低密度SiO_2及其复合气凝胶的制备与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化硅(SiO2)及其复合气凝胶以其高孔隙率、高比表面积和低密度等特性广泛应用于惯性约束聚变(ICF)研究中。ICF靶要求气凝胶材料具有好的加工成型性能、高的环境稳定性及结构与密度均匀等特性。但是低密度气凝胶目前在制备过程中,普遍存在着溶胶-凝胶过程难于控制、材料强度低、易塌陷、难于成型以及微观结构不均匀等技术难题。
     本论文在较为系统地研究溶胶-凝胶动力学过程和低密度SiO2及其复合气凝胶的制备工艺的基础上,成功制备出密度1.8mg/cm3-200mg/cm3的SiO2气凝胶及其复合气凝胶块体材料,并已在ICF实验研究中得到成功地应用。
     通过对TEOS-乙醇体系凝胶化过程的动力学特性分析发现,凝胶化过程主要受反应物浓度即气凝胶目标密度的控制,随着反应物浓度的降低,体系的凝胶化时间呈指数增加,当气凝胶目标密度低于10mg/cm3时,体系无法凝胶。在以正硅酸乙酯(TEOS)为硅前驱体的乙醇-水为溶剂体系时,无法获得密度低于3mg/cm3的SiO2气凝胶材料。通过合成新型硅前驱体,并优化溶剂体系,即以多聚笼形烷氧基硅氧烷与八甲氧基六面体倍半硅氧烷(OMOPOSS)为前驱体,以N’N-二甲基甲酰胺(DMF)、乙腈和二甲基亚砜(DMSO)为溶剂体系,成功地制备出密度低于3mg/cm3的SiO2气凝胶材料。吸附特性及微观结构分析表明,不同前驱体制备的气凝胶具有类似的规律,即随着密度的降低,样品的比表面积呈现先增加后下降然后趋于稳定的趋势。气凝胶的孔径大部分小于50nm,主要分布在10-20nm间,具有典型的中孔特征。
     为提高气凝胶的生产效率和成品率,经一系列探索,开发出了一套低密度气凝胶快速制备工艺,使制备SiO2气凝胶的时间周期缩短至传统工艺的1/10。
     在低密度SiO2气凝胶加工成型性能研究方面,着重探讨了后处理法、原位共凝胶法等工艺参数对成品气凝胶微观结构、形貌及性能等的影响。采用凝胶后处理法和原位共凝胶法实现了气凝胶的表面疏水改性和机械力学性能改性。在后处理工艺中采用六甲基二硅胺烷为疏水改性试剂,对凝胶进行了表面处理,使产品气凝胶的抗潮解性能大为提高;而在原位共凝胶改性中,以甲基三乙氧基硅烷和TEOS作为混合前驱体,经一系列实验,成功制备出具有较高机械力学性能和环境稳定性的SiO2气凝胶材料。动态热机械性能分析结果表明,经过改性后的气凝胶材料由原来的弹脆性材料逐渐转变为弹塑性材料。上述两种改性技术途径所制备的气凝胶均具有较强的疏水特性,与水的接触角超过130°,最高可达151°,在湿度大于80%,温度为50℃的条件下,气凝胶受潮气的影响甚微,环境稳定寿命可达60天以上,其环境储存稳定性和加工特性已基本达到ICF实验用靶的需求。
     在SiO2掺杂复合气凝胶方面,着重开展了金属粒子掺杂、金属氧化物及金属硫化物掺杂复合气凝胶的制备工艺、结构与性能等研究。基于种子原位还原技术,探讨了Au在SiO2溶胶颗粒表面原位还原形成掺金SiO2凝胶的机理及掺杂气凝胶的性能,首次成功制备出纳米Au掺杂的SiO2气凝胶,Au掺杂重量百分比可达2.7%-4.2%;通过纳米粒子粘合法及二次凝胶化技术获得了掺杂量可达80 wt%以上Cu掺杂复合气凝胶;采用广义两步法和共水解法成功制备出复合均匀的GeO2/SiO2、Ta2O5/SiO2复合气凝胶,产品GeO2/SiO2气凝胶的典型密度为3-30mg/cm3,Ta2O5/SiO2密度为30-150mg/cm3;以常压单源化学气相沉积法开展了SiO2气凝胶表面硫化镉(CdS)薄膜沉积技术研究,成功地在气凝胶内外表面分别制备出CdS涂层,内外表面的CdS涂层具有同样的镉硫原子比率(约1:1)。
Aerogel is a sort of nano porous material with many fancy characterizes, such as high porosity, high specific surface area, low density, and so on. It can be used as the catalyst and carrier, super thermal insulation material, particle trapping material, and adsorption material and target material of the inertial confinement fusion (ICF). Hence, aerogel has a promising application prospect in the fields of military, industry and civilian. In ICF experiment, aerogel with the property of low density and porosity is usually used to eliminate or decrease the fluid mechanic instability in the transportation process, homogenize the X-ray radiation, or used as an adsorption medium of liquid deuterium and tritium. Further more, aerogel, as an ICF target, should possess good processability, high environment stability and uniformity in structure and density.
     At present, SiO2 and its complex aerogel is one of the most used aerogels in ICF experiments. However, a lot of crucial technical problems appear widely in preparation of the low density aerogels, such as uncontrollability in sol-gel process, low mechanical strength, easy collapse in structure, poor forming and nonuniformity of microstructure. Hence, base on the investigation of relevant theories, farther improvement in preparation technology of aerogel, enhancement in material properties and reduction in production cost have been of intriguing interest in the field of aerogel study. This dissertation presents a detailed investigation in kinetics of sol-gel process and preparing process of low density SiO2 and its complex aerogels, and the block SiO2 aerogels with the densities range from 1.8 to 200mg/cm3 have been prepared successfully.
     In investigation of low density of SiO2 aerogels, this dissertation discussed the correlative mechanisms, sol formula and production procedure, and the low density SiO2 aerogels with good properties have been obtained. Based on the analysis results of dynamic characteristics in tetraethoxysilane (TEOS)-ethanol system, we found that gelation time increases in index as the density decreases, when the density of the target aerogel is lower than 10 mg/cm3, the system can not be gelatinized. Therefore we synthesized two kinds of novel precursors (poly ethoxyl silane, PES and octamethoxy polyhedral oligosilsesquioxane, OMOPOSS) and optimized the solvent system. Through the solvent substitution by dimethylformamide (DMF), acetonitrile (AN) and dimethyl sulfoxide (DMSO), the samples with the density lower than 3mg/cm3 was successfully achieved. In addition, in order to improve the production efficiency and yield of aerogel, a rapid preparation process based on the result of a mass of experiments was developed, and the preparing period of SiO2 aerogels was shortened to one tenth compared with that of the traditional method. The results of adsorption property and microstructure analysis indicated that aerogels prepared with different precursors have the same rule:the specific surface area of the sample presents the trend of first increase then decrease with the decrease of aerogel density, after that it tends to be steady. The hole-size of aerogel is smaller than 50 nm, and the main distribution arrangement is from 10nm to 20nm, which means the aerogel possesses the typical characteristic of mesopore.
     As for the research of the processability of low density SiO2 aerogel, we have investigated the effects of the microstructure, morphology and property of SiO2 aerogel by the process parameters of post-treatment method in mother liquor, sol-gel process and hydrophobical modification. We have employed post-treatment method in mother liquor and modification of in-situ toughening process to improve the hydrophobical property and the mechanical strength of SiO2 aerogel. In post-treatment process of mother liquor, we chose hexamethyldisilazane as a hydrophobic modification reagent to deal with the surface of aerogel, which lead a great improvement in anti-deliquescent property of aerogel. In the in-situ hydrophobic and toughening processes, the methyl triethoxysilane and TEOS are used as complex precursors to prepare SiO2 aerogel with excellent mechanical properties and environment stability. The analysis results of dynamic thermo-mechanical show that the SiO2 aerogel becomes elastic-plastic material from elastic-brittle material after modification process. Aerogels prepared by the two modification methods mentioned above exhibit excellent hydrophobicity. The contact angles are larger than 130°, and the largest angle is 151°. When the humidity is over 80% and the temperature is 50℃, the characteristics of aerogel would not be affected by humidity, and the environment stable period is longer than 60 days. As a conclusion, the stability and processability can meet the requirements to prepare ICF target.
     With respect to investigation of the doped SiO2 aerogels, this dissertation focused on the studies of the fabrication process, structure and properties of composite aerogels doped with metal particles, metallic oxides and metallic sulfide. We have investigated the principles and properties of Au-doped SiO2 aerogel which was prepared by in-situ reduction of Au on the surface of SiO2 sol by seeding method, and the Au nano particle doped SiO2 aerogel with the Au content range from 2.7% to 4.2% were firstly synthesized. Based on the same method, we prepared the Cu-doped SiO2 aerogel with the density from 90 to 110 mg/cm3, and the hole and framework sizes are all less than 100 nm. The highest doping quantity of Cu is more than 80 wt%, and the specific surface area of the corresponding complex aerogel ranges from 150 to 200m2/g. We have also investigated the preparation process of the GeO2/SiO2, Ta2O5/SiO2 composite aerogel with crosslinking co-polymerized framework by the generalized two-step and cohydrolysis method. The typical density of GeO2/SiO2 and Ta2O5/SiO2 aerogels is 3-30 mg/cm3 and 30-150mg/cm3 respectively. CdS film was deposited on the inner and external surface of SiO2 aerogel by the single-source CVD method under the atmospheric-pressure. When the flow of Ar is 1-3 L/min, CdS film is only deposited on the external surface. As the flow of Ar improves to 5L/min, there is no CdS film deposited. If the flow of Ar is controlled at 4 L/min, CdS film is deposited on the inner and external surface. The EDS results show that the thin film deposited on the inner and external surface of the SiO2 aerogel has the similar atom ratio (about 1:1) of sulfur and cadmium. The XRD results reveal that the CdS thin film deposited on the inner and external surface of SiO2 aerogel possesses the hexagonal crystal structure.
引文
1 Kiddel R E. LRL laser Reasearch Program. COTM-62-7,1963
    2 Dason J M. On the production of plasma by giant pulse lasers[J]. Physics of Fluids,1964; 7:981-987
    3 Basov N G, Kriukov P.G. Zakharov S.D. et al. Experiment on the observation of neutron emission at the focus of high-powe laser radiation on alithium deuteride surface [J]. IEEE Journal of Quantum Electronics, 1968:864-867
    4 Nuckolls J, Wood L, Thioseen A, et al. Laser compress of matter to super-high densities:thermonuclear (TN) application [J]. Nature,1972; 239:129-130
    5 Brueckner K A, Jorna S. Laser-driven fusion [J]. Reviews of Modern Physics,1974; 46:325-367
    6 Chu M S. Thermonuclear reaction waves at high densities [J]. Physics of Fluids,1972; 15:413-422
    7 Fraley G S, Linneber E J, Mason R J, et al. Thermonuclear burn characteristics of compressed deuterium microspheres[J]. Physics of Fluids,1974;17:474-489
    8 王淦昌.惯性约束核聚变研究的进展[J].核科学与工程,1984,4:289-303
    9 Storm E, Lindle J D, et al. Progress in laboratory high gain ICF:prospects for the future. UCRL-preprint, 1988;Aug:20-23
    10 Hrubesh L W, Poco J F. Thin aerogel films for optical, thermal, acoustic and electronic applications [J]. Journal of Non-Crystalline Solids,1995;188:46-53
    11 Kistler S S. Coherent expanded aerogels and jellies [J]. Nature,1931;127:741-741
    12 Peri J B. Infrared study of OH and NH2 groups on the surface of a dry silica aerogel[J]. The Journal of Physical Chemistry,1966;70(9):2937-2945
    13 Kharzheev Y. N., Use of silica aerogels in Cherenkov counters [J]. Physics of Particles and Nuclei,2008;39: 107-35
    14 Lu X P, Wang M C, et al. Thermal transport in organic and opacified silica monolithic aerogels [J]. Journal of Non-crystalline Solids,1992; 145:207-210
    15 Pekala R W. "Aerogel-based electronic devices"[A], Seminar Talk in Wurzburg University, Germany, July 27,1992
    16 Pekala R W, Organic aerogels from the polycondensation of resorcinol with formaldehyde [J]. Journal of Materials Science,1989,24(9):3221-3227
    17 Arisaka K, Borsato E, Boudigny D, et al. Four-layer aerogel Cherenkov counter [J]. Journal of Non-Crystalline Solids,1998; 225:375-380
    18 Gronauer M, Fricke J. Acoustic properties of microporous SiO2 aerogel[J]. Acustica,1986; 59:177-185
    19 Pajonk G M. Aerogel catalysts [J]. Applied Catalysis,1991;72:217-266
    20 Lu X, Schuster M C, Kuhn J, et al. Thermal conductivity of monolithic organic aerogels [J]. Science,1992; 255:971-972
    21 May S T, Pekala R W, Kaschmitter J L. The aerocapacitor:an electrochemical double layer energy storage device [J]. Journal of the Electrochemical Society,1993;140:446-451
    22 Barnykov M Y, Bobrovnikov V S, Buzykaev A R, et al. Aerogel Cherenkov counters for the KEDR detector [J]. Nuclear Instruments and Methods Physics Research A,2000;453:326-330
    23 Larry L H, Jon K W. The sol-gel process [J]. Chemical Review,1990; 90:33-72
    24 Brinker C, Scherer G. The Physics and Chemistry of Sol-Gel Processing [M]. Academic Science,1990; 14: 1-97
    25 Prassas M, Hench L, Ulrich D. Ultrastructure processing of ceramics glasses and composites [J]. Wiley-lnterscience,1984; 8:100-125
    26 Brinker C. Synthesis of the organic-inorganic hybrids via in-suit polymerization [J]. Journal of Non-Crystalline Solids,1988;100:31-50
    27 Pekala R W. Low density resorcinol-rormaldehyde aerogels [P]. US 4873218.1989-10-10.
    28 Pekala R W. Melamine-formaldehyde aerogels [P]. US,5081163 1992-01-14.
    29 Pekala R W. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures [P]. US 5476878,1993-03-25.
    30 De V R, Biesmans G, Leon J G. Organic aerogels [P].US,5942553,1997-11-20
    31 Biemans G, Mertens A, Duffours L, et al. Polyurenthane-based organic aerogel and their transfornation into carbon aerogel[J]. Journal of Non-crystalline Solids,1998; 25:64-68
    32 Biemans G, Randall D, Francais E, et al. Polyurenthane-based organic aerogel themal performance [J]. Journal of Non-crystalline Solids,1998;25:36-40
    33 Li W C, Guo S C. Preparation of Low-density carbon aerogels from a cresol-formaldehyde mixture[J].Carbon,2002;40:2955-2959
    34李文翠,郭树才.混甲酚-甲醛气凝胶的制备及表征[J].燃料化学学报,2000;28:33-35
    35吴志超,张曼维,张志成,等.辐射法合成聚N-羟甲基丙烯酰胺—间苯二份气凝胶[J].辐射研究与辐射工艺学报,1996;14:7-12
    36吴志超,张志成,张曼维,等.聚N-羟甲基丙烯酰胺—间苯二份气凝胶与其对应液体凝胶的SAXS研究[J].化学物理学报,1996;9:180-186
    37 Barrl K. Low-density organic aerogels by double-catalysed synthesis [J]. Journal of Non-crystalline Solids, 1998;225:46-50
    38 Zhang R, Lu Y G, Zhan L, et al. Monolithic Carbon aerogel from sol-gel polymerizetion of phenolic-resoles and methylolated melamine [J]. Carbon,2002; 41:1660-1663
    39 胡惠康,甘礼华,李光明,等.超临界干燥技术[J].实验室研究与探索,2000;2:33-35
    40 詹国武,王宏涛.应用超临界流体干燥技术制备气凝胶的研究进展[J].干燥技术与设备,2008,6(4):171-175.
    41 Antoine B, Arnaud R. Drying of Silica Gels to obtain Aerogels:Phenomenology and Sol-Gel derived porous silica films [J]. Journal of Non-Crystalline Solid,1999; 243:75-79
    42 Hareid S, Dahle M, Lima S, et al. Preparation and properties of monolithic silica xerogel fromTEOS-based alcogels aged in silane solution [J]. Journal of Non-crystalline Solids,1995;186:96-103
    43 Smith D M, Stein D, Anderson J M, et al. Preparation of low-density xerogels at ambient pressure [J]. Journal of Non-Crystalline Solids,1995;186:104-112
    44倪星元,周斌,吴广明,等.溶胶-凝胶法制备惯性约束聚变靶材料研究[J].原子能科学技术,2002;36:301-304
    45 许琰,赖东显,李双贵,等.辐射在填充介质管中输运的理论[J].中国科学(G辑),2004;34:525-539
    46 Fearon E M, Coronado P R, Garza R G, Darling, G H. Shrinkage and opacity of 100kg/m3 silica aerogel foam in liquid deuterium-tritium [J]. Journal of Nuclear Materials,1987,149:105-108
    47 Alon U, Hecht S, Mukamel D, Shvarts D. Power laws and similarity of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts at all density ratios [J]. Physics Review Letter,1995;74:534-537
    48 Peyser T A, Miller P L, Stry P E, et al. Measurement of radiation-driven shock-induced mixing from nonlinear initial perturbations [J]. Physics Review Letter,1995; 75:23-32
    49 Sumiyoshi T., Adachi I, Enomoto R. et al. Silica aerogel Cherenkov counter for the KEK B-factory experiment [J]. Nuclear Instruments and Methods in Physics Research A,1999,433:385-391
    50周斌,沈军,吴广明等.气凝胶的制备及其在惯性约束聚变实验中的应用[J].原子能科学技术,2004;38:125-128
    51 Walter K, Bono M. Fusion targets on the double [J]. Science and Technology Review,2006;9:23-25
    52 Pajonk G M. Some applications of silica aerogels [J]. Colloid and Polymer Science,2003;281:637-651
    53 Atzeni S., Guerrieri A. Evolution of multimode Rayleigh-Tayloer instability towards self-semilar turbulent mixing [J]. Europhysics Letters.1993,22:603-609
    54 Alexander E G, Thomas M T, Joe H S J r, et al. New sol-gel synthetic route to transition and main-group metal oxide aerogel using inorganic precursors [J]. Journal of Non-crystalline Solids,2001;285:22-28
    55 Alexander E G, Thomas M T, Joe H S J r, et al. Use of ep-oxides in the sol-gel synthesis of porous iron (Ⅲ) oxide monoliths from Fe (Ⅲ) salts [J]. Chemistry of Materials,2001;13:999-1007
    56 Scherer G W. Characterization of aerogels [J]. Advances in Colloid and Interface Science,1998;76: 321-339
    57 董文辉.SiO2纳米孔超级绝热材料[J].中国非金属矿工业导刊,2006,2:10-13
    58 Kocon L, Despec I F, Phal I J. Ultralow density silica aerogels by alcohol supercritical drying[J]. Journal of Non-Crystalline Solids,1998;225:96-101
    59 Gardes G E, Pajonk G M, Teichner S J. Catalytic demonstration of hydrogen spillover from nickel-alumina catalyst to alumina [J]. Journal of Catalysis,1974; 33:145-148
    60 Power M, Hosticka B, Black E, et al. Aerogels as biosensors:viral particle detection by bacteria immobilized on large pore aerogel [J]. Journal of Non-Crystalline Solids,2001; 285:303-308
    61 Yoda S, Otake K, Takebayashi Y, et al. Effects of supercritical impregnation conditions on the properties of silica-titania aerogels [J]. Journal of Non-Crystalline Solids,2001; 285:8-12
    62 Pahl R, Bonde U, Pekala R W, Kinney J H. SAXS investigations on organic aerogels [J]. Journal of Applied Crystallography,1991; 24:771-776
    63 Alviso C T, Pekala R W. Melamine-formaldehyde aerogels [J]. Polymer Preprints,1991;32:242-253
    64 Bonrdinaud M, Chese J B, Thevenin J C, et al. Use of silica aerogel for Cherenkov radiation counter[J]. Nuclear Instruments and Methods Physics Research A,1976;136:99-103
    65 Siudak R., Budzanowski A., Chatterjee A. et al. A threshold Cherenkov detector for K+/π+ separation using silica aerogel [J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2008;596(3):311-316
    66 Poelz G, Riethmuller R. Preparation of silica aerogel for Cherenkov counters [J]. Nuclear Instrument Methods Physics Research A,1982; 195:491-503
    67 Burnett, D.S., NASA returns rocks from a comet [J]. Science,2006,314:1709-1710
    78 Brownlee D., Tsou P., Aleon J. et al. Comet 81P/Wild 2 under a microscope [J]. Science2006,314: 1711-1716
    69 Flynn G J, Bleuet P., Borg J. et al. Elemental compositions of comet 81P/Wild 2 samples collected by stardust [J]. Science,2006,314:1731-1735
    70 Lisse C.M., Cheng A.F., Chabot N. L et al. Development of improved aerogels for spacecraft hypervelocity capture [J]. Lunar and Planetary Science,2008, (ⅩⅩⅩⅨ):2298-2299
    71 Pekala R W, Farmer J C, Alviso C T. Carbon aerogels for electrochemical applications [J]. Journal of Non-Crystalline Solids,1998; 225:74-80
    72 Heller A., Fournier K., Lightweight target generates bright, energetic X rays[J]. Science and Technology Review,2005,10:19-22
    73 Kucheyev S. O., Biener J., Wang Y. M. et al. Atomic layer deposition of ZnO on ultralow-density nanoporous silica aerogel monoliths [J]. Applied Physics Letters.2005,86:083108
    74 Stolarski M. Synthesis and characteristic of silica aerogels [J]. Applied Catalysis A:General,1999,177: 139-148
    75姚连增,李小毛,蔡维理等SiO2气凝胶的制备与表征[J].硅酸盐学报,1998,26(3):319-323
    76陈龙武,甘礼华,气凝胶[J].化学通报,1997(8):21-27
    77蒲敏,周树根,郑茂盛,金志浩等.硅气凝胶功能材料的制备及应用[J].开发与应用,1997,6:60-63
    78 Rao A V, Kulkarni M M. Hydrophobic properties of TMOS/TMES-based silica aerogels [J]. Materials Reasear Bulletin,2002,37:1667-1677
    79 Brevett C. S., Cagle P. C., Klemperer W. G. et al. Synthesis and sol-gel polymerization of [Si8O12](OCH3)8 [J]. Journal of Inorganic and Organometallic Polymers,1991,1(3):335-341
    80 Antonietti M, Kuang D., Smarsly B et al. Ionic liquids for the convenient synthesis of functional nano particles and other inorganic nanostructures [J]. Angew Chemie International. Edition.,2004,43: 4988-4992
    81 Bleasdale T A., Tiddy G J T., Wyn-Jones E. Cubic phase formation in polar nonaqueous solvents [J]. Journal of Physical Chemistry,1991,95:5385-5386
    82 Neve F., Francescangeli O., Crispini A. Crystal architecture and mesophase structure of long-chain N-alkylpyridinium tetrachlorometallates [J]. Inorganic Chimica Acta.2002,338:51-58
    83 Zhou Y., Antonietti M. Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol-gel nanocasting technique [J]. Nano Letter,2004,4:477-481
    84 Desbene PL., Morin C.J., Geulin L., et al. Study of the acid hydrolysis of (4-methacryloxypropyl) trimethoxysilane by capillary electrophoresis-ion-trap mass spectrometry [J]. Journal of Chromatography A,2004,1032:327-334
    85 Zhang X.Z., Huang Y.D., Wang T.Y. et al. Effects of silsesquioxane coating structure on mechanical interfacial properties of carbon fibre/polyarylacetylene composites [J]. Journal of Material Science,2007, 42:5264-5271
    86 Everett D. H., Powl J. Adsorption in Slit-like and Cylindrical Micropores in the Henry's Law Region:A Model for the Microporosity of Carbons [J]. Journal of Chemistry Society. Farady Transaction.1976,72(1): 619-636
    87 Pach M., Stosser R. Scavenger assisted trapping of atomic hydrogen in Si8O12-Cages [J]. Journal of Physical Chemistry A,1997,101:8360-8365
    88 Simpson R. Chemistry and Materials Science Directorate Annual Report.2003:45-46
    89 Jessop P. G., Leitner W. Chemical Synthesis Using Supercritical Fluids [M], Morlenbach, Germany, Wiley-VCH,1999:37-51
    90 Gibson L.J, Ashby M.F., Cellular Solids:Structure and Properties [M],北京,清华出版社,2003:183-184
    91 Leventis N, Leventis C.S., Zhang G.H, Nanoengineering strong silica aerogels [J]. Nano letter,2002, 9:957-960
    92 Leventis N., Elder I.A. Durable modification of silica aerogel monoliths with fluorescent 2,7-diazapyrenium moieties. sensing oxygen near the speed of open-air diffusion [J]. Chemistry of materials,1999,11 (10):2837-2845
    93 Meador M.A.B., Fabrizio E.F. Leventis N. Cross-linking amine-modified silica aerogels with epoxies: Mechanically strong lightweight porous materials [J]. Chemistry of materials,2005,17(5):1085-1098
    94 Wei T.Y., Lu S.Y.n, Chang Y.C.. Transparent, hydrophobic composite aerogels with high mechanical strength and low high-temperature thermal conductivities [J]. Journal of Physics chemistry B,2008,112: 11881-11886
    95杨小震.分子模拟与高分子材料[M].科学出版社,2002:47-49
    96文玉华等.分子动力学模拟的主要技术[J].力学进展,2003,33(1):65-73
    97 Swenson R J. Comments for virial systems for bounded systems. [J] American Journal of Physics,1983,51:940-942
    98 Ray J R, Rahman A. Statistical ensembles and molecular dynamics studies ofanistropic solids [J]. Journal of Chemical Physics.1984,80:4423-4428
    99 Watt J P, Davies G F, O'Connell R J. The elastic properties of composite materials [J]. Review of Geophysics and space Physics.1976,14:541-563
    100 Hafidi A, Woignier T, Pernot F, et al. Stress intensity factor in silica alcogels and aerogels [J]. Journal of Non-Crystalline Solids,2000,265:29-35
    101 Parmenter K E, Milstein F. Mechanical properties of silica aerogels [J]. Journal of Non-Crystalline Solids, 1998,223:179-189
    102 Hareid S, Nilsen E, Einarsrud M A. Properties of silica gels aged in TEOS [J]. Journal of Non-Crystalline Solids,1996,204:228-234
    103 Einarsrud M A. Light gels by conventional drying [J]. Journal of Non-Crystalline Solids,1998,225:1-7
    104 Eniarsrud M A, Nilson E, Strengthening of water glass and colloidal sol based silica gels by aging in TEOS. Journal of Non-Crystalline Solids,1998,226:122-128
    105 Einarsrud, M A,Haereid S, Rigacci A, et al. Strengthening of silica gels and aerogels by washing and aging processes [J]. Journal of Non-Crystalline Solids,2001,285:1-7
    106 Brinker C J, Scherer G W. Sol-Gel Sience [M]. Academic Press, Boston, MA,1990
    107 Deshpande R. Preparation of high porosity xerogels by chemical surface modification [P]. US Patent 5,565,142,1994-03-28
    108 Yokogawa H., Yokoyama M. Hydrophobic silica aerogel. [J] Journal of Non-Cystalline Solids.1995 (186): 23-29
    109 Rao A V, Nilsen E, Einarsrud M A. Effect of precursors, methylation agents and solvents on the physicochemical properties of silica aerogels prepared by atmospheric pressure drying method [J]. Journal of Non-Crystalline Solids,2001,296:165-171
    110 Bommel V M., Bernards T N., Boonstra A.H. The influence of the addition of alkyl-substituted ethoxysilane on the hydrolysis-condensation process of TEOS [J]. Journal of Non-Crystalline Solids, 1991,128:231-238
    111 Deshpande R. Preparation of high porosity xerogels by chemical surface modification [P]. US Patent 5,565,142,1996
    112 Land V D, Harris T M, Teeters D C. Processing of low-density silica gel by critical point drying or ambient pressure drying [J]. Journal of Non-Crystalline Solids,2001,283:11-17
    113 Rao A.V., Bhagat S.D., Hirashima H. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor [J]. Journal of Colloid and Interface Science,2006,300(1):279-285
    114 Harreld Z J H, Ebina T, Tsubo N. Manipulation of pore size distribution in silica and ormosil gesl dried under ambient pressure conditions [J]. Journal of Non-Crystalline Solids,2002,298:241-251
    115陈一民,金属/二氧化硅复合气凝胶和低成本疏水二氧化硅气凝胶的研究[D].博士学位论文,长沙:国防科技大学,2005年
    116 Brickner C J, Scherer G., Sol-Gel Science [M]. San Diego:Academic Press,1990. p135-137
    117陈龙武,甘礼华,气凝胶[J].化学通报,1997(8):21-27
    118蒲敏,周树根,郑茂盛等,硅气凝胶功能材料的制备及应用[J].开发与应用,1997,6:60-63
    119 Amendt P., Cerjan C., Hamza A. et al, Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums [J]. Physics of Plasmas,2007,14 (5):056312
    120 Douglas Faith, Wigen Nazarov, Colin Horsfield. Characterisation of gold particles of direct drive cylinder targets for hydrodynamics expermerts at the OMEGA laser [J]. Fusion Science and Technology.2004, 45(2),90-94
    121 Scrambles, J. R.; Bradbery, G W.; Yang F. Optical excitation of surface plasmons:an introduction [J]. Contemporary Physics,1991,32(3),173-183
    122周斌,沈军,吴广明等.SiO2纳米多孔材料制备及其保温隔热特性研究[J].原子能科学与技术,2004,38 S1:125-128
    123 Suh. D. J.; Park, T. J.; Lee S.-H.; Kim, K.-L. Synthesis of the [Ga]-MFI under atmospheric pressure [J]. Journal of Non-Crytalline Solids,2001,285-309
    124 Bertino M.F., Hund, J. F., Leventis, N. Room Temperature Synthesis of Noble Metal Clusters in the Mesopores of Mechanically Strong Silica-Polymer Aerogel Composites [J]. Journal of Sol-Gel Science and Technology.2004,30(1):43-48
    125 Woignier, T.; Reynes, J.; Phalippou, J.; Dussossoy, H.L.; Jacquet-Francillon, N. Sintered silica aerogel:a host matrix for long life nuclear wastes [J]. Journal of Non-Crystalline Solids 1998,225,153-156
    126 Tai, Y.; Watanabe, M.; Kaneko, K.; Tanemura, S.; Miki, T.; Murakami, J.; Tajiri, K. Preparation of gold cluster/silica nanocomposite aerogel via spontaneous wet-gel formation [J]. Advanced Materials,2001,13, 1611-1614
    127 Hund, J. F.; Bertino, M. F.; Zhang, G. H. et al. Formation and entrapment of noble metal clusters in silica aerogel monoliths by y-radiolysis [J]. Journal of Physical Chemistry B,2003,107:465-469
    128 Brown, K. R.; Natan, M. J. Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces [J]. Langmuir,1998,14,726-728
    129 Morris C. A., Anderson M.L., Stroud R. M., Silica sol as a nanoglue:flexible synthesis of composite aerogels [J]. Science,1999,284(5414):622-624
    130陆坤权,刘寄星.软物质物理学导论[M].北京,北京大学出版社,2006:34-42
    131 Albrecht E., Barber G., Brook J. H. et al. First observation of Cherenkov ring images using hybrid photon detectors [J]. Nuclear Instruments & Methods in Physics Research,1998,411(2-3):249-264
    132 Sumiyoshi T., Adachi I., Enomoto R. et al. Silica aerogels in high energy physics [J]. Journal of Non-Crystalline Solids,1998:225:369-374
    133 Wagh P. B., Ingale S. V. Comparison of some physico-chemical properties of hydrophilic and hydrophobic silica aerogels [J]. Ceramics International,2002,28(1):43-50
    134 Bardy E.R., Mollendorf J.C., Pendergast D.R. Thermal conductivity and compressive strain of aerogel insulation blankets under applied hydrostatic pressure [J]. Journal of Heat Transfer,2007,129(2):232-235
    135 Rao A.V., Wagh P.B. Preparation and characterization of hydrophobic silica aerogels [J]. Materials Chemistry and Physics,1998,53(1):13-18
    136 Wang C.T., Ro S.H. Nanocluster iron oxide-silica aerogel catalysts for methanol partial oxidation [J]. Applied Catalysis A:General,2005,285(1-2):196-204
    137 Sorensen L., Strouse G.F., Stiegman A.E. Fabrication of stable low-density silica aerogels containing luminescent ZnS capped CdSe quantum dots [J]. Advanced Matererials,2006,18:1965-1967

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700