用户名: 密码: 验证码:
SiC/SiO_2低维核壳结构材料的制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SiC作为第三代核心半导体材料之一,具有宽带隙、高临界击穿电压、高热导率、高载流子饱和漂移速度等特点,在紫外探测器和短波发光二极管及高频、大功率、高温、抗辐照的电子器件等领域具有广阔的应用前景。SiC零维和一维纳米材料,由于处在纳米尺度,除具有体材料所具有的优异性质外,还具有其大尺寸材料所不具有的性质,在光催化、光电子器件和场发射显示等方面已显示了巨大的应用价值,因此研究SiC零维和一维纳米材料具有重要的意义。目前,SiC零维和一维纳米材料的研究主要集中在两个方面:用不同的方法制备SiC零维和一维纳米材料;对制备的SiC纳米材料进行光学和发射特性表征研究。所采用的制备SiC纳米材料方法都有各自的优点,但是这些方法也存在一些缺点:产物较少,易引入杂质,制备温度高,成本较高等。特别是由这些方法制备的SiC纳米材料大都存在大量的表面态,导致发光效率降低,并且SiC一维纳米材料在场发射显示的应用中需要较高的开启电场,限制了SiC纳米材料的实际应用。在SiC表面包覆一层SiO2保护层,实现纳米SiC/SiO2核壳结构,可以减少SiC材料本身的表面态,提高发光效率,而且薄的SiO2层,还可以改善SiC一维纳米材料的场发射特性。因此采用一些简单易行的方法来制备SiC/SiO2核壳结构纳米材料,并研究其光学及场发射特性,具有重要的物理意义和应用价值。
     本论文的研究内容主要包括以下几部分:
     1).首先设计了一个采用两步生长的办法来合成SiC/SiO2核壳结构纳米颗粒的方案,并采用热化学气相沉积(T-CVD)和热退火技术,首次合成了零维6H-SiC/SiO2核壳结构纳米颗粒。用扫描电镜(SEM)、透射电镜(TEM)、能谱(EDX)、X射线衍射(XRD)等手段对制备的纳米颗粒进行了表征。研究了影响纳米颗粒合成的因素。
     2).利用固相SiO2与催化剂混合,在CH4气氛下,成功合成了“线状”、“珊瑚状”和“芦荟状”三种不同形貌的SiC/SiO2核壳结构一维纳米材料。分析认为纳米材料的生长方式为典型的“气-液-固(VLS)”生长机制且为顶部生长模式。生长过程中所引入的Fe催化剂对纳米材料的形成起着重要作用,同时催化剂的形貌不同是形成不同形状纳米材料的主要原因。
     3).用光致发光谱(PL)分别研究了零维和一维SiC纳米核壳结构材料的光致发光性质。研究表明,对于SiC纳米颗粒,未退火前的发光主要是SiC表面的缺陷发光;退火后表面缺陷发光消失,SiC的本征发光强度明显提高。表明有SiO2包覆的SiC纳米材料的发光效率得到改善。以“线状”的β-SiC/SiO2一维核壳结构纳米材料为例,研究了其室温和变温光致发光谱。研究发现“线状”纳米材料的室温宽带峰可以分解为主峰分别为2.3eV和2.1eV的两个发光峰组成。2.3eV的发光是SiC的带边发光,2.1eV的发光来源于表面缺陷态。
     4).研究了“线状”、“珊瑚状”和“芦荟状”的β-SiC/SiO2一维核壳结构纳米材料的场发射特性。结果表明,三者都具有较低的开启电场和较高的发射电流密度,是良好的场发射阴极材料。β-SiC/SiO2一维核壳结构纳米材料具有良好的场发射特性的原因主要有三部分:一是,核壳结构纳米材料都具有大量有效的发射点;二是,核壳结构纳米材料都具有很大的长径比,使得在材料的顶端容易形成强的局部电场,使电子易于克服表面势垒发射到真空中;三是,包覆的具有小的电子亲和势的10nm左右的非晶SiO2薄层,可以改善核壳结构SiC纳米材料的场发射特性。
As an important third-generation semiconductor, silicon carbide, with wide bandgap, high breakdown voltage, high thermal conductivity, and high saturation drift velocity, appears to be a promising material for UV detector, short-wave light-emitting diodes and electronic devices that can be operated at high power, high frequency, high temperature and in harsh environment. Zero-dimensional and one-dimensional SiC nanostructure materials, as in the nano-scale, have some new properties compared to the bulk-SiC material. By now, the zero-dimensional and one-dimensional SiC nanostructure materials display huge potential application in photocatalytic, optoelectronic devices and field emission display etc. The investigation of SiC zero-dimensional and one-dimensional nanostructure materials is an attractive and important work. At present, the research of SiC zero-dimensional and one-dimensional nano-materials has been focused on two aspects: preparation of SiC nanomaterials with different methods, and characterization of optical and field emission properties. However, these preparation methods have some disadvantages, such as, low yield, high impurity, high preparation temperature, high cost and so on. The SiC nanomaterials prepared by these methods usually have a large number of surface states, resulting in lower luminous efficiency. In particular, the application of SiC one-dimensional nanomaterials on field emission display needs high turn-on field. Fabricating SiC/SiO2 core-shell zero-dimensional and one-dimensional nanomaterials by coating a SiO2 protection layer can reduce the surface states and improve the luminous efficiency of SiC material. At the same time, a thin SiO2 layer can enhance the field emission characteristics of SiC one-dimensional nanomaterials. Thus, creating some simple and effect methods to prepare SiC/SiO2 core-shell structure materials and study their optical and field emission characteristics have important physical meaning and practical value.
     Major contents of study in this thesis were summarized as follows:
     1). First we designed a two-step approach to synthesize the SiC/SiO2 growth of core-shell nanoparticles. By thermal chemical vapor deposition (T-CVD) and thermal annealing process, we successfully synthesize zero-dimensional 6H-SiC/SiO2 core-shell nanoparticles. The scanning electron microscopies (SEM), transmission electron microscopy (TEM), energy dispersive x-ray detector spectroscopy (EDX), X-ray diffraction (XRD) were used to characterize the nano-particles. The effect factors of fabrication of nano-particles were also analysized.
     2).‘Normal-shaped’,‘coralloid’and‘aloetic-shaped’β-SiC/SiO2 one-dimensional nanowires were synthesized by using simple synthetic method. The growth mechanism of nanowires is‘vapor-liquid-solid (VLS)’with a‘tip growth model’. The Fe nanoparticles play a key role in the formation of nanowires and the catalyst morphology is the key factor for synthesizing different shapes of SiC nanowires.
     3). Photoluminescence (PL) spectrum was used to characterize the optical properties of zero-dimensional and one-dimensional SiC core-shell structure nanomaterials. The results showed that, before annealing in oxygen atmosphere, luminescence of SiC nano-particles were mainly from SiC surface defect emission, emission from surface defects disappeared and the intrinsic emission intensity of SiC obviously enhanced after annealing. This indicated that the luminous efficiency of nano-SiC coated with SiO2 materials has been improved. Room temperature and variable temperature photoluminescence of the‘normal shaped’β-SiC/SiO2 one-dimensional core-shell structure nanowires were also investigated. It was found that the PL boradband of nanowires can be decomposed as two emission peaks, with maximum peak at 2.3 eV and 2.1eV, respectively. It was proved that he 2.3 eV luminescence from SiC band edge emission and 2.1eV luminescence from surface defect states.
     4). Field emission properties of the‘normal-shaped’,‘coralloid’and‘aloetic-shaped’β-SiC/SiO2 one-dimensional nanowires were investigated detailedly. The results show that all nanowires have a low turn-on field and high emission current density. So the three nanowires are good field emission cathode materials. The reasons of the SiC core-shell nanowires with good field emission characteristics can be summarized as follows: first, core-shell nanowires have a large number of effective emitting point; Second, core-shell nanowires have a great aspect ratio, makes it easy to form strong local electric fields can be easily formed on the tips. This electric field will make the electron overcome the surface barrier to the air with ease and then greatly enhance the electron emission; Third, the thin SiO2 shell with a small electron affinity. By coating with 10nm SiO2 shell, the field emission properties of SiC nanowire emitters can be enhanced.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001,5-11.
    [2]张志焜,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2001.
    [3] H H Abclson.纳米技术:未来最有可能取得突破的领域[M].刘道军译.世界科学,2000,7.
    [4]尹邦跃.纳米时代-现实与梦想[M].北京:中国轻工业出版社,2002.
    [5]张喜梅,陈玲,李琳等.纳米材料制备研究现状及其发展方向[J].现代化工,2000, 7.
    [6]朱屯,王福明,王习东.国外纳米材料技术进展与应用[M].北京:化学工业出版社,2002.
    [7]高濂,高尉.纳米陶瓷[M].北京:化学工业出版社,2002.
    [8]成会明.纳米碳管制备、结构、物性及应用[M].北京:化学工业出版社,2002.
    [9]朱宏伟,吴德海,徐才录.纳米碳管[M].北京:机械工业工业出版社,2003.
    [10]黄德欢.纳米技术与应用[M].上海:中国纺织大学出版社,2003.
    [11]顾宁,付德刚,张海黔等.纳米技术与应用[M].北京:人民邮电出版社,2002
    [12]闫晓燕,卫英慧.纳米氧化锌的制备及其应用[J].兵器材料科学与工程,2002,25(6): 64-68.
    [13]陈军峰,徐才路,毛宗强等.中国科学(A辑)[J],2001,31(6):529-533.
    [14]内田盛也.高物性新型复合材料[M].石行,朱立群等译.北京:航空工业出版社,1992.
    [15] W B Choi, D S Chung, J H Kang, et al. Fully sealed, high-brightness carbon nanotube field emission display [J]. Appl Phys Lett, 1999,75(20):3129-3131.
    [16] N Ren, A G Dong, W B Cai, et a1.Mesoporous microcapsules with noble metal or noble metal oxide shells and their application in electrocatalysis [J]. J Mater Chem, 2004, 14:3548-3552.
    [17] S Iijima. Helical Microtubules of Graphitic Carbon [J]. Nature, 1991, 354:56-58.
    [18] E W Wong, P E Sheehan, C M Lieber. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes [J]. Science, 1997, 277:1971-1975.
    [19] T Xu, J G. Zheng, A W Nicholls, et al. Single-Crystal Calcium Hexaboride Nanowires: Synthesis and Characterization [J]. Nano Lett, 2004, 4:2051-2055.
    [20] Y D Li, H W Liao, Y Ding, et al. Solvothermal Elemental Direct Reaction to CdE (E=S, Se, Te) Semiconductor Nanorod [J]. Inorg Chem, 1999, 38 (7):1382-1387.
    [21] R Tenne, L Margulis, M Genut, et al. Polyhedral and cylindrical structures of tungsten disulphide [J]. Nature, 1992,360:444-446.
    [22] X Y Kong, Y Ding, R Yang, et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts [J]. Science, 2004, 303:1348.
    [23]王玉霞,何海平,汤洪高.宽带隙半导体材料SiC研究进展及其应用[J].硅酸盐学报,2002,30(3):372-381.
    [24]郝跃,彭军,杨银堂.碳化硅宽带隙半导体技术[J].北京科学出版社,2000.
    [25] N Ohtani,J Takallashi,M Katsuno, et al. Development of large single-crystal SiC substrates,Eleetronies and Communieationsin[J]. Japan,Part 2,1998,81(6): 8-19.
    [26] U Starke,J Bernhardt,J Sehardt,et al.SiC surface reconstruction: relevancy of atomic structure for growth technology [J]. Surf Rev Lett, 1999,6(6):1129-1141.
    [27] L G Zhang,W Yang,H Jin,et al.Ultraviolet photolumineseenee from 3C-SiC nanorods [J]. Appl Phys Lett. 2006, 89:143101.
    [28] H Takayama,N Sutoh,N Murakawa,Quantitative analysis of stacking faults in the structure of SiC by x-ray powder profile refinement methods [J]. J Ceram Soc Jpn,1988,96:1003-1011.
    [29] K Koumoto,S Takeda,C H Pai,et al. High-resolution electron microscopy observations of stacking faults inβ-SiC [J]. J Am Ceram Soe, 1989 , 72 (10):1985-1987.
    [30] M Takahiro, T Jun,T Taruki,Blue-green luminescence from porous silicon Carbide [J]. Appl Phys Lett, 1994,64(2):226-228.
    [31] Z S Wu,S Z Deng.N S Xu.et a1.Needle-shaped silicon carbide nanowires:Synthesis and field electron emission properties [J]. Appl Phys Lett,2002,80 (20):3829-3831.
    [32]刘技文,李娟,赵燕平等.SiC纳米晶薄膜的制备及发光性质研究,光电子.激光,2005,16(3):274-278.
    [33] X M Liu, K F Yao. Large-scale synthesis and photoluminescence properties of SiC/SiO2 nanocables [J]. Nanotechnology, 2005, 16:2932-2935.
    [34] W S Shi,Y F Zheng, H Y Peng,et a1.Easel-ablation synthesis and optical characterization of silicon carbide nanowires [J]. J Amceram Soc,2000,83(12):3228.
    [35] D Zhou,S SeraPhin,Production of silicon carbide whiskers from carbon nanoclusters[J]. Chem phys Lett, 1994, 222:223-238.
    [36] C H Liang, G W Meng,L D Zhang,et a1.Large-scale synthesis ofβ-SiC nanowires by using nesoporous silica embedded with Fe nanoparticles [J]. Chem Phys Lett,2000,329:323.
    [37]郝雅娟,郭向云.碳化硅纳米纤维的溶胶-凝胶法合成[J].功能材料,2004, 35:2855-2857.
    [38] H F Zhang,C M Wang,L S Wang. Helieal crystalline SiC/SiO2 core-shell nanowires [J]. Nano Lett, 2002,2(9):941-944.
    [39] M Lin, K P Loh,C Boothroyd, et a1.Nanocantilevers made of bent silicon carbide nanowire-in-silicon oxide nanocones [J]. Appl Phys Lett, 2004, 8(22):5388-5390.
    [40] A Fissel, B Schroter, W Richter. Low‐temperature growth of SiC thin films on Si and 6H–SiC by solid‐source molecular beam epitaxy [J]. Appl Phys Lett, 1995, 66:3182-3184.
    [41] G B Gao, J Sterner, H Morkoc, et a1.High frequency performance of SiC heterojunction bipolar transistors [J]. IEEE Trans Electron Devices, 1994, 41(7):1092-1097.
    [42] Y W Ryu, Y J Tak, K Yong. Direct growth of core-shell SiC-SiO2 nanowires and field emission characteristics [J]. Nanotechnology, 2005, 16:S370-S374.
    [43] W M Zhou,L J Yan,Y Wang,et a1.SiC nanowires: a photocatalytic nanomaterial [J].Appl Phys Lett, 2006, 89:013105.
    [44] P Kim, C M Lieber. Nanotube Nanotweezers [J].Science, 1999, 286:2148-2150.
    [45] X J Wang, J F Tian, L H Bao, et a1.Large scale SiC/SiOx nanocables: Synthesis, photoluminescence, and field emission properties [J]. J Appl Phys, 2007, 102:014309.
    [46] L Hoffman, G Ziegler, D Theis, et a1.Silicon carbide blue light emitting diodes with improved external quantum efficiency [J]. J Appl Phys, 1982, 53(10):6962.
    [47] Y C Liu, C G Liu, D W Chen. Photoluminescence properties ofα-SiC:H film by plasma enhanced chemical vapor deposition from SiH4+C2H2mixture [J]. Chin Phys Lett. 1998 15(11):837-839.
    [48] M Takahiro,T Jun,T Taruki,Blue-green lumineseenee from porous silicon carbide [J]. Appl Phys Lett, 1994 64(2):226-228.
    [49] V P Koeh,0 Sreseli,G Polisski,Luminescence enhancement by electrochemical etehing of SiC(6H) [J]. Thin Solid Film, 1995,255:107-110.
    [50] M Hidenori,M Takahiro,Blue electroluminescence from porous silicon carbide[J]. Appl Phys Lett, 1994,65(26):3350-3352.
    [51] M W Zhao, Y Y Xia, F Li, et a1.Strain energy and electronic structures of silicon carbide nanotubes: Density functionalcalculations [J]. Phys Rev B, 2005, 71:085312.
    [52] K H Lee, W S Seo, Y Lee, et a1.Growth of SiC–C nanocables on SiO2 films derived by gaseous composition control using Ti [J]. J Crystal Growth, 2005, 281:556-562.
    [53] G Peev, L Zambov, V Shanov, et a1.Kinetics of polysilicon film growth by thermal decomposition of silane [J]. Semicond Sci Technol, 1991, 6:281.
    [54] A Mavrandonakis, G E Froudakis,A Andriotis, et a1.Silicon carbide nanotube tips: Promising materials for atomic force microscopy and/or scanning tunneling microscopy [J]. Appl Phys Lett, 2006, 89:123126.
    [55] A Zimina, S Eisebitt, W Eberhardt, et a1.Electronic structure and chemical environment of silicon nanoclusters embedded in a silicon dioxide matrix [J]. Appl. Phys Lett, 2006, 88:163103.
    [56] S Z Li, C L Gan, H Cai, et a1.Enhanced photoluminescence of ZnO/Er2O3 core-shell structure nanorods synthesized by pulsed laser deposition [J]. Appl Phys Lett, 2007, 90:263106.
    [57] F M Kolb, A Berger, H Hofmeister, et a1.Periodic chains of gold nanoparticles and the role of oxygen during the growth of silicon nanowires [J]. Appl Phys Lett,2006, 89:173111.
    [58] A Leonhardt, M Ritschel, D Elefant, et a1.Enhanced magnetism in Fe-filled carbon nanotubes produced by pyrolysis of ferrocene [J]. J Appl Phys, 2005, 98:074315.
    [59] H D Espinosa, B Peng, N Moldovan, et a1.Elasticity, strength, and toughness of single crystal silicon carbide, ultrananocrystalline diamond, and hydrogen-free tetrahedral amorphous carbon [J]. Appl Phys Lett, 2006, 89:073111.
    [60] H C Lo, D Das, J S Hwang, et a1.SiC-capped nanotip arrays for field emission with ultralow turn-on field [J]. Appl Phys Lett, 2003, 83(7):1420-1422.
    [61] K W Wong,X T Zhou,Frederiek C K Au. Field-emission characteristics of SiC nanowires prepared by chemical-vapor deposition [J]. Appl Phys Lett, 1999,75 (19):2918-2920.
    [62] H F Zhang,C M Wang,L S Wang. Helical crystalline SiC/SiO2 core-shell nanowires [J]. Nano Letters,2002,2(9):941-944.
    [63] B Q Wei, J W Ward,R Vajtai, et a1.Simultaneous growth of silicon carbide nanorods and carbon nanotubes by chemical vapor deposition [J].Chemieal Physics Letters,2002,354:264-268.
    [64] H L Lai,N B Wong,X T Zhou,et a1. Straightβ-SiC nanorods synthesized by using C-Si-Si02 [J]. Appl Phys Lett,2000,76(3):294-296.
    [65] W Q Han,S S Fan,Q Q Li,et a1.Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction [J]. Seienee,1997,277:1287-1289.
    [66] J W Liu,D Y Zhong,F Q Xie,et a1.Synthesis of SiC nanofibers by annealing carbon nanotubes covered with Si [J]. Chemieal Physie Letters,2001,348:357-360.
    [67] X H Sun,C P Li,W Kwong, et a1. Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes [J]. J AM CHEM SOC,2002,124:14464-14471.
    [68]张洪涛,徐重阳.Sol-gel法制备纳米碳化硅晶须的研究[J].电子元件与材料,2000,19(3):9-12.
    [69]徐武军,徐耀,孙先勇等.溶胶-凝胶和碳热还原法制备塔状SiC纳米棒[J].新型碳材料,2006,21(2):167-170.
    [70] J C Li,C S Lee,S T Lee. Direct growth ofβ-SiC nanowires from Si0X thin filmsdeposited on Si (100) substrate [J]. Chemical Physics Letters,2002,355:147-150.
    [71] Z S Wu,S Z Deng,N S Xu,et a1. Needle-shaped silicon carbide nanowires: Synthesis and field eleetron emission properties [J]. Appl Phys Lett, 2002,80(20):3829-3831.
    [72] Y B Li,S S Xie,X P Zhou,et a1. Large-scale synthesis ofβ-SiC nanorods in theare-discharge [J]. J Cryst Growth,2001,223:125-128.
    [73] D P Yu, Q L Hang, Y Ding, et a1. Amorphous silica nanowires: Intensive blue light emitters [J]. Appl Phys Lett, 1998, 73:3076-3078.
    [74] A Okita, Y Suda, A Oda, et a1.Effects of hydrogen on carbon nanotube formation in CH4/H2 plasmas [J]. Carbon, 2007, 45(7):1518-1526.
    [75]N Hiroshi, S Hiroaki, N Suzuka, et a1.Hydrogen radical etching effect on carbon nanotube growth [J]. Surface Engineering for Manufacturing Applications, 2006, 890:165-170.
    [76] H Dai, E W Wong, Y Z Lu, et a1.Synthesis and characterization of carbide nanorods [J]. Nature, (London) 1995,375769-375772.
    [77] G W Meng, L D Zhang, C M Mo, et a1.Preparation ofβ-SiC nanorods with and without amorphous SiO2 wrapping layers [J]. J Mater Res, 1998,13:2533-2538.
    [78] Q Y Lu, J Q Hu, K B Tang, et a1. Growth of SiC nanorods at low temperature [J]. Appl Phys Lett, 1999,75:507-509.
    [79] W S Shi, Y F Zhang, H Y Peng, et al. Laser Ablation Synthesis and Optical Characterization of Silicon Carbide Nanowires [J]. J Am CeramSoc, 2000, 83(12):3228-3230.
    [80] Y B Li, S S Xie, X P Zou, et al. Large-scale synthesis ofβ-SiC nanorods in the arc-discharge [J]. J Cryst Growth, 2001,223:125-128.
    [81] H L Lai, N B Wang, X T Zhou, et al. Straightβ-SiC nanorods synthesized by using C–Si–SiO2 [J]. Appl Phys Lett, 2000,76:294-296.
    [82] Y Zhang,N Wang,S Gao,et al. A simple method to synthesize nanowires [J]. Chem Mater, 2002,14(8):3564-3568.
    [83] Z W Pan,Z R Dai,Z L Wang,Nanobelts of semieondueting oxides[J]. Seienee,2001,291:1947-1949.
    [84] P Yang,C M Lieber,Nanorod-superconductor composites:a pathway to materialswith high critical current densities[J]. Seienee,1996,273(5283):1836-1840.
    [85] E G Wolfe,T D Coskren,Growth and Morphology of Magnesium Oxide Whiskers[J]. J Am Ceram Soe, 1965,48(60):279-285.
    [86] W S Shi,H Y Peng,Y F Zheng,et al. Synthesis of large areas of highly orienied,very long silicon nanowires[J]. Ady Mater, 2000,12:1343-1345.
    [87] R Q Zhang,Y Lifshit,S T Lee,Oxide-assisted growth of semieonducting nanowires[J]. Ady Mater, 2003,15:635-637.
    [88] W S Shi,Y F Zheng,N Wang,et al. General synthetic route toⅢ-V compound semiconductor nanowires[J].Ady Mater,2001,13:591-594.
    [89] R S Wagner,W C Ellis,Vapor-liquid- solid meehanism of single crystal rowth[J]. Appl phys Lett, 1964,4(5):89-90.
    [90] E I Givargizov,Fundamental aspects of VLS growth [J]. J Cryst Growth,1975,31:20-30.
    [91] Y Y Wu,P D Yang,Direet observation of vapor-liquid-solid nanowires growth[J]. J Am Chem Soe, 2001,123:3165-3166.
    [92] Y F Zhang,Y H Tang,N Wang,et al. Silicon nanowires prepared by laser ablation at high temperature [J].Appl phys Lett, 1998, 72(15):1835-1837.
    [93] W S Shi,Y F Zheng,H Y Peng,et al. Laser ablation synthesis and optical characterization of silicon carbide nanowires [J]. J Am Ceram Soc, 2000, 83(12):3228-3230.
    [94] A M Morales,C M Lieber,A laser ablation method for the synthesis of crystalline semiconductor nanowires[J]. Seienee,1998,279:208-211.
    [95] D P Yu,C S Lee,I Bello,et al. Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature [J]. Solid State Commun,1998,105(6):403-407.
    [96] D P Yu,Z G Bai,T Ding,et al. Nanoscale silicon wires synthesized using simple physical evaporation [J]. Appl phys Lett, 1998,72:3458-3460.
    [97] T Seeger,P Kohler-Redlieh,M Ruhle,Synthesis of nanometer-sized SiC whiskers in the Arc-discharge[J]. Adv Mater, 2000, 12(4):279-282.
    [98] G C Xi,Y K Liu,X Y Liu,X Q Wang, Mg-catalyzed autoclave synthesis of aligned silicon carbide nanostructures[J]. J Phys Chem B, 2006,110(29):14172-14178,
    [99] T J Trentler,K M Hiekman,S C Geol,et al. Solution-Liquid-Solid growth of crystallineⅢ-V semiconductors:An Analogy to vapor-liquid-solid growth [J]. Seienee,1995,270:1791-1794.
    [100] X Lu,T Hanrath,B A Korgel.Growth of single crystal silicon nanowires in supercritical solution from tethered gold partieles on a silicon substrate [J].Nano Lett,2003,3(1):93.
    [101] J D Holmes,K P Johnston,R C Doty, et al. Control of thickness and Orientation of solution-grown silicon nanowires [J]. Seience,2000,287:1471-1473.
    [102] A S Zhang, X B Bernaerts, D Zhang. et al. Science, 1994, 265:635.
    [103]王强,李玉国,石礼伟等.碳化硅材料发光特性研究进展[J].纳米材料与结构,2003,2:17-22.
    [104] G M Li, L W Burggraf, J R Shoemaker, et al. High-temperature photoluminescence in sol-gel silica containing SiC/C nanostructures [J]. App1 Phys Lett, 2000, 76:3373-3375.
    [105] Y P Guo, J C Zheng, A T S Wee, et al. Photoluminescence studies of SiC nanocrystals embedded in a SiO2 matrix [J]. Chem Phys Lett, 2001, 339:319-322.
    [106] L S Liao, X M Bao, X Q Zheng, et al. Blue luminescence from Si+‐implanted SiO2 films thermally grown on crystalline silicon [J]. App1 Phys Lett, 1996, 68:850-852.
    [107] J Y Fan,X L Wu, Paul K Chu,Low-dimensional SiC nanostructures: Fabrieation,luminescenee,and eleetrica properties,Prog Mater Sci, 2006,51(8):983-1031.
    [108] L Zhang,W Yang,H Jin, et al.Ultraviol photoluminescence from 3C-SiC nanorods [J]. Appl phys Lett,2006,89:143101.
    [109] W Q Han,S S Fan,Q Q Li,et al. Continuous synthesis and characterization of silicon carbide nanorods [J]. Chem Phys Lett,1997,65:374-378.
    [110] G Gundiah,G V Madhav,A Govindaraj,et al. Synthesis and characterization of silicon carbide, silicon oxynitride and silicon nitride nanowires [J]. J Mater Chem, 2002, 12:1606-1611.
    [111] X M Liu,K F Yao,Large-scale synthesis and photoluminescence properties of SiC/SiOx nanocables[J]. Nanoteehnology,2005,16:2932-2935.
    [112] K Z Li,J Wei,H J Li,et al. Photoluminescence of hexagonal-shaped SiC nanowires prepared by sol-gol proeess [J]. Mater Sei Eng A,2007,460-461:233-237.
    [113] H K Seong,H J Choi,S K Lee,et al. Optical and electrical transport properties in silicon carbide nanowires [J]. Appl phys Lett,2004,85(7):1256-1258.
    [114] X L Zheng, W Wang, H C Chen. Anomalous temperature dependencies of photoluminescence for visible‐light‐emitting porous Si [J]. App1 Phys Lett, 1992, 60:986-988.
    [115]方荣川.固体光谱学[M].合肥,中国科学技术大学出版社,2003.
    [116]薛增泉,吴全德.电子发射与电子能谱[M].北京大学出版社,1993年第一版.
    [117]刘元震,王仲春,董亚强.电子发射与光电阴极[M].北京理工大学出版社,1995年第1版.
    [118]刘学壳.阴极电子学[M].科学出版社,1980年第1版.
    [119] N P Blanchard, R A Hatton, S R P Silva. Tuning the work function of surface oxidised multi-wall carbon nanotubes via cation exchange [J]. Chem Phys Lett, 2006, 434:92-95
    [120] A A Lebedev, A M Strelchuk, D V. Davydov Electrical characteristics of p-3C–SiC/n-6H–SiC heterojunctions grown by sublimation epitaxy on 6H–SiC substrates [J]. Applied Surface Science, 2001, 184(1-4):419:424.
    [121] Y W Ryu, Y J Tak, K Yong. Direct growth of core–shell SiC–SiO2 nanowires and field emission characteristics [J]. Nanotechnology, 2005, 16:S370-S374.
    [122] T J Vink, M Gillies, J C Kriege, et al. Enhanced field emission from printed carbon nanotubes by mechanical surface modification [J]. Appl Phys Lett, 2003, 83: 3552-3554.
    [123] X Q Wang, M Wang, Z H Li, et al. Modeling and Calculation of Field Emission Enhancement Factor for Carbon Nanotubes Array [J]. Ultramicroscopy, 2005 (102):181-185.
    [124] Yong C Kim, K H Sohn, Y M Cho, et al. Vertical alignment of printed carbon nanotubes by multiple field emission cycles [J]. Appl Phys Lett, 2004 (84):5350-5352.
    [125] Z L Cao, H Jiang, H Song, et al. Field emission from patterned carbon nanotubeline array emitters produced by thermal chemical vapor deposition [J]. Chinese Journal of Liquid Crystal and Displays. 2009, 24:43-47.
    [126] L Nilsson, O Groening, C Emmenegger, et al. Scanning field emission from patterned carbon nanotube films [J]. Appl Phys Lett, 2000, 76:2071-2073

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700