Ni-Cr-Fe泡沫合金固相浸渗制备及高温氧化行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以航空航天结构材料为研究背景,以3D开孔泡沫Ni为基体,采用固体粉末包埋高温固相扩散工艺,制备出一种开孔率高达90%以上的三维网状结构的Ni-Cr-Fe泡沫合金。同时,为了进一步提高Ni-Cr-Fe泡沫合金的抗氧化性能,采用两步固体粉末包埋法在Ni-Cr-Fe泡沫合金表面上制备Al/Cr(Ce)双层涂层。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、能谱仪(EDS)、电子拉伸试验机和显微硬度计等分析测试手段,分别对Ni-Cr-Fe泡沫合金及Al/Cr(Ce)涂层泡沫合金的微观组织结构及性能进行了系统的研究,并探讨了Ni-Cr-Fe泡沫合金及涂层泡沫合金的高温氧化动力学及氧化机理。
     利用固体粉末包埋法对开孔泡沫Ni表面进行Cr、Fe共渗处理,研究了Cr-Fe共渗层的显微组织、相组成及成分分布。结果表明:Cr-Fe渗层的致密化程度以及渗层与基体的结合强度受到不同共渗温度的影响。随着共渗温度增加,渗层与基体的结合强度增加,但是,共渗层表面颗粒团聚严重。共渗温度在1050℃时,Cr-Fe渗层表面均匀、致密且渗层与基体之间结合紧密。并且,1050℃时,随着保温时间延长,共渗层中外层和扩散层增厚曲线都近似遵循一次函数规律。
     以Ni-Cr-Fe三元相图模型为理论依据,效仿Inconel690高温合金的成分组成,实验确定了1200℃时进行泡沫Ni-Cr-Fe高温固相扩散合金化可以获得组织稳定,抗氧化性和抗热疲劳性较好的单一奥氏体γ相。同时,在高温扩散过程中,随着均匀化时间的延长,网丝骨架中Cr、Fe、Ni元素浓度梯度明显平缓,1200℃/48h均匀化热处理后,网丝骨架中Cr、Fe、Ni三种元素发生了充分的互扩散,达到合金成分均匀化,表面层主要由γ-(Fe, Ni)和γ-(Ni, Cr, Fe)固溶体组成。并且, Ni-Cr-Fe泡沫合金保持着初始泡沫Ni基体的三维网状及骨架中空结构。
     对Ni-Cr-Fe泡沫合金常温及高温力学性能进行测试,揭示了不同组成成分Ni-Cr-Fe泡沫合金组织与性能之间的关系。结果表明:Ni-Cr-Fe泡沫合金的常温及高温准静态压缩曲线呈现出典型韧性泡沫金属形变特征。高温扩散均匀化工艺有效提高Ni-Cr-Fe泡沫合金的压缩强度,也使得塑性屈服平台段的长度明显增加。同时,随着泡沫合金中Cr、Fe元素含量的增加,Ni-Cr-Fe泡沫合金材料的屈服强度和单位体积吸能量增大。与Gibson-Ashby经验公式相比,均匀化后Ni-Cr-Fe泡沫合金的屈服强度和比强度比理想泡沫Ni明显提高,这主要是Cr、Fe元素起到较好的固溶强化作用。尤其,Ni-36Cr-24Fe泡沫合金表观出最高的屈服强度和单位体积吸能。
     对Ni-Cr-Fe泡沫合金在800-1000℃条件下的抗高温氧化性能进行了研究,揭示了开孔Ni-Cr-Fe泡沫合金高温氧化动力学、热力学及氧化机理。结果表明:Ni-Cr-Fe泡沫合金具有比泡沫Ni基体和Ni-25Cr泡沫合金更高的抗高温氧化性能,其氧化曲线符合抛物线规律。随着泡沫合金中Cr、Fe元素含量的增加,Ni-Cr-Fe泡沫合金抗氧化性能增加。同时,随着氧化温度从800℃升高至1000℃,Ni-Cr-Fe泡沫合金的氧化层由Cr_2O_3、NiFe_2O_4和NiCr2O4的混合氧化物转变成致密的单一Cr_2O_3层,有效增强Ni-Cr-Fe泡沫合金的抗氧化性能。
     通过两步固体粉末包埋法在Ni-Cr-Fe泡沫合金表面制备Al/Cr(Ce)双层涂层,揭示了Al/Cr(Ce)双层涂层对Ni-Cr-Fe泡沫合金高温氧化性能及力学性能的影响,给出了Al/Cr(Ce)涂层泡沫合金氧化机理以及氧化后变形行为。结果表明:Al/Cr(Ce)双层涂层结构连续、致密,大量的Ce原子富集在外层,有效阻碍了Al原子的向内扩散以及基体合金原子沿晶界向外扩散。氧化后,Al/Cr(Ce)涂层泡沫合金的氧化动力学曲线遵循抛物线规律,Al/Cr(Ce)涂层表面容易形成致密的Al_2O_3层,并且,少量的Ce有效提高氧化层与基体的附着力。同时,与Ce–Cr涂层和Al/Cr涂层相比,氧化后Al/Cr(Ce)涂层泡沫合金的准静态压缩曲线表现出相对较高的屈服强度,有效增强了开孔Ni-Cr-Fe泡沫合金的抗氧化性能和力学性能。
With the research background that served as the foundation for aerospacestructural materials, the reticulated open-cell Ni foam was used as a substrate andwas alloyed with Cr and Fe by pack-cementation, resulting in open-cell Ni–Fe–Cralloy foams with opening ratio of more than90%. Simultaneously, in order tofurther improve the oxidation resistance of the Ni-Cr-Fe alloy foam, the dual-layerAl/Cr(Ce) coating was deposited onto the Ni-Cr-Fe alloy foam by a two-step packcementation process. Scanning electron microscopy (SEM), the X-ray diffractiontechnique (XRD), energy dispersive spectrum (EDS) analysis, the electronic tensiletesting machine and micro hardness test were used to investigate the microstructuresand the performance of the Ni–Fe–Cr alloy foams and Al/Cr(Ce) coated alloy foam.The oxidation kinetics and the oxidation mechanism of Ni-Cr-Fe alloy foam wereexplored.
     Solid powder embedding method was used to make Cr-Fe penetrations to theopen-cell Ni foam. The microstructure, phase and components of the Cr-Fepermeation layer were also researched. The results show that the degree ofdensification of Cr-Fe permeation layer and the bonding strength of the matrix andpermeation layer are affected by different permeation temperature. The bondingstrength of the matrix and permeation layer increases with permeation temperatureincreases, however, the agglomeration of the surface of Cr-Fe coating becomes moreobvious. When the temperature is1050℃, the outside surface of the strut is coatedwith a uniform Cr-Fe deposition layer and the substrate on the bonding strength ofthe coatings is strong. Simultaneously, when the holding time is increased at1050℃,the thickening of the outer layer and the diffusion layer of the permeation layer isapproximate to follow linear function.
     As the theoretical basis of the Ni-Cr-Fe ternary phase diagram, the compositionof Inconel690high temperature alloy was emulated. The experiment results showthat the stable microstructure, the better the oxidation resistance and thermal fatigueresistance of a single austenitic γ phase can be obtained by high temperature solidphase diffusion of the Ni-Cr-Fe foam. At the same time, the Cr, Fe and Ni elementconcentration gradient of the strut is significantly reduced with the extension of the homogenization time in the high-temperature diffusion process. When thehomogenization time is extended to48h at1200℃, the Cr and Fe elements cancompletely diffuse into the inner strut and ensures a homogeneous alloycomposition. The surface layer of the Ni-Cr-Fe alloy foam is mainly composed ofγ-(Fe, Ni) and γ-(Ni, Cr, Fe) solid solution. Moreover, the Ni-Cr-Fe alloy foam stillretains the three-dimensional network structure and hollow struts of open-cell Nifoam.
     The room temperature and high temperature mechanical properties testing wereapplied to the Ni-Cr-Fe alloy foam, and the relationship between the organizationand the performance of the different components of Ni-Cr-Fe alloy foam wasrevealed. The results show that the quasi-static stress–strain behaviors of Ni-Cr-Fealloy foams at room temperature show the characteristic of typical ductile metallicfoam. High temperature diffusion homogenization process can effectively improvethe compression strength of open-cell Ni-Cr-Fe alloy foam at room temperature andincrease the length of the plastic yielding platform. At the same time, the energyabsorbed per unit volume of the Ni–Fe–Cr foams exhibits a significant increase withincreasing the Cr and Fe content of the foams. Compared with the Gibson-Ashbyexperience formula, the yield strength and specific strength of the Ni-Cr-Fe alloyfoam after homogenization are significantly improved than ideal open-cell Ni foam,which is mainly solid solution strengthening effect of Cr and Fe elements. Inparticular, Ni-36Cr-24Fe alloy foam exhibits the highest yield strength and unitvolume energy absorption.
     The high temperature oxidation resistance of Ni-Cr-Fe alloy foam was studiedat800-1000℃. The high temperature oxidation kinetics, thermodynamics andoxidation mechanism were revealed. The results show that the Ni-Cr-Fe alloy foamshave a higher oxidation resistance than Ni foam substrate and Ni-25Cr alloy foam,whose oxidation kinetics curves obey the parabolic law. The oxidation resistance ofopen-cell Ni-Cr-Fe alloy foam increases with increasing the Cr and Fe content. Atthe same time, when the oxidation temperature is increased from800℃to1000℃,the oxide layer of Ni-Cr-Fe alloy foam shows the change of the mixed oxide ofCr_2O_3, NiFe_2O_4and NiCr2O4into a dense single-phase Cr_2O_3layer, which caneffectively enhance the oxidation resistance of the Ni-Cr-Fe alloy foam.
     The dual-layer Al/Cr(Ce) coatings were deposited onto the Ni-Cr-Fe alloy foam by a two-step pack cementation process. The impact of Al/Cr(Ce) coating onthe oxidation resistance and mechanical properties of open-cell Ni-Cr-Fe alloy foamwas revealed. The oxidation mechanism and deformation behavior after theoxidation were given. The results show that the dual-layer Al/Cr(Ce) coatings arecontinuous and compact. The Ce added can effectively restrain the interdiffusionbetween the Ce–Cr coating and Al coating during the oxidation process. Theoxidation kinetics curve of Al/Cr(Ce) coated foam follows a parabolic law. A denseAl_2O_3layer is formed on the surface of Al/Cr(Ce) coating, and a small amount of Cecan effectively improve the adhesion of the oxide layer and the substrate.Simultaneously, compared to the Ce–Cr and Al/Cr coated foams, the Al/Cr(Ce)coated foam still exhibits higher yield strength, which can further enhance theoxidation resistance and mechanical properties of Ni-Cr-Fe alloy foam.
引文
[1] Smith B H, Szyniszewski S, Hajjar J F, Schafer B W, Arwade S R. Steel foam forstructures: a review of applications, manufacturing and material properties[J].Journal of Constructional Steel Research,2012,71(4):1-10.
    [2] Borovik V G, Grigorev O N, Subbotin V N. New structural unidirectional-fibermaterial[J]. Powder Metallurgy and Metal Ceramics,2012,51(1-2):49-55.
    [3] Ashby M F, Evans A G, Fleck N A, Gibson L J, Hutchinson J W, Wadley H N G.Metal foams: a design guide[M]. Butterworth-Heinemann, Oxford, U K,2000:43-56.
    [4]程涛,向宇,马小强.泡沫金属的制备、分类及展望[J].粉末冶金工业,2007,17(5):50-55.
    [5] Zhao N Q, Jiang B, Du X W, Li J J, Shi C S, Zhao W X. Effect of Y2O3on themechanical properties of open cell aluminum foams[J]. Materials Letters,2006,60(13-14):1665-1668.
    [6]刘培生,罗军,陈一鸣.泡沫金属多孔体在扭矩作用下的分析表征[J].清华大学学报(自然科学版),2010,50(6):932-935.
    [7]左孝青,孙加林.泡沫金属的性能及应用研究进展[J].昆明理工大学(理工版),2005,30(1):13-17.
    [8] Rabiei A, O’Neill A T. A study on processing of a composite metal foam viacasting[J]. Materials Science and Engineering A,2005,404(1-2):159-164.
    [9] Manonukul A, Muenya N, Leaux F, Amaranan S. Effects of replacing metalpowder with powder space holder on metal foam produced by metal injectionmoulding[J]. Journal of Materials Processing Technology,2010,210(3):529-535.
    [10] Sevostianov I, Ková ik J, Siman ík F. Elastic and electric properties ofclosed-cell aluminum foams Cross-property connection[J]. Materials Scienceand Engineering A,2006,420(1-2):87-99.
    [11] Alizadeh M, Mirzaei-Aliabadi M. Compressive properties and energy absorp-tion behavior of Al-Al2O3composite foam synthesized by space-holdertechnique[J]. Materials&Design,2012,35(4):419-424.
    [12] Brothers A H, Scheunemann R, DeFouw J D, Dunand D C. Processing andstructure of open-celled amorphous metal foams[J]. Scripta Materialia,2005,52(4):335-339.
    [13] Liu P S. Tensile fracture behavior of foamed metallic materials[J]. MaterialsScience and Engineering A,2004,384(1-2):352-354.
    [14] Aly M S. Effect of pore size on the tensile behavior of open-cell Ti foams:experimental results[J]. Materials Letters,2010,64(8):935-937.
    [15] Olurin O B, Wilkinson D S, Weatherly G C, Paserin V, Shu J. Strength andductility of as-plated and sintered CVD nickel foams[J]. Composites Scienceand Technology,2003,63(16):2317-2329.
    [16] Azzi W E. A systematic study on the mechanical and thermal properties ofopen cell metal foams for aerospace applications, Master Thesis, NorthCarolina State University,2004.
    [17] Masahiro W. Processing of metal foams using slurry technique[J]. ChemicalSociety of Japan,2001,54:7-12.
    [18] Sosnick B. US Patent2434775,1948.
    [19] Thomas O A. Development of closed cell metallic foam using casting techniqu-es. Dissertation for the degree of master of science of north carolina stateuniversity.2005:1-46.
    [20] Banhart J. Manufacture characteristion and application of cellular metals andmetal foams[J]. Progress in Materials Science,2001,46(6):559-632.
    [21] Thornton P H, Magee C L. The deformation of aluminum foams[J]. Metallurgi-cal Transactions,1975,6(6):1253-1263.
    [22] Simone A E, Gibson L J. Aluminum foams produced by liquid state process[J].Acta Materialia,1998,46(9):3109-3123.
    [23] Beals J T, Thompson M S. Density gradient effects of aluminum foamcompression bebavior[J]. Journal of Materials Science,1997,32(13):3595-3600.
    [24]王斌,何德坪.泡沫Al合金的压缩性能极其能量吸收[J].金属学报,2000,36:10-15.
    [25]何德坪,马立群,余兴泉.新型通孔泡沫铝的传热特性[J].材料研究学报,1997,11(4):431-434.
    [26] Gibson L J, Ashby M F. Cellular Solids: Strueture and Properties,2nd edition
    [M]. Cambridge University Press, U K,1997:205-215.
    [27]黎青,陈玲燕,沈军,王珏.多孔材料的应用与发展[J].材料导报,1995,6:10-13.
    [28] Grenestedt J L. Influence of cell shape variations on elastic stiffness of closedcell cellular solids[J]. Scripta Materialia,1999,40(1):71-77.
    [29] Kopanidis A, Theodorakakos A, Gavaises E, Bouris D.3D numerical simulati-on of flow and conjugate heat transfer through a pore scale model of highporosity open cell metal foam[J]. International Journal of Heat and MassTransfer,2010,53(11-12):2539-2550.
    [30] Jang W Y, Kyriakides S, Kraynik A M. On the compressive strength ofopen-cell metal foams with kelvin and random cell structures[J]. InternationalJournal of Solids and Structures,2010,47(21):2872-2883.
    [31] Raj S V. Microstructural characterization of metal foams: an examination ofthe applicability of the theoretical models for modeling foams[J]. MaterialsScience and Engineering A,2011,528(15):5289-5295.
    [32] Shimizu T, Matsuzaki K, Nagai H, Kanetake N. Production of high porositymetal foams using EPS beads as space holders[J]. Materials Science andEngineering A,2012,558(15):343-348.
    [33] Chan N, Evans K E. Microscopic examination of the microstructure anddeformation of conventional and auxetic foams[J]. Journal of MaterialsScience,1997,32(21):5725-5736.
    [34] Lim T J, Smith B, McDowell D L. Behavior of a random hollow sphere metalfoam[J]. Acta Materialia,2002,50(11):2867-2879.
    [35] Warren W E, Kraynik A M. Foam mechanics: the linear elastic response oftwo-dimensional spatially periodic cellular materials[J]. Mechanics ofMaterials.1988,55(1):341-346.
    [36] Nieh T G, Higashi K, Wadsworth J. Effect of cell morphology on thecompressive properties of open-cell aluminum foams[J]. Materials Science andEngineering A,1999,283(1-2):105-110.
    [37] Ramamurty U, Paul A. Variability in mechanical properties of a metal foam[J].Acta Materialia,2004,52(4):869-876.
    [38]刘培生,田民波校.多孔固体结构与性能[M].北京:清华大学出版社,2003:1-10.
    [39]许庆彦,陈玉勇,李庆春.加压渗流铸造多孔铝合金及其吸声性能[J].铸造,1998,(4):1-4.
    [40] Kovacik J, Simancik F. Aluminum foam-moduilus of elasticity and electricalconductivity according to percolation theory[J]. Scripta Materialia,1998,39(2):239-246.
    [41] Stauffer D, Aharony A. Introduction to percolation theory,2nd edition[M].Taylor Francis, London1992.
    [42] Bodla K K, Murthy J Y, Garimella S V. Resistance network-based thermalconductivity model for metal foams[J]. Computational Materials Science,2010,50(2):622-632.
    [43] Singh R, Kasana H S. Computational aspects of effective thermal conductivityof highly porous metal foams[J]. Applied Thermal Engineering,2004,24(13):1841-1849.
    [44] Zhao C Y, Tassou S A, Lu T J. Analytical considerations of thermal radiationin cellular metal foams with open cells[J]. International Journal of Heat andMass Transfer,2008,51(3-4):929-940.
    [45] Zhao C Y, Lu T J, Hodson H P, Jackson J D. The temperature dependence ofeffective thermal conductivity of open-celled steel alloy foams[J]. MaterialsScience and Engineering A,2004,367(1-2):123-131.
    [46] Lu T J, Stone H A, Ashby M F. Heat transfer in open-cell metal foams[J]. ActaMaterialia,1998,46(10):3619-3635.
    [47]黄福祥,金吉琰,范嗣元.发泡金属的电磁屏蔽性能研究[J].功能材料,1996,27(2):147-149.
    [48] Banhart J, Baumeister J, Weber M. Damping properties of aluminium foams[J].Materials Science and Engineering A,1996,205(1-2):221-228.
    [49] Miyoshi T, Itoh M, Akiyama S, Kitahara A. Aluminum foam, alporas: theproduction process, properties and applications[J]. Porous and CellularMaterials for Structure Applications,1998,521:133-137.
    [50]杨东辉,何德坪.氢化钛热分解特性与小孔径低孔隙率泡沫铝合金[J].中国有色金属学报,2004,14(12):2021-2027.
    [51]罗洪杰,姚广春,张晓明,魏莉,吴林丽.闭孔泡沫铝材料的制备过程中气泡的形成与演化[J].中国有色金属学报,2004,14(8):1377-1381.
    [52] Gergely V, Degischer H P, Clyne T W. Recycling of MMCs and production ofmetallic foams[J]. Comprehensive Composite Materials,2000,3:797-820.
    [53] Montanini R. Measurement of strain rate sensitivity of aluminum foams forenergy dissipation[J]. International Journal of Mechanical Sciences,2005,47(1):26-42.
    [54]许庆彦,陈玉勇,李庆春.多孔泡沫金属的研究现状[J].铸造设备研究,1997,(1):18-24.
    [55]魏莉,姚广春,张晓明.粉末烧结法制备多孔金属材料技术[J].材料导报,2004,18(7):15-17.
    [56]许庆彦,熊守美.多孔金属的制备工艺方法综述[J].铸造,2005,54(9):840-843.
    [57] Balch D K, Dunand D C. Load partitioning in aluminum syntactic foamscontaining ceramic microspheres[J]. Acta Materialia.2006,54(6):1501-1511.
    [58] Balch D K, O'Dwyer J G, Davis G R, Cady C M, Gray G T, Dunand D C.Plasticity and damage in aluminum syntactic foams deformed under dynamicand quasi-static conditions[J]. Materials Science and Engineering A,2005,391(1-2):408-417.
    [59] Gailard C, Despois J F, Mortensen A. Processing of nacl powders of controlledsize and shape for the microstructural tailoring of aluminum foams[J].Materials Science and Engineering A,2004,374(1-2):250-262.
    [60] Yamada Y, Shimojima K, Sakaguchi Y, Mabuchi M, Nakamura M. Effects ofheat treatment on compressive properties of AZ91Mg and SG91A Al foamswith open-cell structure[J]. Materials Science and Engineering A,2008,280(1):225-228.
    [61]王录才,陈新,柴跃生,张琰.熔模铸造法通孔泡沫铝制备工艺研究[J].铸造,1999,(1):8-10.
    [62] Li J P, Li S H, de Groot K, Layrolle P. Preparation and characterization ofporous titanium[J]. Key Engineering Materials,2002,218(2):51-54.
    [63]姜斌,赵乃勤,师春生,富东慧.粉末烧结法制备开孔泡沫铝压缩性能的研究[J].粉末冶金技术,2006,24(5):364-368.
    [64] Jiang B, Zhao N Q, Shi C S, Du X W, Li J J, Man H C. A novel method formaking open cell aluminum foams by powder sintering process[J]. MaterialsLetters,2005,59(26):3333-3336.
    [65]刘培生.多孔材料引论[M].北京:清华大学出版社,2003:1-49.
    [66] Tian Q, Guo X. Electroless copper plating on microcellular polyurethane foam[J]. Transactions of Nonferrous Metals Society of China,2010,20(1):283-287.
    [67] Badiche X, Forest S, Guibert T, Bienvenu Y, Bartout J D, Ienny P, Croset M,Bernet H. Mechanical properties and non-homogeneous deformation ofopen-cell nickel foams: application of the mechanics of cellular solids and ofporous materials[J]. Materials Science and Engineering A,2000,289(1-2):276-288.
    [68] Vaidya U K, Pillay S, Bartus S, Ulven C A, Grow D T, Mathew B. Impact andpost-impact vibration response of protective metal foam composite sandwichplates[J]. Materials Science and Engineering A,2006,428(1-2):59-66.
    [69] Zhao C Y, Lu W, Tian Y. Heat transfer enhancement for thermal energystorage using metal foams embedded within phase change materials (PCMs)[J].Solar Energy,2010,84(8):1402-1412.
    [70] Hetsroni G, Gurevich M, Rozenblit R. Natural convection in metal foam stripswith internal heat generation[J]. Experimental Thermal and Fluid Science,2008,32(8):1740-1747.
    [71] Zhu Y, Hu H, Ding G, Sun S, Jing Y. Influence of metal foam on heat transfercharacteristics of refrigerant-oil mixture flow boiling inside circular tubes[J].Applied Thermal Engineering,2013,50(1):1246-1256.
    [72] Brothers A H, Dunand D C. Amorphous metal foams[J]. Scripta Materialia,2006,54(4):513-520.
    [73] Michailidis N, Stergioudi F, Omar H, Pavlidou E, Tsipas D N, Albanakis C,Missirlis D, Granier B. Microstructural characterization of oxide morphologieson Ni and inconel foams exposed to concentrated solar radiation[J]. Journal ofAlloys and Compounds,2010,496(1-2):644-649.
    [74] Mi G, Li H, Liu X, Zeng S. Structure and mechanical properties of Ni-basedporous superalloy[J]. Journal of Wuhan University of Technology,2010,25(1):73-77.
    [75] Boonyongmaneerat Y, Dunand D C. Ni-Mo-Cr foams processed by castingreplication of sodium aluminate performs[J]. Advanced Engineering Materials,2008,10(4):379-383.
    [76] Queheillalt D T, Katsumura Y, Wadley H N G. Synthesis of stochastic opencell Ni-based foams[J]. Scripta Materialia,2004,50(3):313-317.
    [77] Walther G, Kl den B, Büttner T, Weissg rber T, Kieback B, B hm A,Naumann D, Saberi S, Timberg L. A new class of high temperature andcorrosion resistant nickel-based open-cell foams[J]. Advanced EngineeringMaterials,2008,10(9):803-811.
    [78] Queheillalt D T, Hass D D, Sypeck D J, Wadley H N G. Synthesis of open-cellmetal foams by templated directed vapor deposition[J]. Journal of MaterialsResearch,2001,16(4):1028-1036.
    [79] Hodge A M, Dunand D C. Synthesis of nickel-aluminide foams by pack-aluminization of nickel foams[J]. Intermetallics,2001,9(7):581-589.
    [80] Boonyongmaneerat Y, Schuh C A, Dunand D C. Mechanical properties ofreticulated aluminum foams with electrodeposited Ni-W coatings[J]. ScriptaMaterialia,2008,59(3):336-339.
    [81] Choe H, Dunand D C. Mechanical properties of oxidation-resistant Ni-Crfoams[J]. Materials Science and Engineering A,2004,384(1-2):184-193.
    [82] Yang L, Wu X, Weng D. Study of oxidation-resistant NiCrAl-Al coatingsco-deposited by electrophoresis on nickel foams[J]. Scripta Materialia,2006,55(1):107-110.
    [83] Chyrkin A, Leif Schulze S, Piro′n-Abella′n J, Bleck W, Singheiser L,Quadakkers W J. Oxidation limited lifetime of Ni-base metal foams in thetemperature range700-900℃[J]. Advanced Engineering Materials,2010,9(12):873-883.
    [84] Mevrel R. State of the art on high-temperature corrosion-resistant coatings[J].Materials Science and Engineering A,1989,120:13-24.
    [85] Wahl G. Coating composition and the formation of protective oxide layers athigh temperatures[J]. Thin Solid Films,1983,107(4):417-426.
    [86] Yang R, Wu Q, Li S, Gong S. Effects of Cr-Al-Si and Cr-Al Coatings on thehigh temperature oxidation resistance of a Ni3Al-Mo based single crystal alloy[J]. Procedia Engineering,2012,27:976-982.
    [87] Zhou C G, Xu H B, Gong S K, Yang Y, Kim K Y. A study on aluminide andCr-modified aluminide coatings on TiAl alloys by pack cementation method[J]. Surface Coatings Technology,2000,132(2-3):117-123.
    [88]刘培生.铝化物高温防护涂层的现状[J].稀有金属材料与工程,2003,32(9):681-685.
    [89] Perez F J, Hierro M P, Pedraza F, Gomez C, Carpintero M C. Aluminizing andchromizing bed treatment by CVD in a fluidized bed reactor on austeniticstainless steels[J]. Surface Coatings Technology,1999,120:151-157.
    [90] Heo N H, Kim M T, Shin J H, Kim C Y. Simultaneous chromizing andaluminizing using chromium oxide and aluminum:(II) on austenitic stainlesssteel[J]. Surface Coatings Technology,2000,124(1):39-43.
    [91] Kim M T, Heo N H, Shin J H, Kim C Y. Simultaneous chromizing andaluminizing using chromium oxide and aluminum:(I) on low alloy steel[J].Surface Coatings Technology,2000,123(2-3):227-230.
    [92] Roos E, Maile K, Lyutovich A, Gusko A, Udoh A.(Cr–Al) bi-layer coatingsobtained by ion assisted EB PVD on C/C–SiC composites and Ni-based alloys[J]. Surface and Coatings Technology,2002,151-152:429-433.
    [93] Wang C J, Chen S M. Microstructure and cyclic oxidation behavior of hot dipaluminized coating on Ni-base superalloy Inconel718[J]. Surface and CoatingsTechnology,2006,201(7):3862-3866.
    [94] Huttunen-Saarivirta E, Stott F H, Rohr V, Schuetze M. Erosion-oxidationbehavior of chromized-aluminized9%chromium steel under fluidized-bedconditions at elevated temperature[J]. Oxidation of Metals,2007,68(3-4):113-132.
    [95] Vetter J, Lugscheider E, Guerreiro S S.(Cr: Al)N coatings deposited by thecathodic vacuum arc evaporation[J]. Surface and Coatings Technology,1998,98(1-3):1233-1239.
    [96] Song J, Ma K, Zhang L, Schoenung J M. Simultaneous synthesis by sparkplasma sintering of a thermal barrier coating system with a NiCrAlY bond coat[J]. Surface and Coatings Technology,2010,205(5):1241-1244.
    [97] Monceau D, Oquab D, Estournes C, Boidot M, Selezneff S, Thebault Y,Cadoret Y. Pt-modified Ni aluminides, MCrAlY-base multilayer coatings andTBC systems fabricated by Spark Plasma Sintering for the protection ofNi-base superalloys[J]. Surface and Coatings Technology,2009,204(6-7):771-778.
    [98] Spain E, Avelar-Batista J C, Letch M, Housden J, Lerga B. Characterisationand applications of Cr-Al-N coatings[J]. Surface and Coatings Technology,2005,200(5-6):1507-1513.
    [99]曹啓宏.铝铬涂层抗高温氧化性能的研究[J].表面技术,1991,20(6):13-16.
    [100] Xiang Z D, Burnell-Gray J S, Datta P K. Conditions for codeposition of Aland Cr on Ni base superalloys by pack cementation process[J]. SurfaceEngineering,2001,17(4):287-294.
    [101] Bai C Y, Luo Y J. Improvement of high temperature oxidation and corrosionresistance of superalloy IN-738by pack cementation[J]. Surface and CoatingsTechnology,2004,183(5):74-88.
    [102]林翠,杜楠,赵晴,尹茂生,张瑞之.电子束蒸发镀铝-铬合金涂层研究[J].南昌航空工业学院学报,2000,14(4):31-35.
    [103] Perez F J, Hierro M P, Pedraza F, Gomez C, Carpintero M C, Trilleros J A.Kinetic studies of Cr and Al deposition using CVD-FBR on different metallicsubstrates[J]. Surface Coatings Technology,1999,122(2-3):281-289.
    [104]赵宇光,周伟,彭新,梁云虹,秦庆东.钛合金表面低氧压熔结Al-Cr涂层及其高温抗氧化性[J].吉林大学学报,2004,34(4):521-526.
    [105] Lu J, Zhu S, Wang F. Cyclic oxidation and hot corrosion behavior ofY/Cr-modified aluminide coatings prepared by a Hybrid Slurry/PackCementation process[J]. Oxidation of Metals,2011,76(1-2):67-82.
    [106] Cueff R, Buscail H, Caudron E, Riffard F, Issartel C, El Messki S. Effect ofreactive element oxide coating on the high temperature oxidation behaviourof FeCrAl alloys[J]. Applied Surface Science,2004,229(1-4):233-241.
    [107] Jedlinski J, Borchardt G, Konopka M, Nocun M. The effect of reactiveelements on the oxidation behaviour of Fe23Cr5Al alloys at hightemperatures: I. Kinetics and thermal cycling[J]. Solid State Ionics,1997,101-103(2):1147-1155.
    [108] Chevalier S, Larpin J P. Formation of perovskite type phases during the hightemperature oxidation of stainless steels coated with reactive elementoxides[J]. Acta Materialia,2002,50(12):3107-3116.
    [109] Chevalier S, Larpin J P. Influence of reactive element oxide coatings on thehigh temperature cyclic oxidation of chromia-forming steels[J]. MaterialsScience and Engineering A,2003,363(1-2):116-125.
    [110] Hou P Y, Stringer J. The effect of reactive element additions on the selectiveoxidation, growth and adhesion of chromia scales[J]. Materials Science andEngineering A,1995,202(1-2):1-10.
    [111] Paúl A, Elmrabet S, Odriozola J A. Low cost rare earth elements depositionmethod for enhancing the oxidation resistance at high temperature of Cr2O3and Al2O3forming alloys[J]. Journal of Alloys and Compounds,2001,323:70-73.
    [112] Ui-Hamid A. TEM study of the effect of Y on the scale microstructures ofCr2O3-and Al2O3-forming alloys[J]. Oxidation of Metals,2002,58(1-2):23-40.
    [113] Stringer J. The reactive element effect in high-temperature corrosion[J].Materials Science and Engineering A,1989,120-121(1):129-137.
    [114] Ramanathan L V. Role of rare-earth elements on high temperature oxidationbehavior of Fe-Cr, Ni-Cr and Ni-Cr-Al alloys[J]. Corrosion Science,1993,35(5-8):871-875.
    [115] Pint B A, Schneibel J H. The effect of carbon and reactive element dopants onoxidation lifetime of FeAl[J]. Scripta Materialia,2005,52(12):1199-1204.
    [116] Chevalier S, Bonnet G, Larpin J P, Colson J C. The combined effect ofrefractory coatings containing reactive elements on high temperatureoxidation behavior of chromia-forming alloys[J]. Corrosion Science,2003,45(8):1661-1673.
    [117] Bennett M J, Tuson A T, Moon D P, Titchmarsh J M, Gould P, Flower H M.The influence of cerium ion-implantation on chromium oxidation[J]. Surfaceand Coatings Technology,1992,51(1-3):65-72.
    [118] Cotell C M, Yurek G J, Hussey R J, Metchell D F, Graham M. The influenceof grain-boundary segregation of Y in Cr2O3on the oxidation of Cr metal[J].Oxidation of Metals,1990,34(3-4):173-200.
    [119] Yang C H,Welsch G E, Mitchell T E. Analytical electron-microscopyinvestigation of the oxide scale on an Yttrium-implanted Ni-20wt-percent Cralloy[J]. Materials Science and Engineering A,1985,69(2):351-357.
    [120] Wang Y, Lin R Y. Amorphous molybdenum nitride thin films prepared byreactive sputter deposition[J]. Materials Science and Engineering B,2004,112(1):42-49.
    [121] Fuke I, Prabhu V, Baek S. Computational model for predicting coatingthickness in electron beam physical vapor deposition[J]. Journal ofManufacturing Processes,2005,7(2):140-152.
    [122] Xiao L, Yan D, He J, Zhu L, Dong Y, Zhang J, Li X. Nanostructured TiNcoating prepared by reactive plasma spraying in atmosphere[J]. AppliedSurface Science,2007,253(18):7535-7539.
    [123] Riffard F, Buscail H, Caudron E, Cueff R, Issartel C, Perrier S. Effect ofyttrium addition by sol–gel coating and ion implantation on the hightemperature oxidation behaviour of the304steel[J]. Applied Surface Science,2002,199(1-4):107-122.
    [124] Mrázek J, Spanhel L, Surynek M, Potel M, Matějec V. Crystallizationproperties of RE-doped (RE=Eu, Er, Tm) Zn2TiO4prepared by the sol–gelmethod[J]. Journal of Alloys and Compounds,2011,509(9):4018-4024.
    [125] Srinivasan R O, Lannutti J J. Aluminum and reactive element additions tochromium steel fibers for oxidation resistance in surface combustion[J].Surface and Coatings Technology,1996,86-87(1):54-60.
    [126] Ruthiya K C, van der Schaaf J, Kuster B F M, Schouten J C. Mechanisms ofphysical and reaction enhancement of mass transfer in a gas inducing stirredslurry reactor[J]. Chemical Engineering Journal,2003,96(1-3):55-69.
    [127]齐慧滨,何业东.表面施加含稀土氧化物涂层对Fe25Cr高温氧化的活性元素效应[J].腐蚀科学与防护技术,1999,11(4):193-201.
    [128] Wen J, Yang L, Zhu L, Zhang J, Li Q A. A study on the growth kinetics ofCeO2-modified aluminide coating and its computer fitting[J]. MaterialsScience and Engineering A,2009,499(1-2):123-125.
    [129] Stringer J, Wilcox B A, Jaffee R I. The high temperature oxidation ofnickel-20wt%chromium alloys containing dispersed oxide phase[J].Oxidation of Metals,1972,5(1):11-47.
    [130] Li X, Wang X, He J. Effects of CeO2coating on oxidation behavior ofTP304H steel in high-temperature water vapor[J]. Electricity,2005,1:17-20.
    [131] Birks N, Meier G H, Pittit F S. Introduction to high temperature oxidation ofmetals (2nd Edition)[M]. Cambridge University Press,2006.
    [132]朱日彰,何业东,齐慧滨.高温腐蚀及耐高温腐蚀材料[M].上海:上海科学技术出版社,1995.
    [133] Liebscher A, Proppe C, Redenbach C, Schwarzer D. Uncertaintyquantification for metal foam structures by means of image analysis[J].Probabilistic Engineering Mechanics,2012,28:143-151.
    [134]张景怀,惠志林,方政秋.泡沫镍的制备工艺与性能[J].稀有金属,2001,25:230-234.
    [135] Aly M S. Behavior of closed cell aluminium foams upon compressive testingat elevated temperatures: Experimental results[J]. Materials Letters,2007,61(14-15):3138-3141.
    [136] Shinoda T, Masuda-Jindo K, Mishima Y, Suzuki T. Design of Ni-Al base hightemperature alloys by TB electronic theory[J]. Composites, Grain Boundariesand Nanophase Materials,1994, Part A:213-216.
    [137]阮霞.两种气阀钢多元共渗层组织及性能的研究.哈尔滨工程大学硕士学位论文.2006:19-21.
    [138]朱红,董建新,张麦仓,胡尧和,谢锡善.固溶处理对Inconel690合金组织影响[J].北京科技大学学报,2002,24(5):511-513.
    [139] Akinlade D A, Caley W F, Richards N L, Chaturvedi M C. Microstructuralresponse of an Al-modified Ni–Cr–Fe ternary alloy during thermal processing[J]. Material Science and Engineering A,2008,486(1-2):626-633.
    [140] Chan K S, Pan Y M, Lee Y D. Computation of Ni-Cr phase diagram via acombined first-principles quantum mechanical and CALPHAD approach[J].Metallurgical and Materials Transactions A,2006,37(7):2039-2050.
    [141] Sarah A, Nataliya K, Franz W. The constitution of the ternary system Fe-Ni-Si[J]. Intermetallics,2009,17(6):414-420.
    [142] Kajihara M, Yamashina T. Quantitative analysis for kinetics of reactivediffusion in the Fe-Cr system[J]. Journal of Materials Science,2007,42(7):2432-2442.
    [143]张红斌,李守军,胡尧和,谢锡善,王剑志.国外关于蒸汽发生器传热管用Inconel690合金研究现状[J].特钢技术,2003,4:2-9.
    [144]李铁藩.金属晶界在高温氧化中的作用[J].中国腐蚀与防护学报,2002,22(3):180-183.
    [145]张康,张奎,李兴刚,李永军,马鸣龙,徐玉磊.均匀化热处理对AZ151镁合金显微组织的影响[J].稀有金属,2009,33(3):328-332.
    [146] Evans A G, Hutchinson J W, Ashby M F. Multifunctionality of cellular metalsystems[J]. Progress in Materials Science,1999,43(3):171-221.
    [147]刘越,刘云霞,王保勇,谢辉,刘斯达.元素粉末法制备SiCp/2024A1复合材料扩散均匀化研究[J].粉末冶金技术,2012,30(1):51-56.
    [148] Choe H, Dunand D C. Synthesis, structure, and mechanical properties ofNi-Al and Ni-Cr-Al superalloy foams[J]. Acta Materialia,2004,52(5):1283-1295.
    [149] Orbulov I N, Ginsztler J. Compressive characteristics of metal matrixsyntactic foams[J]. Composites Part A,2012,43(4):553-561.
    [150] Han Y, Li J, Wei Q, Tang K. The effect of sintering temperatures on aluminafoam strength[J]. Ceramics International,2002,28(7):755-759.
    [151] Miltz J, Gruenbaum G. Evaluation of cushion properties of plastic foamscompressive measurements[J]. Polymer Engineering and Science,1981,21(15):1010-1014.
    [152] Evans A G, Hutchinsom J W, Ashby M F. Multifunctionality of cellular metalsystems[J]. Progress in Materials Science,1999,43(3):171-221.
    [153] Goedjen J G, Shores D A, Stout J H. In-situ strain measurements in theNi/NiO system during high temperature oxidation[J]. Materials Science andEngineering A,1997,222(1):58-69.
    [154] Eun-Suok O H. Kinetics and kinematics for the metal oxidation on a sphericalgeometry[J]. Chemical Engineering Journal,2008,135(3):157-167.
    [155] Lee C, Bae J. Oxidation-resistant thin film coating on ferritic stainless steelby sputtering for solid oxide fuel cells[J]. Thin Solid Films,2008,516(18):6432-6437.
    [156] Blau P J, Brummett T M, Pint B A. Effects of prior surface damage onhigh-temperature oxidation of Fe-, Ni-, and Co-based alloys[J]. Wear,2009,267(1-4):380-386.
    [157] Fernández I, Belzunce F J. Wear and oxidation behaviour of high-chromiumwhite cast irons[J]. Materials Characterization,2008,59(6):669-674.
    [158]曹启宏.铝铬涂层抗高温氧化性能的研究[J].表面技术,1996,6:13-16.
    [159]刘玉光,萧莉美. Q235钢铬铝共渗及耐高温氧化性[J].金属热处理,1996,5:8-12.
    [160] Cheng Y, Zhang H, Song L W, Ma Y, Li S S, Gong S K. Effect of Re elementon oxidation resistance of Ni3Al-Mo based alloys at1150℃[J]. Transactionsof Nonferrous Metals Society of China,2012,22(3):510-515.
    [161] Li D, Guo H, Wang D, Zhang T, Gong S, Xu H. Cyclic oxidation of β-NiAlwith various reactive element dopants at1200℃[J]. Corrosion Science,2013,66:125-135.
    [162] Rovere F, Mayrhofer P H, Reinholdt A, Mayer J, Schneider J M. The effect ofyttrium incorporation on the oxidation resistance of Cr-Al-N coatings[J].Surface&Coatings Technology,2008,202(24):5870-5875.
    [163] Chevalier S, Larpin J P. Formation of perovskite type phases during the hightemperature oxidation of stainless steels coated with reactive element oxides[J]. Acta Materialia,2002,50(12):3107-3116.
    [164] Saito Y, Onay B. Improvements of scale adherence on heat-resisting alloysand coatings by rare-earth additions[J]. Surface&Coatings Technology,1990,43(1-3):336-346.
    [165] Ji Z S. Effect of rare earth on B-Al permeating and computer kineticsimulation of permeation layer forming[J]. Transactions of Nonferrous MetalsSociety of China,1999,9(4):791-795.
    [166] Lin N, Xie F, Zhong T, Wu X, Tian W. Influence of adding various rare earthson microstructures and corrosion resistance of chromizing coatings preparedvia pack cementation on P110steel[J]. Journal of Rare Earths,2010,28:301-304.
    [167]郑振环,李强,薛唤,李偲偲,吴敏生.热处理对等离子喷涂Ni基非晶/晶态涂层性能的影响[J].稀有金属,2007,31(5):181-187.
    [168] Gao Y, Liang Y, Shi C X. Microstructure of laser remelted Ni-base alloycoating on stainless steel[J]. Journal of Materials Science and Technology,1998,14(1):49-52.
    [169] Bianco R, Rapp R A. Pack cementation aluminide coating on superalloys:codeposition of Cr and reactive elements[J]. Journal of the ElectrochemicalSociety,1993,140:1181-1190.
    [170] Alkoy E M, Alkoy S, Shiosaki T. Effects of Ce, Cr and Er doping andannealing conditions on the microstructural features and electrical propertiesof PbZrO3thin films prepared by sol-gel process[J]. Japanese Journal ofApplied Physics Part1,2005,44(9A):6654-6660.
    [171] Zhou Y B, Chen H, Zhang H, Wang Y. Preparation and oxidation of anY2O3-dispersed chromizing coating by pack cementation at800℃[J].Vacuum,2008,82(8):748-753.
    [172] Zhu L, Peng X, Yan J, Wang F. Oxidation of a novel chromium coating withCeO2dispersions[J]. Oxidation of Metals,2004,62(5-6):411-426.
    [173] Tian X, Guo X. Structure and oxidation behavior of Si-Y co-depositioncoatings on an Nb silicide based ultrahigh temperature alloy prepared by packcementation technique[J]. Surface&Coatings Technology,2009,204(3):313-318.
    [174] Yan J, Peng X, Wang F. Oxidation of a novel CeO2-dispersion-strengthenedchromium coating in simulated coal-combustion gases[J]. Materials Scienceand Engineering A,2006,426(1-2):266-273.
    [175] Pint B A. Experimental observations in support of the dynamic-segregationtheory to explain the reactive-element effect[J]. Oxidation of Metals,1996,45(1-2):1-37.
    [176] Ji Z S. Effect of rare earth on B-Al permeating and computer kineticsimulation of permeation layer forming[J]. Transactions of Nonferrous MetalsSociety of China,1999,9(4):791-795.
    [177]华佳捷,张丽鹏,刘紫微,王墉哲,林初城,曾毅,郑学斌.热障涂层失效机理研究进展[J].无机材料学报,2012,27(7):680-686.
    [178] Dong Z L, Khor K A. Microstructure formation in plasma-sprayed functiona-lly graded NiCoCrAlY yttria-stabilized zirconia coatings[J]. Surface&Coatings Technology,1999,114(2-3):181-186.
    [179] Rovere F, Mayrhofer P H, Reinholdt A, Mayer J, Schneider J M. The effect ofyttrium incorporation on the oxidation resistance of Cr-Al-N coatings[J].Surface&Coatings Technology,2008,202(24):5870-5875.
    [180] Li M S, Hou P Y. Improved Cr2O3adhesion by Ce ion implantation in thepresence of interfacial sulfur segregation[J]. Acta Materialia,2007,55(2):443-453.
    [181] Sreelekha B, Ricardo G C, Nora H L. A theoretical investigation ofalpha-Fe2O3-Cr2O3solid solutions[J]. Physical Chemistry Chemical Physics,2009,11(5):808-815.
    [182] Lehmhus D, Marschner C, Banhart J, Bomas H. Influence of heat treatment oncompression fatigue of aluminium foams[J]. Journal of Materials Science,2002,37(16):3447-3451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700