,but not through apoptosis.Treating cells with the autophagy inhibitor,3-methyladenine,or the knockdown of the autophagy related gene,beclin,could improve the cell viability treated by PAMAM G3.In the meanwhile,autophagic cell death happens in the PAMAM G4,G5,G6,G7 and G8 treated A549 cells.
     In the following step,we analyze the signal transduction pathways in the PAMAM G3 induced autphogic cell death.We find that PAMAM G3 induced A549 autophagic cell death through AKT-TSC2-mTOR pathway.
     Furthermore,we discover that PAMAM G3 could induce acute lung injury and cause death in mice,while the autophagy inhibitor 3MA could improve the situation.It is indicated that autophagy plays an important role in PAMAM G3 induced mice acute lung injury.
     COOH functionalized single walled carbon nanotube induces A549 autophagic cell death
     Carbon NanoTube(CNT) is a special form of carbon in which chemical bonds of carbon form tubes form carbon atoms.Usually there are two kinds of CNT:single-walled carbon nanotube(SWCNT),containing only one tube in the CNT and multi-walled carbon nanotube(MWCNT),containing more than one concentric tube in the basic element of the CNT.
     The CNTs may have different properties with different surface functionalizations.In this dissertation,we find COOH functionalized SWCNT induces A549 autophagic cell death,while the autophagy inhibitor 3MA could improve the situation.
     Furthermore,we discover COOH functionalized SWCNT downregulates p-AKT/AKT and p-mTOR/mTOR ratio in A549 cells,similar with PAMAM G3 treated A549 cells.The research on the COOH functionalized SWCNT induced autophagy is still under way,both in cell and mice.
     MWCNT induces A549 cell apoptosis in a caspase-3 independent pathway
     We find that MWCNT could induce A549 apoptosis.But it fails to active the caspase-3 in A549 cell.In the meanwhile,a pancaspase inhibitor,Z-VAD-fmk could not rescue the MWCNT induced apoptosis,indicating that MWCNT induced A549 cell apoptosis is in a caspase-3 independent pathway.
     Spike expression induces ER stress and interferes with insulin signal transduction pathway in HEK 293T ceils
     Endoplasmic Reticulum is the place where secretary and transmembrane proteins are properly folded and decorated.Too much unfolded or misfolded protein will induce ER stress,in which situation cells will take unfolded protein response to elimate those proteins.It is reported that the spike expression could induce ER stress in HEK 293 cells.In this dissertation,we find that it is S2 (S681-1190) that induces ER stress in HEK 293T cells.
     Furtermore,we find that expression of S2 interferes with insulin signal transduction pathway,with downregulation of phospho-AKT/total AKT ratio.We speculate that S2 induced ER stress could interfere with insulin signaling,and the related research is going on.
     Endotoxin removal from the expressed spike protein and analysis of inflammatory cytokines induced by spike protein
     SARS-CoV infection could induce severe inflammatory reaction,with a elevation of inflammatory cytokine in the victims.We expresse and purify SARS-CoV spike protein in human cell line andfind that it could induce TNF-a, IL-1β,IL-6 and IFN-γsecretion in human monocytes from peripheral blood mononuclear cells.
     With the endotoxin detection test,we find there is a lot of endotoxin in the expressed spike protein.After endotoxin removal with endotoxin removal column, we find the spike protein could also induce TNF-a and IL-6 secretion,but to a much less degree compared with the previous protein before endotoxin removal. In the meanwhile,we could not detection IFN-γsecretion treated by spike protein after endotoxin removal.
引文
[1]张青红,纳米材料的定义、 特点和应用 前景.http://159.226.97.8/html/Dir/2003/07/04/6732.htm.
    [2]Aoki H.Medical Applications of Hydroxyapatite.Tokyo:Ishiyaku-Euro America.1994.14-20.
    [3]杨勇骥,纳米材料侵入细胞的电镜研究。Journal of Chinese Electron Microscopy Societ 2008(5):400-406.
    [4]S.Svenson,D.A.Tomalia,Advanced Drug Delivery Reviews 57(2005)2106-2129.
    [5]崔玉花,等:聚酰胺-胺(PAMAM)树状大分子的研究进展.济南大学学报2007(4):356-360.
    [6]D.A.Tomalia,A.M.Naylor,W.A.Goddard Ⅲ,Starburst dendrimers:molecular level control of size,shapes,surface chemistry,topology and flexibility from atoms to macroscopic matter,Angew.Chem.,Int.Ed.29(1990) 138-175.
    [7]R.Duncan,L.Izzo,Dendrimer biocompatibility and toxicity,Advanced Drug Delivery Reviews 57(2005) 2215-2237.
    [8]J.C.Roberts,M.K.Bhalgat,R.T.Zera,Preliminary biological evaluation of polyamidoamine(PAMAM) Starburstk dendrimers,J.Biomed.Mater.Res.30(1996) 53-65
    [9]S.P.Hong,A.U.Bielinska,A.Mecke,B.Keszler,J.L.Beals,X.Y.Shi,L.Balogh,B.G.Orr,J.R.Baker,M.M.B.Holl,Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells:hole formation and the relation to transport,Bioconjug.Chem.15(2004) 774-782.
    [10]N.Malik,R.Wiwattanapatapee,R.Klopsch,K.Lorenz,H.Frey,J.W.Weener,E.W.Meijer,W.Paulus,R.Duncan,Dendrimers:relationship between structure and biocompatibility in vitro,and preliminary studies on the biodistribution of ~(125)I-labelled polyamidoamine dendrimers in vivo,J Control.Release 65(2000)133-148.
    [11]Levine B,Klionsky D J.Development by self-digestion:molecular molecular mechanisms an d biological functions of autophagy.Dev Cell,2004,6(4):463-477
    [12]Farre J C,Subraman i S.Peroxisome turnover by micropexophagy:an autophagy-related process.Trends Cell Biol,2004,14(9):515-52
    [13]张松龄等,自体吞噬-Ⅱ型程序性死亡,生物化学与生物物理进展,2005,32(11):1011-1015.
    [14]Klionsky DJ,Cregg JM,Dunn W A Jr,et al.A unified nomenclature for yeast autophagy -related genes.Dev Cell,2003,5(4):539-545
    [15]Schmelzle T,Hall M N.TOR,a central controller of cell growth.Cell,2000,103(2):253-262
    [16]Beth Levine and Guido Kroemer,SnapShot:Macroautophagy.Cell,2008,132:162-162.
    [17]Noda T,Suzuki Ohsumi Y.Yeast autophagosomes:de novo formation of a membrane structure.Trends Cell Biol,2002,12(5):231-235.
    [18]Ichimura Y,Kirisako T,Takao T,et ol.A ubiquitin-like s-tem mediates protein lipidation.Nature,2000,408(68 I1):488,-492.
    [19]Mizushima N.Methods for monitoring autophagy.Int J Biochem Cell Biol,2004,36(12):2491-2502.
    [20]He C,Song H,Yorimitsu T,et al.Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast.J CelBiol,2006,175:925-935.
    [1]Hou PX,Xu ST,Ying Z,Yang QH,Liu C,Cheng HM:Hydrogen adsorption/desorption behavior of multi-walled carbon nanotubes with different diameters.Carbon 41:2471-2476,2003.
    [2]Walters DA,Ericson LM,Casavant MJ,Liu J,Colbert DT,Smith KA,Smalley RE: Elastic strain of freely suspended single-wall carbon nanotube ropes.Appl.Phys.Lett.74:3803-3805,1999.
    [3]Yu MF,Files BS,Arepalli S,Ruoff RS:Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties.Phys.Rev.Lett.84:5552-5555,2000.
    [4]Tejral et al.:Carbon nanotubes:toxicological impacts J.Appl.Biomed.2009(7):1-13.
    [5]Deng X,Jia G Wang H,Sun H,Wang X,Yang S,Wang T,Liu Y:Translocation and fate of multiwalled carbon nanotubes in vivo.Carbon 45:1419-1424,2007.
    [6]D.Cui,F.Tian,C.Ozkan,M.Wang,H.Gao,Toxicol.Lett.2005,155,73-85.
    [7]S.Manna,S.Sarkar,J.Barr,K.Wise,E.Barrera,O.Jejelowo,A.Rice-Ficht,G Ramesh, Nano Lett.2005,5,1676-84.
    [8]N.Monteiro-Riviere,A.Inman,Carbon 2006,44,1070-1078.
    [9]L.Ding L,J.Stilwell,T.Zhang,O.Elboudware,H.Jiang,J.Selgue,P.Cooke,J.Gray,F.Chen,Nano Lett.2005,5,2448-2464.
    [10]F.Witzmann,N.Monteiro-Riviere,Nanomedicine 2006,2,158-168.
    [11]www.sigmaaldrich.com.
    [1]Schro'der,M.,and R.J.Kaufman.2005.The mammalian unfolded protein response.Annu.Rev.Biochem.74:739-789.
    [2]H.P.Harding,Y.Zhang,D.Ron,Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase,Nature 397 (1999) 271-274.
    [3]M.J.Gething,J.Sambrook,Protein folding in the cell,Nature 355 (1992) 33-45.
    [4]K.Mori,Tripartite management of unfolded proteins in the endoplasmic reticulum,Cell 101(2000)451-454.
    [5]Z.Ye et al.A SARS-CoV protein,ORF-6,induces caspase-3 mediated,ER stress and JNK-dependent apoptosis Biochimica et Biophysica Acta 1780 (2008) 1383-1387.
    [6]ZhangKandKaufmanRJ(2004)Signalingtheunfoldedproteinresponsefrom the endoplasmic reticulum.J.Biol.Chem.279:25935-25938.
    [7]BertolottiA,ZhangY,Hendershot LM,Harding HP and RonD (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-proteinresponse.Nat.Cell Biol.2:326-332.
    [8]Liu CY,Xu Z and Kaufman RJ (2003) Structure and intermolecular interactions of the luminal dimerization domain of human IRElalpha.J.Biol.Chem.278:17680-17687.
    [9]Harding HP,Calfon M,Urano F,Novoa I and RonD (2002)Transcriptional and translational control in the mammalian unfolded protein response.Annu.Rev.Cell.Dev.Biol.18:575-599.
    [10]Shen J,Chen X,Hendershot L and Prywes R (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals.Dev.Cell 3:99-111.
    [11]Liao,Y.,Q.Yuan,J.Torres,J.P.Tam,andD.X.Liu.2006.Biochernical and functional characterization of the membrane association and membrane permeabilizing activity of the severe acute respiratory syndrome coronavirus envelope protein.Virology 349:264-275.
    [12]Nal,B.,C.Chan,F.Kien,L.Siu,J.Tse,K.Chu,J.Kam,I.Staropoli,B.Crescenzo-Chaigne,N.Escriou,S.van der Werf,K.Y.Yuen,and R.Altmeyer.2005.Differential maturation and subcellular localization of severe acute res piratory syndrome coronavirus surface proteins S,M and E.J.Gen.Virol.86:1423-1434.
    [13]Ching-Ping Chan et al.Modulation of the Unfolded Protein Response by the Severe Acute Respiratory Syndrome Coronavirus Spike Protein.JOURNAL OF VIROLOGY, Vol.80 (2006):9279-9287.
    [14]Chang L,Chiang SH,Saltiel AR.Insulin signaling and the regulation of glucosetransport.J.Mol.Med.2004,10(7-12):65-71.
    [15]Umut Ozcan,et al.Endoplasmic Reticulum Stress Links Obesity,Insulin Action,and Type 2 Diabetes.Science 306,(2004):457-461.
    [16]J.K.Yang,et al.Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS.Diabetic Medicine,23,623-628.
    [1]www.who.int/csr/sars/country/table2004_04_21/en/index.html.
    [2]Anthony WI Lo,et al.J Pathol 2006;208:142-151.
    [3]Morphological damage induced by Escherichia coli lipopolysaccharide in cultured hepatocytes:Localization and binding properties.Br.J.Exp.Pathol.,69:537-549.
    [4]邵英光,等.内毒素的去除策略.广州化学2003;28(2):38-45.
    [5]楼福乐,毛伟钢,陆晓峰,等.超滤技术在制药工业中除热原的应用.膜科学与技术,1999,19(3):8-12.
    [6]龚承元 苏建勇,朱孟府.中国药学杂志1994,29(4):214-217.
    [7]苏建勇,龚承元,朱孟府.荷电微孔滤膜去除细菌内毒素的试验研究.军事医学科学院院刊,1995,19(4):289-292.
    [8]Satoshi Minobe,Taizo Watanabe,Tadashi Sato,et al.Characteristics and applications of adsorbents for pyrogen removal,Biotechnology and Applied Biochemistry,1988(10):143-153.
    [9]Campbell D.H.et al.The destruction of pyrogen by hydrogen peroxides.Science,1945(102):535-538.
    [10]Aida Y,Pabst M.J.Removal of endotoxin from solutions by phase separation using TritonX- 114.J Immunol Methods.1990,132(2):191-195.
    [11]Adam O,et al.A nondegradative route for the removal of endotoxin from exopolysaccharides.Anal Biochem,1995,225(2):321-327.
    [12]Ichiro Chibata.Method for reducing the pyrogen contentor removing pyrogens from substances contaminated therewith.US Patent 4,381,239
    [1]Gallagher TM,Buchmeier MJ.Coronavirus spike proteins in viral entry and pathogenesis.Virology,2001,279(2):371-374.
    [2]Wong SK,Li W,Moore MJ,Choe H,Farzan M.A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2.J Biol Chem.2004 Jan 30;279(5):3197-201.
    [3]Sainz B Jr,Rausch JM,Gallaher WR,Garry RF,Wimley WC.The Aromatic Domain of the Coronavirus Class I Viral Fusion Protein Induces Membrane Permeabilization:Putative Role during Viral Entry.Biochemistry.2005 Jan 25;44(3):947-58.
    [4]Wenhui Li,et al.Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2.The EMBO Journal (2005) 24,1634-1643.
    [5]Fang Li,et al.Structure of SARS coronavirus spike receptor-binding domain complexed with receptor.Science 309 (2005):1864-1868.
    [1]KumaA,Hatano M,Matsui M,el al.The role of autophagy during the early neonatal starvation period[J].Nature,2004,432:1032-1036.
    [2]LevineB,Klionsky D J.Development by self-digestion:molecular molecular mechanisms an d biological functions of autophagy.Dev Cell,2004,6(4):463-477
    [3]Schweichel,J.U.,& Merker,H.J.(1973).The morphology of various types of cell death in prenatal tissues.Teratology,7,253-266.
    [4]Yuan,J.,Lipinski,M.,& Degterev,A.(2003).Diversity in the mechanism of neuronal cell death.Neuron,40,401-413.
    [5]Dunn Jr.,W.A.(1994).Autophagy and related mechanisms of lysosome-mediated protein degradation.Trends in Cell Biology,4,139-143.
    [6]Baba,M.,Osumi,M.,Scott,S.V.,Klionsky,D.J.,& Ohsumi,Y.(1997).Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome.Journal of Cell Biology,139,1687-1695.
    [7]NodaT,Suzuki Ohsumi Y.Yeast autophagosomes:de novo formation of a membrane structure.Trends Cell Biol,2002,12(5):231-235
    [8]Blommaart,E.F.C,Luiken,J.J.F.P.,& Meijer,A.J.(1997b).Autophagic proteolysis:Control and specificity.Histochemistry Journal,29,365-385.
    [9]van Sluijters,D.A.,Dubbelhuis,P.F.,Blommaart,E.F.C,&Meijer,A.J.(2000).Amino-acid-dependent signal transduction.Biochemical Journal,351,545-550.
    [10]Hariri,M.,Millane,G.,Guimond,M.P.,Guay,G.,Dennis,J.W.,& Nabi,I.R.(2000).Biogenesis of multilamellar bodies via autophagy.Molecular Biology of the Cell,11,255-268.
    [11]Luiken,J.J.F.P.,Vandenberg,M.,Heikoop,J.C,& Meijer,A.J.(1992).Autophagic degradation of peroxisomes in isolated rat hepatocytes.FEBS Letters,304,93-97.
    [12]Bolender,R.P.,& Weibel,E.R.(1973).A morphometric study of the removal of phenobarbital-induced membranes from hepatocytes after cessation of treatment.Journal of Cell Biology,56,746-761.
    [13]Davies,J.,& Murphy,D.(2002).Autophagy in hypothalamic neurons of rats expressing a familial neurohypophysial diabetes insipidus transgene.Journal of Neuroendocrinology,14,629-637.
    [14]Teckman,J.H.,& Perlmutter,D.H.(2000).Retention of mutant alpha (1)-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response.American Journal Physiology,279,G961-G974.
    [15]Elmore,S.P.,Qian,T.,Grissom,S.F.,& Lemasters,J.J.(2001).The mitochondrial permeability transition initiates autophagy in rat hepatocytes.FASEB Journal,15,U58-U74.
    [16]Xue,L.,Fletcher,G.C,& Tolkovsky,A.M.(2001).Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis.Current Biology,11,361-365.
    [17]de Grey,A.D.N.J.(1997).A proposed refinement of the mitochondrial free radical theory of aging.BioEssays,19,161-166.
    [18]Lemasters,J.J.,Nieminen,A.L.,Qian,T.,Trost,L.C,Elmore,S.P.,& Nishimura,Y.et al.,(1998).The mitochondrial permeability transition in cell death:A common mechanism in necrosis.Biochimica et Biophysica Acta Bioenergetics,1366,177-196.
    [19]Melendez,A.,Talloczy,Z.,Seaman.,M.,Eskelinen,E.L.,Hall,D.H.,& Levine,B.(2003).Autophagy genes are essential for dauer development and life-span extension in C.elegans.Science,301,1387-1391.
    [20]Juhasz,G.,Csiko,G.,Sinka,R.,Erdelyi,M.,& Sass,M.(2003) The Drosophila homolog of Autl is essential for autophag and development.FEBS Letters,543, 154-158.
    [21]Bergamini,E.,Cavallini,G.,Donati,A.,& Gori,Z.(2003).The anti-ageing effects of caloric restriction may involve stimulation of macroautophagy and lysosomal degradation,and can be intensified pharmacologically.Biomedical Pharmacotherapy,57,203-208.
    [22]Cuervo,A.M.,& Dice,J.F.(2000).When lysosomes get old.Experimental Gerontology,35,119-131.
    [23]Nishino,I.,Fu,J.,Tanji,K.,Yamada,T.,Shimojo,S.,& Koori,T.et al.,(2000). Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease).Nature,406,906-910.
    [24]Eskelinen,E.L.,Illert,A.L.,Tanaka,Y.,Schwarzmann,G.,Blanz,J.,& von Figura,K.et al.,(2002).Role of LAMP-2 in lysosome biogenesis and autophagy.Molecular Biology of the Cell,13,3355-3368.
    [25]Nixon,R.A.,Cataldo,A.M.,& Mathews,P.M.(2000).The endosomal-lysosomal system of neurons in Alzheimer's disease pathogenesis:A review.Neurochemical Research,25,1161-1172.
    [26]Qin,Z.H.,Wang,Y.,Kegel,K.B.,Kazantsev,A.,Apostol,B.L.,& Thompson,L.M.et al.,(2003).Autophagy regulates the processing of amino terminal huntingtin fragments.Human Molecular Genetics,12,3231-3244.
    [27]Liang,X.H.,Jackson,S.,Seaman,M.,Brown,K.,Kempkes,B.,& Hibshoosh,H.et al., (1999).Induction of autophagy and inhibition of tumorigenesis by beclin 1.Nature,402, 672-676.
    [28]Qu,X.,Yu,J.,Bhagat,G.,Furuya,N.,Hibshoosh,H.,& Troxel,A.et al.,(2003).Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene.Journal of Clinical Investigations,112,1809-1820.
    [29]Yue,Z.,Jin,S.,Yang,C,Levine,A.J.,& Heintz,N.(2003).Beclin 1,an autophagy gene essential for early embryonic development,is a haploinsufficient tumor suppressor.Proceedings of the National Academy of Sciences USA,100,15077-15082.
    [30]Bursch,W.,Hochegger,K.,Torok,L.,Marian,B.,Ellinger,A.,& Hermann,R.S.(2000).Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filamentsm.Journal Cell Science,113,1189-1198.
    [31]Inbal,B.,Bialik,S.,Sabanay,I.,Shani,G.,& Kimchi,A.(2002).DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death.Journal of Cell Biology,157,455-468.
    [32]Paglin,S.,Hollister,T.,Delohery,T.,Hackett,N.,McMahill,M.,& Sphicas,E.et al., (2001).A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles.Cancer Research,61,439-444.
    [33]Ohsumi,Y.(2001).Molecular dissection of autophagy:Two ubiquitin-like systems. Nature Review of Molecular and Cellular Biology,2,211-216.
    [34]Nemoto,T.,Tanida,I.,Tanida-Miyake,E.,Minematsu-Ikeguchi, N.,Yokota,M.,&Ohsumi,M.etal.,(2003).The mouse APG10 homologue,an E2-like enzyme for Apg12p-conjugation,facilitates MAP-LC3 modification.Journal of Biological Chemistry,278,39517-39526.
    [35]Mizushima,N.,Noda,T.,Yoshimori,T.,Tanaka,Y.,Ishii,T.,& George,M.D.et al., (1998).A protein conjugation system essential for autophagy.Nature,395,395-398.
    [36]Shintani,T.,Mizushima,N.,Ogawa,Y.,Matsuura,A.,Noda,T.,& Ohsumi,Y.(1999).Apg10p,a novel protein-conjugating enzyme essential for autophagy in yeast.EMBO Journal,18,5234-5241.
    [37]Mizushima,N.,Noda,T.,&Ohsumi,Y.(1999).Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeas autophagy pathway.EMBO Journal,18, 3888-3896.
    [38]Ichimura,Y.,Kirisako,T.,Takao,T.,Satomi,Y.,Shimonishi,Y.,& Ishihara,N.et al., (2000).A ubiquitin-like system mediates protein lipidation.Nature,408,488-492.
    [39]Tanida,I.,Tanida-Miyake,E.,Komatsu,M.,Ueno,T.,& Kominami,E.(2002).Human Apg3/Autlp homologue is an E2 enzyme for multiple substrates,GATE-16, GABARAP,and MAP-LC3,and facilitates the conjugation of hApg12p to hApg5p.Journal of Biological Chemistry,277,13739-13744.
    [40]He,H.,Dang,Y.,Dai,F.,Guo,Z.,Wu,J.,& She,X.et al.,(2003).Post-translational modifications of the three members of the human MAP1-LC3 family and detection of a novel type of modification for MAP1-LC3B.Journal of Biological Chemistry,278, 29278-29287.
    [41]Marino,G.,et al.(2003).Human autophagins,a family of cysteine proteinases potentially implicated in cell degradation by autophagy.Journal of Biological Chemistry, 278,3671-3678.
    [42]Mizushima N.Methods for monitoring autophagy.Int J Biochem Cell Biol,2004, 36(12):2491-2502
    [43]Petiot,A.,OgierDenis,E.,Blommaart,E.F.C,Meijer,A.J.,& Codogno,P.(2000).Distinct classes of phosphatidylinositol 3-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells.Journal of Biological Chemistry,275, 992-998.
    [44]Panaretou,C,Domin,J.,Cockcroft,S.,& Waterfield,M.D.(1997).Characterization of pi 50,an adaptor protein for the human phosphatidylinositol (Ptdlns) 3-kinase.Journal of Biological Chemistry,272,2477-2485.
    [45]Kihara,A.,Noda,T.,Ishihara,N.,& Ohsumi,Y.(2001a).Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae.Journal of Cell Biology,152,519-530.
    [46]Tassa,A.,Roux,M.P.,Attaix,D.,& Bechet,D.M.(2003).Class Ⅲ phosphoinositide 3-kinase-beclin 1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes.Biochemical Journal,376,577-586.
    [47]Schmelzle T,HallMN.TOR,a central controller of cell growth.Cell,2000,103(2): 253-262
    [48]Meijer AJ,Codogno P.Signalling and autophagy regulation in health,aging and disease.Mol Aspects Med,2006,27(5-6):411-425.
    [49]Beth Levine and Guido Rroemer,Snapshot:Macroautophagy.Cell,2008,132: 162-162.e2
    [50]Brazil,D.P.,& Hemmings,B.A.(2001).Ten years of protein kinase B signalling:A hard Akt to follow.Trends Biochemical Science,26,657-664.
    [51]Arico,S.,Petiot,A.,Bauvy,C,Dubbelhuis,P.F.,Meijer,A.J.,& Codogno,P.et al., (2001).The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway.Journal of Biological Chemistry,276,35243-35246.
    [52]Gao,X.,Zhang,Y.,Arrazola,P.,Hino,O.,Kobayashi,T.,& Yeung,R.S.et al.,(2002).TSC tumor supprssor porteins anatagonize amoni-acid-TOR signalling.Nature Cell Biology,4,699-704.
    [1]Drosten C,Gunther S,Preiser W,Van Der Werf S,Brodt HR,Becker S,Rabenau H et al.Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome.N Engl J Med,2003,348(20):1967-1976
    [2]Ksiazek TG,Erdman D,Goldsmith CS,Zaki SR,Peret T,Emery S,Tong S et al.A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome.N Engl J Med,2003, 348(20):1953-1966
    [3]Marra MA,Jones SJ,Astell CR,Holt RA,Brooks-Wilson A,Butterfield YS,Khattra J et al.The Genome Sequence of the SARS-Associated Coronavirus.Science.300(5624):1399-404.
    [4]David A Groneberg et al.Respiratory Research,2005,6:8
    [5]Ding Y,Wang H,Shen H,Li Z,Geng J,Han H,Cai J,Li X,Kang W,Weng D,Lu Y,Wu D,He L,Yao K.The clinical pathology of severe acute respiratory syndrome (SARS):a report from China.J Pathol.2003 Jul;200(3):282-9.
    [6]Anthony WI Lo et al.J Pathol 2006;208:142-151
    [7]Holmes KV.SARS-associated coronavirus.N Engl J Med,2003,348(20):1948-1951
    [8]Nguyen VP,Hogue BG.Protein interactions during coronavirus assembly.J Virol,1997, 71(12):9278-9284
    [9]Sainz B Jr,Rausch JM,Gallaher WR,Garry RF,Wimley WC.The Aromatic Domain of the Coronavirus Class I Viral Fusion Protein Induces Membrane Permeabilization:Putative Role during Viral Entry.Biochemistry.2005 Jan 25;44(3):947-58.
    [10]Wenhui Li,et al.Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2.The EMBO Journal (2005) 24,1634-1643
    [11]Snijder EJ,Bredenbeek PJ,Dobbe JC,Thiel V,Ziebuhr J,Poon LL,Guan Y,Rozanov M, Spaan WJ,Gorbalenya AE.Unique and conserved features of genome and proteome of SARS-coronavirus,an early split-off from the coronavirus group 2 lineage.J Mol Biol.2003;331(5):991-1004.
    [12]de Haan CA,de Wit M,Kuo L,Montalto C,Masters PS,Weiss SR,Rottier PJ.O-glycosylation of the mouse hepatitis coronavirus membrane protein.Virus Res,2002, 82(1-2):77-81
    [13]Maeda J,Repass JF,Maeda A,Makino S.Membrane topology of coronavirus E protein.Virology,2001,281(2):163-169
    [14]Wang Cheng-Zhong et al.Ctabiochimica et Biophysica Sinica,2003,35(6):495-502
    [15]Guan,Y,et al.Science,2003.302(5643):276-8.
    [16]Li,W.,et al.Nature,2003.426(6965):450-4.
    [17]Marzi,A.,et al.J Virol,2004.78(21):12090-5.
    [18]Harmer D,Gilbert M,Borman R,Clark KL.Quantitative mRNA expression profiling of ACE 2,a novel homologue of angiotensin converting enzyme.FEBS Lett.2002 Dec 4; 532(1-2):107-10.
    [19]Keiji Kuba,et al.Nature Medicine,2005.11:875-879.
    [20]Law PT,Wong CH,Au TC,Chuck CP,Kong SK,Chan PK,To KF,Lo AW,Chan JY, Suen YK,Chan HY,Fung KP,Waye MM,Sung JJ,Lo YM,Tsui SK.The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells.J Gen Virol.2005;86(7):1921-30.
    [21]Yuan X,Shan Y,Zhao Z,Chen J,Cong Y.G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells.Virol J.2005;2:66.
    [22]Tan YJ,Fielding BC,Goh PY,Shen S,Tan TH,Lim SG,Hong W.Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway.J Virol.2004;78(24):14043-7.
    [23]Michel Theron,et al A probable role for IFN-g in the development of a lung immunopathology in SARS.Cytokine 32 (2005) 30-38.
    [24]Yang YH,Huang YH,Chuang YH,Peng CM,Wang LC,Lin YT,et al.Autoantibodies against human epithelial cells and endothelial cells after severe acute respiratory syndrome (SARS)-associated coronavirus infection.J Med Virol 2005;77:1-7.
    [25]Navas-Martin SR,Weiss S.Coronavirus replication and pathogenesis:Implications for the recent outbreak of severe acute respiratory syndrome (SARS),and the challenge for vaccine development.JNeurovirol.2004 Apr;10(2):75-85.
    [26]Buchholz UJ,Bukreyev A,Yang L,Lamirande EW,Murphy BR,Subbarao K,Collins PL.Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity.Proc Natl Acad Sci USA.2004 Jun 29;101(26):9804-9.
    [27]Zhu M.SARS Immunity and Vaccination.Cell Mol Immunol.2004 Jun;1(3):193-8.
    [28]He Y,Zhou Y,Wu H,Luo B,Chen J,Li W,Jiang S.Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus:implication for developing SARS diagnostics and vaccines.J Immunol.2004 Sep 15;173(6):4050-7.
    [29]He Y,Jiang S.Vaccine design for severe acute respiratory syndrome coronavirus.Vira Immunol.2005;18(2):327-32.
    [30]He Y,Li J,Du L,Yan X,Hu G,Zhou Y,Jiang S.Identification and characterization of novel neutralizing epitopes in the receptor-binding domain of SARS-CoV spike protein:revealing the critical antigenic determinants in inactivated SARS-CoV vaccine.Vaccine.2006 Jun 29;24(26):5498-508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700