蛋白质—金属纳米粒子体系荧光增强效应及其分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着纳米科技的兴起,金属纳米粒子以其独特的光学和电学性质、良好的稳定性、小尺寸和表面效应以及独特的生物亲和性,使其在医药、卫生分析以及生化免疫等领域显示了潜在的价值,引起广大科技工作者的兴趣。金属纳米粒子独特的表面效应是其具有优良性能以及与其他材料复合时表现出来的独特性能的关键。金属纳米微粒的粒径、形状以及排列情况与其紫外一可见吸收光谱、表面增强拉曼散射(SERS)光谱、共振散射光谱以及荧光光谱之间有强烈的依赖关系。金属纳米颗粒与荧光分子直接结合或经修饰后连接,可以改变荧光体系的紫外-可见吸收光谱、增强表面拉曼散射光谱和共振散射光谱,对荧光光谱的影响随金属纳米颗粒的种类以及荧光分子的种类不同可产生猝灭作用也可产生增强作用。
     本论文以分析化学、生物化学以及材料化学为研究背景,结合纳米科学技术手段,并利用荧光光谱、吸收光谱、光散射光谱、园二色谱、透射电子显微镜和高分辨透射电子显微镜、荧光寿命以及Zeta电位等测定技术,研究了各种蛋白质对各种金属纳米荧光体系的荧光增强作用,探讨了蛋白质与金属纳米粒子结合及其荧光增强作用的机理,建立了利用金属纳米粒子作为荧光探针来测定微量蛋白质的分析方法。
     论文的第一章阐述了金属纳米颗粒的制备方法、金属纳米颗粒的应用、研究进展以及发展趋势。共引用文献191篇。
     论文的第二章研究了蛋白质对金纳米颗粒近红外荧光的增强效应及其分析应用。利用液相还原法制备了不同大小的金纳米颗粒。吸收光谱研究指出,大颗粒胶体金只在250nm处有吸收,随胶体金粒径减小至21nm,在525nm处出现新的吸收峰,且其强度随纳米颗粒的减小而增强,并伴有吸收峰的兰移。研究发现,15nm的金纳米颗粒能够发射近红外荧光,其激发和发射峰分别为538nm和811.2nm。同时还发现,蛋白质能够明显增强金纳米近红外荧光强度,并研究了影响荧光增强效应的各种因素。实验指出,在最佳实验条件下(即15nm的纳米金颗粒,pH7.0时),蛋白质浓度在一定范围内与体系的荧光强度呈线性关系,P450、BSA、HRP、和HSA的线性范围分别是2.3×10~(-7)-1.0×10~(-5)mol/L、2.0×10~(-7)-1.5×10~(-5)mol/L、1.5×10~(-7)-1.5×10~(-5)mol/L和1.5×10~(-7)-1.5×10~(-5)mol/L,它们的检出限分别达到2.4×10~(-8)mol/L、2.2×10~(-8)mol/L、2.0×10~(-8)mol/L和2.0×10~(-8)mol/L,可见该方法具有较高的灵敏度。该方法已用于实际样品的分析,其结果令人满意。本文以BSA蛋白质金纳米荧光体系为代表,利用Zeta电位、荧光寿命、TEM电镜、吸收光谱、共振散射光谱、园二色谱以及荧光光谱等技术,研究了体系中蛋白质与金纳米颗粒间的相互作用和蛋白质对金纳米颗粒近红外荧光的增强机理。研究表明,金纳米颗粒表面荷负电,能与蛋白质结合。认为胶体金以蛋白质为模板能够在其表面发生聚集,金纳米体系按一定的规律定向排列,纳米粒子聚集后间距减小,导致表面等离子体传播特性的改变以及局域表面等离子体模式和表面等离子体模式的相互作用,这种相互作用受到外围环境的介电特性的影响。同时,金属粒子所产生的等离子体可以增强其表面周围环境的电场,这种增强的电场可以和周围环境发生相互作用,其表现为如吸收光谱兰移等光谱特性的改变。这可能是使整个金标记蛋白体系荧光强度增强的部分原因。而蛋白质为金纳米颗粒提供的疏水性环境是荧光体系荧光增强的另一原因。
     论文的第三章研究了铕纳米颗粒的制备、光谱性质和蛋白质对其荧光的增强效应及其分析应用。利用单宁酸做还原剂,首次将金属铕从它的硝酸盐中还原出来,制成金属铕纳米颗粒。以硫辛酸做修饰剂,修饰铕纳米颗粒,并与蛋白质结合。比较修饰、结合蛋白质前后纳米颗粒的光学性质的变化。研究指出,通过还原剂的不同用量可以控制生成的铕纳米颗粒的大小,随着还原剂单宁酸用量的逐渐减少,生成的铕纳米颗粒直径不断增大。各种粒径的铕纳米颗粒都在275nm处有最大吸收,且随着铕纳米颗粒直径的增大,吸收峰的位置没有变化而吸收峰的强度逐渐增强。研究发现,铕纳米颗粒能够发射紫外荧光,其激发和发射峰分别在275nm和380nm左右;随着纳米颗粒的增大,其荧光强度逐渐增强而发射峰逐渐兰移。铕纳米颗粒这种荧光性质的尺寸效应明显不同于贵金属纳米的荧光尺寸效应(随着纳米颗粒的增大,荧光峰红移)。铕纳米颗粒经硫辛酸修饰后荧光强度有所降低,但与蛋白质结合后荧光强度明显增强,且发射峰位置兰移。同时,研究了影响体系荧光强度的各种影响因素。在最佳条件下,即20nm铕颗粒经硫辛酸修饰后,在pH6.0的磷酸盐溶液中和SDBS存在下,体系荧光强度的增加与蛋白质浓度在一定范围内呈线性关系,BSA、HRP、P450、OMP以及NSE的线性范围分别为6.0×10~~(-8)-1.2×10~(-5)g/ml、2.0×10~(-8)-1.5×10~(-5)g/ml、6.0×10~(-8)-1.4×10~(-5)g/ml、2.0×10~(-8)-1.8×10~(-5)g/ml和3.0×10~(-8)-1.2×10~(-5)g/ml。它们的检出限分别为3.2×10~(-8)g/ml、1.0×10~(-8)g/ml、2.9×10~(-8)g/ml、9.8×10~(-9)g/ml和1.2×10~(-8)g/ml。可见该方法有较高的灵敏度和较宽的线性范围。该方法已用于实际样品分析,结果令人满意。该文还研究了蛋白质与铕纳米颗粒间的相互作用,并探讨了蛋白质对铕纳米荧光增强的机理。研究表明,铕纳米颗粒通过硫辛酸与蛋白质结合,并发生了能量转移,即BSA将吸收的能量通过分子间能量转移的形式转移给铕纳米颗粒,从而使铕纳米颗粒的特征荧光强度增强。SDBS的存在使体系的荧光强度进一步增强,一方面是由于SDBS也将吸收的能量传递给Eu-lipoic acid-BSA体系,使得Eu-lipoic acid-BSA体系荧光增强;另一方面,SDBS和蛋白质为体系所提供的疏水环境能够减少络合物和水分子之间的碰撞,从而减少因碰撞而导致体系的能量损失。因此,体系的荧光量子产率提高,体系的荧光强度明显增强。
     论文的第四章研究了铽纳米颗粒的制备、光谱性质和蛋白质对其荧光的增强效应及其分析应用。利用单宁酸做还原剂,首次将金属铽从它的硝酸盐中还原出来,制成金属铽纳米颗粒。以巯基丙酸做修饰剂,修饰铽纳米颗粒,并与蛋白质结合。比较修饰、结合蛋白质前后纳米颗粒的光学性质的变化。研究表明,通过还原剂的不同用量可以控制生成的铽纳米颗粒的大小,随着还原剂单宁酸用量的逐渐增加,生成的铽纳米颗粒直径不断减小。各种粒径的铽纳米颗粒都在275nm处有最大吸收,且随着铽纳米颗粒直径的增大,吸收峰的位置没有明显变化而吸收峰的强度逐渐增强。研究指出,铽纳米颗粒能够发射紫外荧光,其激发和发射峰分别位于256nm和388nm左右;且随着纳米颗粒变小,荧光强度逐渐变弱,但发射峰位置没有变化。以巯基丙酸做修饰剂,修饰铽纳米颗粒,可与蛋白质结合,且结合后体系的荧光强度明显增强,并伴随发射峰位置兰移。同时,研究了影响体系荧光强度的各种影响因素。在最佳实验条件下(即20nm铽纳米颗粒,pH6.8的磷酸盐缓冲溶液,CTAB浓度为5.0×10~(-5)mol/L时),体系荧光强度的增加与蛋白质浓度在一定范围内呈线性关系,BSA、HRP、P450、OMP以及NSE的线性范围分别为8.0×10~(-8)-1.0×10~(-5)g/ml、3.0×10~(-8)-8.0×10~(-5)g/ml、5.0×10~(-8)-1.2×10~(-5)g/ml、3.0×10~(-8)-9.0×10~(-5)g/ml和4.0×10~(-8)-1.1×10~(-5)g/ml。它们的检出限分别为3.4×10~(-8)g/ml、2.1×10~(-8)g/ml、1.9×10~(-8)g/ml、8.9×10~(-9)g/ml和1.1×10~(-8)g/ml。可见该方法有较高的灵敏度和较宽的线性范围。该方法已用于实际样品分析,结果令人满意。本文还以BSA蛋白质铽纳米荧光体系为代表,研究了蛋白质与铽纳米颗粒间的相互作用,并探讨了蛋白质增强铽纳米荧光荧光强度的机理。研究认为,铽纳米颗粒通过巯基丙酸与蛋白质结合,并发生了能量转移,即BSA将吸收的能量通过分子间能量转移的形式传递给铽,从而使铽的特征荧光强度增强。CTAB的加入使体系的荧光强度增强,一方面是由于CTAB也能将能量传递给铽纳米荧光体系,使得Tb-mercaptopropionic acid-BSA体系荧光增强;另一方面,CTAB和蛋白质为体系所提供的疏水环境能够减少络合物和水分子之间的碰撞,从而减少因碰撞而导致体系的能量损失。因此,体系的荧光量子产率提高和荧光强度明显增强。
     论文的第五章研究了金属纳米粒子与蛋白质间的荧光增强作用。将前期工作中新发现的金纳米颗粒近红外荧光特性以及新纳米材料金属铕纳米颗粒的荧光性质与金属纳米粒子表面荧光增强效应结合起来,研究金属纳米颗粒与蛋白质间的荧光增强效应,为建立样品用量少而灵敏的蛋白质荧光分析方法奠定了基础。本文将金属(金、铕)纳米颗粒及其标记物固定在石英玻璃表面上,不仅研究了金属纳米岛膜表面对蛋白质荧光的增强作用,而且研究了蛋白质对金属纳米岛膜荧光的增强作用。研究表明,P450能够明显增强金纳米岛膜的紫外荧光(λex=230nm,λem=400nm)和近红外荧光(λex=538nm,λem=811.2nm);而胶原蛋白隔离的金纳米岛膜对BSA的荧光有大的增强作用。与金纳米岛膜相比,铕纳米岛膜表面的增强作用较差。由于固体支架的准确固定、石英片的材质和厚度的均匀成度等因素都对金属纳米岛膜定量分析的准确度产生影响,所以,该方法还存在实验操作中的具体问题,有待于进一步研究。机理研究表明,首先,蛋白质与金纳米颗粒结合后可以提供较强的疏水微环境,从而使体系荧光强度增强。另外,在金岛膜的作用下,BSA中酪氨酸残基的荧光得到了明显的增强,并且已经超过了色氨酸残基的同步荧光强度。这是因为低量子产率的酪氨酸残基分子接近金岛膜纳米粒子后,荧光猝灭碰撞明显减少,并且辐射速率比猝灭速率更快,从而导致了低量子产率荧光基团的荧光强度得到显著增强。
     本论文的主要特点和创新点
     1.研究发现,15nm左右的金纳米颗粒能够发射近红外荧光,其激发和发射峰分别为538nm和811.2nm;随着纳米颗粒的减小,其荧光强度逐渐增强,且荧光峰位置不变;而蛋白质能够明显增强该近红外荧光强度。实验表明,在最佳实验条件下,体系的荧光强度的增加值与蛋白质浓度在一定范围内呈线性关系。据此以金纳米颗粒为荧光探针建立了蛋白质近红外荧光测定新方法。
     利用Zeta电位、TEM、吸收光谱、荧光光谱、共振散射光谱、圆二色谱和芘探针等技术研究了体系中蛋白质与金纳米颗粒间的相互作用,并提出了蛋白质对金纳米颗粒近红外荧光的增强机理。
     2.利用单宁酸做还原剂,首次制备了单一金属铕纳米颗粒,并研究了其光谱性质。研究发现,铕纳米颗粒能够发射紫外荧光,其激发和发射峰分别为275nm和380nm;随着纳米颗粒的增大,其荧光强度逐渐增强,而荧光峰逐渐兰移。可见,铕纳米颗粒的这种荧光性质的尺寸效应明显不同于贵金属纳米颗粒的荧光尺寸效应。研究指出,在SDBS存在下,蛋白质能够明显增强经硫辛酸修饰的铕纳米颗粒的荧光,且发射峰位置兰移。在最佳实验条件下,体系荧光强度的增加与蛋白质浓度在一定范围内呈线性关系。并以此建立了以铕纳米颗粒作为荧光探针的蛋白质新的测定方法。
     3.利用单宁酸做还原剂,首次制备了单一金属铽纳米颗粒,并研究了其光谱性质。研究发现,铽纳米颗粒能够发射紫外荧光,其激发和发射峰分别为256nm和388.2nm;铽纳米颗粒越小,荧光强度越弱,但其荧光峰位置几乎没有变化。研究指出,在CTAB存在下,蛋白质能够明显增强巯基丙酸修饰的铽纳米颗粒的荧光强度,且发射峰位置兰移。在最佳实验条件下,体系荧光强度的增加与蛋白质浓度在一定范围内呈线性关系。并以此建立了蛋白质定新的荧光光度法。
     4.本文利用Zeta电位、吸收光谱、共振光散射光谱、圆二色光谱和同步荧光光谱技术研究了蛋白质分别与铕、铽纳米颗粒间的相互作用和蛋白质对纳米颗粒荧光的增强机理。研究认为,铕和铽纳米颗粒分别通过硫辛酸和巯基丙酸与蛋白质相结合并发生了能量转移,即蛋白质吸收的能量通过分子间能量转移给铕和铽纳米颗粒,从而引起铕和铽纳米颗粒荧光的增强。表面活性剂SDBS和CTAB的加入能分别使铕和铽纳米颗粒体系的荧光强度增强,一方面是由于表面活性剂能分别参与两个体系的能量转移,另一方面表面活性剂和蛋白质能提供疏水环境,使体系的荧光量子产率提高,导致两体系的荧光明显增强。
     5.利用金属(金、铕)纳米岛膜表面不仅研究了它对蛋白质荧光的增强作用,而且也研究了蛋白质对金属纳米岛膜荧光的增强作用。研究表明,金纳米岛膜的增强作用优于铕纳米岛膜的增强作用。P450能明显增强金纳米岛膜的紫外荧光和近红外荧光;而用胶原蛋白作为隔离层的金纳米岛膜对BSA荧光有较大的增强作用。
     上述研究不仅扩展了金属纳米颗粒的范围,而且丰富了金属纳米颗粒的光谱性质,因而对纳米材料和纳米生物技术的发展具有重要的意义。
In the recent years, along with the rise of nano science and technology, metal naoparticles are widely used and studied by spacious researchers in medicine, sanitary analysis and bio-chemical immunity, and in which showed potential application value, because of the particular optical and electrical properties, high stability, small dimension and superficial effects and its unique bio-affinities. The unique superficial effects of metal nanoparticles are the key properties to exhibit excellent and particular capabilities when composite with other materials. The UV-Visible spectra, surface-enhanced Raman scattering (SERS), Resonance Light Scattering(RLS) and fluorescence spectra of metal nanoparticles have strong relations with the size, shape and particle arrangement of metal nanoparticles, and the direct combination or connected by modification with fluorescent molecules can also influence these spectra of fluorescent system. The influences on fluorescence spectra of metal nanoparticles may bring about fluorescent quenching or fluorescent enhancement, depend on the categories of metal nanoparticles and fluorescent molecules.
     Based on the researches of analytical chemistry, bio-chemistry and material chemistry, combined with the nano-science and technology, and using the techniques of fluorescence, absorption, light scattering and Circular Dichroism (CD) spectro-scopies, Transmission Electron Microscope(TEM), High-resolution Transmission Electron Microscope, and Zeta potential measurement, we studied the fluorescent enhancement effects of protein-metal nanoparticle systems, discussed the interaction and the fluorescence enhancement mechanism, and established the new fluorescent methods for the determination of trace proteins with metal nanoparticles as the probe.
     In the first part of the thesis, we summarized the research progresses of metal nano-science, the methods of preparation and the usage of metal nanoparticles., predicted the trends and prospects of metal nano-science in the future. 191 references were cited.
     In the second part of this thesis, the near infrared fluorescence of AuNPs and its enhancement by proteins were studied. We used reduction method in solution to
    produce different size gold nanoparticles. The studies of their absorption spectroscopy
    showed that big gold nanoparticles have absorption peaks only at 250nm, along with
    the decrease of particle size to 21 nm, a new absorption peak emerged at 525nm, and
    its intensity was increased with the decrease of particle size, absorption peak shifted
    to shorter wavelength. It was found that 15nm gold nanonanoparticle has a near
    infrared fluorescent emission, its excition and emission peaks were 538nm and
    811.2nm, respectively. Result also showed that the infrared fluorescent intensities of
    gold nanoparticles were greatly enhanced by proteins, and the factors which can
    influence the fluorescence enhancement were also studied. Experimental result
    showed that, under the optimized conditions, that is 15nm gold nanoparticles, and
    pH7.0 phosphoric buffer solution, there was the linear relationship between the
    fluorescent intensities of this nano-system and the concentrations of proteins in a
    definite range of concentrations, the linear ranges of P450, BSA, HRP, and HSA were
    2.3×10~(-7)-1.0×10~(-5)mol/L, 2.0×10~(-7)-1.5×10~(-5)mol/L, 1.5×10~(-7)-1.5×10~(-5)mol/L, and
    1.5×10~(-7)-1.5×10~(-5)mol/L, respectively, and the detection limits were 2.44×10~(-8)mol/L,
    2.21×10~(-8)mol/L, 1.99×10~(-8)mol/L and 2.01×10~(-8)mol/L, respectively. So this method
    was sensitive. This method was used for the analysis of some specific samples and the
    results were satisfactory. We take BSA as example to discuss the mechanism of the
    interaction and the fluorescence enhancement of gold nanoparticles by proteins using
    the techniques of Zeta measurement, fluorescent life times, Transmission Electron
    Microscope(TEM), fluorescence spectroscopy, absorption spectroscopy, light
    scattering, and Circular Dichroism spectroscopy(CD). Result showed that gold
    nanoparticles can directly connect to proteins, aggregated orderly around the protein
    according to the particle size, shorten the distance between gold nanoparticles,
    changed the transmitting properties of surface plasma and resulted in the interactions
    between the modes of local surface plasma and the surface plasma. These interactions
    were influenced by the dielectric properties of peripheral environment. At the same
    time, the plasma produced by metal nanoparticle can increase the electronic field of
    its peripheral environment, and the increased electronic field can interact with the
     peripheral environment. This may be the part reasons that make the fluorescence intensity of nanogold labeled proteins increase. Additionally the hydrophobic environment provided by proteins can also lead to the increase of infrared fluorescent intensity of gold nano-system.
     In the third part of the thesis, the preparation method and the optical properties of alone metal europium nanoparticles and the fluorescence enhancement effects of the system were studied. Use tannic acid as reducer, for the first time, to reduce europium ions to europium nanoparticles, which were modified with lipoic acid in order to connect with proteins. Results showed that different amount of reducers can produce different size of nanoparticles, the lesser tannic acid used, the larger the size of europium nanoparticles. All sizes of europium nanoparticles have absorption peaks at 275nm, but the fluorescence intensity enhances along with the increase in particle size. Result showed that 20nm europium nanoparticles have UV-emission peaks at 380nm with the excitation of 275nm, which were increased and blue shifted along with the increase of particle size. This size effect of europium nanoparticle was different to that of noble metal nanoparticle obviously (the emission peak was red shifted along with the increase of size). The fluorescence intensity was decreased by the modification of lipoic acid but greatly increased by the proteins with a blue shift of the emission peak. The factors which could influence the fluorescent intensities of the nano-system were also studied at the same time. Under the optimized conditions, that is, lipoic acid modified 20nm europium nanoparticles, in the presence of SDBS and pH6.0 phosphoric buffer solution, the fluorescent intensities of this nano-system was linear with the concentrations of proteins in a definite range of protein concentrations, the linear ranges of BSA, HRP, P450, OMP and NSE were 6.0×10~(-8)-1.2×10~(-5)g/ml 2.0×10~(-8)-1.5×10~(-5)g/ml 6.0×10~(-8)-1.4×10~(-5)g/ml, 2.0×10~(-8)-1.8×10~(-5)g/ml and 3.0×10~(-8)-1.2×10~(-5)g/ml, respectively, and their detection limits were 3.2×10~(-8)g/ml, 1.0×10~(-8)g/ml, 2.9×10~(-8)g/ml, 9.8×10~(-9)g/ml and 1.2×10~(-8)g/ml respectively. Therefore, this method was sensitive with a broader linear range. We have used this method to some specific samples and the results are satisfactory. We have also discussed the interaction of proteins with nanoparticles and the mechanism of the fluorescence enhancement of europium nanoparticle system by trace proteins. It was considered that europium nanoparticle conjugated with proteins through lipoic acid modifier, and there was an energy transfer between them, that was, the energy absorbed by the protein was transferred to europium nanoparticles through intermolecular energy transfer, which maked the fluorescence intensity of europium nanoparticle increase. The existence of SDBS could also enhance the fluorescence intensity of this system , firstly because SDBS also transferred absorbed energy to Eu-lipoic acid-protein system to make the fluorescence intensity of europium nanoparticle increase, another reason was that both SDBS and protein could provide the hydrophobic environment for europium nanoparticles, which could decrease the opportunities of collision between water molecules and the conjugates, resulting in the decrease of the energy loss due to the collisions. So the fluorescent quantum yield increased and the fluorescent intensities enhanced.
     In the fourth part of the thesis, the preparation method and the optical properties of alone metal terbium nanoparticles and the fluorescence enhancement effect of the system were studied. Use tannic acid as reducer, for the first time, to reduce terbium ions to terbium nanoparticles, which was modified with mercaptopropionic acid in order to connect with proteins. Results showed that different amount of reducers can produce different size of nanoparticles, the more tannic acid used, the lesser the size of terbium nanoparticles. All sizes of terbium nanoparticles have absorption peaks at 275nm, but the fluorescence intensity enhances along with the increase in particle size. It is found that terbium nanoparticle has UV-emission peak at 388.2nm by the excitation of 256nm , and the fluorescence intensity was increased without emission peak changes along with the increase of particle size. Terbium nanopartlce could conjugate with proteins by modifying its surface with mercaptopropionic acid, and make the fluorescence intensity of the conjugate enhanced obviously accompanied by a blue shift of emission peak. The factors which could influence the fluorescent intensities of the nano-system were also studied at the same time. Under the optimized conditions, that is, mercaptopropionic acid modified 20nm terbium nanoparticles, in the presence of CTAB and pH6.8 phosphoric buffer solution, the fluorescent intensities of this nano-system was linear with the concentrations of proteins in a definite range of protein concentrations, the linear ranges of BSA, HRP, P450, OMP and NSE were 8.0×10~(-8)-1.0×10~(-5)g/rnl 3.0×10~(-8)-8.0×10~(-5)g/ml 5.0×10~(-8)-1.2×10~(-5)g/ml, 3.0×10~(-8)- 9.0×10~(-5)g/ml and 4.0×10~(-8)-1.1×10~(-5)g/ml respectively, and the detection limits were 3.4×10~(-8)g/ml, 2.1×10~(-8)g/ml, 1.9×10~(-8)g/ml. 8.9×10~(-9)g/ml and 1.1×10~(-8)g/ml, respectively. So this method was sensitive with a broader linear range. This method has be used for the analysis of some specific samples and the results are satisfactory. We take BSA as example to discuss the interaction of proteins with nanoparticles and the mechanism of the fluorescent enhancement of terbium nanoparticle system by proteins. It was considered that terbium nanoparticle conjugated with proteins through mercaptopropionic acid modifier and there was an energy transfer between them , that was, the energy absorbed by BSA was transferred to terbium through intermolecular energy transfer, which maked the fluorescence intensity of terbium nanoparticle increase. While CTAB could enhance the fluorescence intensity of this system, firstly because CTAB could also transfer absorbed energy to Tb-mercaptopropionic acid-protein system to make the fluorescence intensity of terbium nanoparticle increase, another reason was that both CTAB and BSA could provide the hydrophobic environment for terbium nanoparticles, which decreased the opportunities of collision between water molecules and the conjugates, resulting in the decrease of the energy loss due to the collisions. So the fluorescent quantum yield increased and the fluorescent intensities enhanced.
     In the fifth part of this thesis, the fluorescence enhancement between metal nanoparticle island film and the proteins were studied. We integrate our new research works such as infrared fluorescence of AuNGs and fluorescence properties of rare earth metal nanoparticles, with the fluorescence surface enhancement effect, to study the fluorescence enhancement between nanoparticle and proteins, in order to build up the sensitive new method of microanalysis. The metal nanoparticles (Au, Eu) and the proteins are fixed on the surface of quartz slides, we study not only the fluorescence enhancement of the proteins brought by nanop-metal island film surface, but also the fluorescence enhancement of metal nanoparticle island film by proteins. Result showed that the UV-fluorescent (λex=230nm,λem=400nm) and infrared fluorescent (λex=538nm,λem=811.2nm) intensities of AuNP island film were greatly increased by p450, while the fluorescent intensity of BSA was greatly increased by the AuNP island film (λex=280nm,λem=350nm). Contrary to the nano-gold island film, the fluorescence enhancement of nano-europium island film was very weak. Because that the factors, such as fixing of solid scaffold, the quality of quartz slide, and the equality of the thickness, can influence the fluorescence enhancement between protein and metal nano-island film, so in this method, there are experimental problems need to further study. The mechanism study showed that, at first, the strong hydrophobic environment provided by the proteins increased the intensity of the nano-sysytem, another reason was that the fluorescence intensity of the tyrosine residues with lower quantum yield in the proteins was greatly enhanced when it adjacent to the surface of nano-gold island film, even greater than that of tryptophan residue, which is attributed to that when the tyrosine residue adjacent to the surface of nano-gold island film, the fluorescence quenching from the collision with water molecules decreased, and the rate of emission is greater than the rate of quenching, so as to increase the fluorescence intensity of lower quantum yield fluorescent group greatly.
     The characteristics and innovations of the thesis are as follows:
     1. It is found that 15nm gold nanoparticle has a near infrared fluorescence emission of 811.2nm with the excitation peak of 538nm, the fluorescence intensity was increased along with the decrease of particle size without the shift of the emission peak, and the infrared fluorescence intensity of this system was greatly enhanced by proteins. Experimental results showed that under the optimized conditions, the fluorescent intensities of this nano-system was linear with the concentrations of proteins in a definite range of protein concentrations. According to this, a new infrared fluorescence method for the determination of proteins was established by using nano-gold as fluorescence probe.
     We studied the interaction between nanogold and proteins by Zeta potential measurement, TEM and fluorescence, absorption, light scattering, Circular Dichroism (CD) spectroscopies, and put forward the mechanism of infrared fluorescence enhancement of nano-gold particles by the proteins.
     2. Using tannic acid as reducer, for the first time, to reduce europium ions to metal europium nanoparticles, and the optical properties were studied. Study found that europium nanoparticles could emit UV fluorescence with the emission peaks of 380nm and the excitation peaks of 275nm, its intensity was increased with a concomitant blue shift of the emission peak along with the increase of particle size. This size effect of europium nanoparticle was different to that of noble metal nanoparticle obviously. The investigation showed that at the existence of SDBS, proteins can greatly enhance the fluorescence intensity of europium nanopartlce modified by lipoic acid with a blue shift of emission peak. Under the optimized conditions, the fluorescent intensities of this nano-system was linear with the concentrations of proteins in a definite range of protein concentrations. Therefore, a new analytical method for the determination of proteins was established by using europium nanoparticles as the fluorescence probe.
     3. Using tannic acid as reducer, for the first time, to reduce terbium ions to metal terbium nanoparticles, and the optical peoperties were studied. Study found that terbium nanoparticles have UV-emission peak of 388.2nm with the excitation peak of 256nm, its intensity was increased along with the increase of particle size. The study showed that at the existence of CTAB, proteins can enhance the fluorescence intensity of terbium nanopartlce modified by mercaptopropionic acid. Under the optimized conditions, the fluorescent intensities of this nano-system was linear with the concentrations of proteins in a definite range of protein concentrations. Therefore, a new analytical method for the determination of proteins was established by using terbium nanoparticles as the fluorescence probe.
     4. We discussed the interaction between europium, terbium nanoparticles and proteins and the fluorescence enhancement of europium, terbium nanoparticle systems by proteins, respectively, using the techniques of Zeta potential measurement and fluorescence, absorption, light scattering and Circular Dichroism (CD) spectroscopies. Study concluded that europium and terbium nanoparticles conjugated with proteins through lipoic acid and mercaptopropionic acid, respectively, and the energy transfers were occurred, that was, the energy absorbed by BSA was transferred to both europium and terbium, respectively, through intermolecular energy transfer, resulting in the increase of fluorescence intensities of both europium and terbium nanoparticles enhanced. In addition, SDBS and CTAB can also enhance the fluorescence intensities of both europium and terbium nanoparticle systems, respectively, firstly because SDBS and CTAB can transfer the absorbed energy to Eu-lipoic acid-protein and Tb-mercaptopropionic acid-protein systems to make the fluorescence intensities of europium and terbium nanoparticles increase, another reason is that the hydrophobic environment provided by SDBS-protein and CTAB-protein can increase the fluorescent quantum yield of two systems and make their fluorescent intensities enhance.
     5. Using the nano-metal (Au, Eu) island films, we studied not only the fluorescence enhancement of the proteins brought by nano-metal island film, but also the fluorescence enhancement of nano-metal island film by the proteins. Results showed that the effect of surface enhanced fluorescence of nano-gold island film was better than that of nano-europium island film. P450 can enhance both the intensities of UV-fluorescence and infrared fluorescences of nano-gold island film, while the nano-gold island film with the collagen can increase the fluorescence intensity of BSA.
     The studies mentioned above not only broaden the ranges of metal nanoparticles, but also enriched optical properties of metal nanoparticles; as a result, these studies are very important to the development of nano-materials and nano-biotechnique.
引文
1 Lauret M. Sheppard. Am.Cera.Bull[J]. 1990, 69(11): 1801-1812
    2 周祺。纳米科技溯源[N]。文汇报,2000-12-20
    3 王文中,李良荣,刘兴龙.纳米材料的性能、制备和开发应用[N],材料导报,1994(6):8-11
    4 Ball P, et al. Science at the atomic scale [J]. Nature,1992,355:7611
    5 王大志.纳米材料结构特征[J],功能材料,1993,24(4):303-306
    6 赵于文.超细粉的性能、制备及应用[J]。现代化工,1991(5):52-55
    7 Cavicchi R E, et al, Coulomb suppression of tunneling rate from small metal particles[J]. Phys Rew Lett,1984,52(16):1453-1458
    8 Kubo R. Electronic Properties of Metallic Fine Particles [J]. J Phys Soc of Jap, 1962, 17:975-986
    9 张立德等。物理学与新型功能材料专题系列介绍-开拓原子和物质的中间领域:纳米微粒与纳米固体[J]。物理,1992,21(3):167
    10 孙双姣,蒋治良。金纳米微粒的制备和表征及其在生化分析中的应用。贵金属,2005,26(3):55-65
    11 Mindyn R, Thomas A. The nanotructured materials industry [J]. Am Ccram Soc Bull, 1997, 76 (6): 511
    12 Alvisatos A P. J. Phys. Chem., 1996,100: 13226—13239
    13 Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Environmental Applications of Semiconductor Photocatalysis[J]. Chem. Rev. 1995, 95(1):69-96
    14 Steeb H, Warlimont H. Rapidly Quenched Metals. Amsterdam: Elsevier Press, 1985, 1449
    15 Haasen P, Jaffe R I. Amorphous Metals and Semiconductors. London: Pergamon Press, 1986, 365-377
    16 Anantharaman T R. Rapidly Solidified Metals. Switzerland: TransTech Press, 1984, 225
    17 张立德(Zhang L D),牟季美(Mou J M)。纳米材料和纳米结构(Nanosized Materials and Nanostructure)。北京(Beijing):科学出版社(Sciense Press),2002,20-21
    18 谭碧生,曹晓红,莫志宏。金纳米粒子的制备方法及在DNA检测中的应用。重庆大学学报,2003,26(4):58-62,
    19 Mirkin C A, Letsinger R L, Mucic R C, Storhoff J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382(6592): 607-609
    20 Niemeyer, C M. DNA-Directed Functionalization of Colloidal Gold with Proteins [J], Angew Chem Int Ed, 2001, 40,4138
    21 Robert Elghanian, James J. Storhoff, Robert C. Mucic, Robert L. Letsinger and Chad A. Mirkin. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science, 1997, 277: 1078-1081
    22 Sato K, Hosokawa K, MaedaM. Non-cross-linking gold nanoparticle aggregation as a detection method for single-base substitutions. Nucleic Acids Res., 2005, 33 (1): e4
    23 Storhoff J J, Lucas A D, Garimella V, Bao Y P, Muller UR. Nat Biotechnol., 2004, 22(7): 883-887
    24 Sonnichsen C, Reinhard B M, Liphardt J, Alivisatos A P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol., 2005, 23(6): 741-745
    25 Chiang C L. Controlled growth of gold nanoparticles in Aero-sol-OT/sorbitan molooleate/isooctane mixal reverse Micelles [J]. Colloid Interface Sci, 2000, 230(1): 60-66
    26 Esumi K, Kameo A, Suzuki A, et al. Preparation of gold nan-oparticles using 2- vinylpyridine telomers possessing multi-hydrocarbon chains as stabilizer [J]. Colloid Surf A, 2001,176(2-3): 233-237
    27 Lin J, Zhou W1, O'Connor Cj, et al. Synthesis and self-organization of gold nanoparticles into superlattices from CTAB reverse micelles [M]. Singapore: World Scientific Publishing Co Pte Ltd, 1999, 405-410
    28 Esumi K, Hosoya T, Suzuki A, et al. Preparation of Hydrophobitically Modified Poly(amidoamine) Dendrimer-Encapsulated Gold Nanoparticles in Organic Solvents[J]. J Colloid Interface Sci, 2000, 229(1): 303-306
    29 Gomez S, Philippotk, Colliere V, et al. Gold nanoparticles from self-assembled gold (Ⅰ) amine precursors [J]. Chem Commun, 2000, 19:1945-1946
    30 Shi H, Zhang L, Cai W. Preparation and optical absorption of gold nanoparticles within pores of mesoporous silica [J]. Mater Res Bull, 2000,35(10): 1689-1695
    31 Joseph W, Danke X, Abdelnasser K, et al. Metal nanoparticle-based electrochemical stripping potentimetric detection of DNA hybridization [J]. Anal Chem, 2001,73(22): 5576-5581
    32 Authierl, Grossiord C, Brossier D, et al. Gold nanoparticle-based quantative electrochemical detection of amplified haman eytomegalovirus DNA using disposable microband electrodes [J]. Anal Chem, 2001,73(18):4450-4456
    33 张波,张占军,王斌等。硅基底金纳米粒子微阵列电极的制备及其电化学性质的研究[J]。化学学报,2001,59(11):1932-1936
    34 赵红秋,林琳,唐季安等。利用纳米金颗粒增强DNA探针在传感器上的固定程度和识别能力[J]。科学通报,2001,46(4):292-295
    35 莫志宏,吴中福,靳平等。压电谐振阵列芯片及其制备方法[P]。中国专利:01107143.5.2001-09-26
    36 吴永强。压电传感生物芯片检测研究[D]。重庆:重庆大学化学化工学院,2000
    37 Hayat M H. Principles and Techniques of Electron Microscopy. Biological Applications, HayatM H (Ed.) van Nostrand Reinhold, New York, USA, 1970
    38 Horisberger M. Scanning Electron Microscopy Ⅱ, 1981:9~31 Horisberger M, Rosset J. Colloidal gold, a useful marker for transmission and scanning electron microseopy.J Histochem Cyto-chem, 1977,25:295-305
    39 胡瑞省,刘善堂,朱梓华等。金纳米粒子在平整硅基表面上的组装[J]。物理化学学报,2000,16(3):202-206
    40 刘善堂,胡瑞省,朱梓华等。金纳米粒子组装结构中的表面重组现象[J]。物理化学学报,2000,16:294-298
    41 朱梓华,朱涛,刘忠范。大粒径单分散金纳米粒子的水相合成[J]。物理化学学报,1999,15(11):966-970
    42 Ames J Storhoff, Anne A Lazarides, Chad A Mirktn, et al. What Coutrols the Optical Properties of DNA-Linked Gold Nanopatide Assemblies [J]. J Am Chem Soc., 2000, 122: 4640-4650
    43 Elghanian R, Storhoff J J, Mucic P C, et al. Selective colorimetric detection of polynucleotides based on the distance dependent optical properties of gold nanoparticles[J]. Science, 1997, 277(5329): 1078-1081
    44 董守安,唐春。DNA识别、生物传感器和基因芯片中的纳米金和银粒子。贵金属,2005,26(1):53-62
    45 Marcel Bruchez, Jr., Mario Moronne, Peter Gin, Shimon Weiss and A. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science, 1998, 281: 2013-2016
    46 Peng Z A, Peng X G. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc., 2001, 123:183-184
    47 Chan W CW, Nie S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopie Detection Science, 1998, 281:2016-2018
    48 Mitchell G P, M irk in C A , Letsinger R L. Programmed Assembly of DNA Functionalized Quantum Dots .J. Am.Chem. Soc., 1999, 121(35):8122-8123
    49 Mat toussi H,Mauro J M, Goldman E R, et al. Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein J. Am. Chem. Soc., 2000, 122(49): 12142-12150
    50 Sun B, Xie W, Yi G; et al. Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. J. Immuno.Methods, 2001, 249:85
    51 Benoit Dubertret, Paris Skouddes, David J. Norris, Vincent Noireaux, Ali H. Brivanlou, and Albert Libchaber.In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles. Science, 2002,298:1759-1762
    52 Cui Y Y, Nie S, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 2004, 22:969
    53 Gaponik N, Talap in D V, Rogach A L, et al. Thiol-capping of CdTe nanocrystals:An alternative to organometallic synthetic routes[J]. Phys.Chem. B, 2002, 106:7177-7185
    54 Zhang H, Zhou Z, Yang B. The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles. J. Phys. Chem. B, 2003, 107: 8
    55 Sondi I, Siiman O, Matijevic E. Synthesis of CdSe nanoparticles in the presence of aminodextran as stabilizing and capping agent. Science, 2004, 275(2):503-507
    56 Liu S M, Guo H Q, Zhang Z H, et al. Characterization of CdSe and CdSe/CdS Core Shell Nanoclusters Synthesized in Aqueous Solution. Physica E,2000, 6(8): 174-178
    57 徐时清,赵康,魏建峰。二氧化钒超细粉末制备技术及进展[J]。稀有金属,2001,25(5):360-363
    58 Wang Y, Herron N. Photoluminescence and relaxation dynamics of cadmium sulfide superclusters in zeolites [J]. J. Phys. Chem., 1988, 92(17): 4988-4994
    59 Bhargava R N, Gallagher D, Wdkler T.[J]. Doped nanocrystals of semiconductors-a new class of luminescent materials. J. Lumin,1994, 60&61:275-280
    60 Likawa F, Bernussi A A. Luminescence and photomodulated transmission measurements in InGaAs/GaAs modulation doped single quantum wells [J]. J. A ppl. Phys., 1994, 75(6): 3071-3074
    61 Mo C M. Zhang L D, et al.[J]. J. Appl. Phys., 1993, 73(10): 5185-5188
    62 Banedee S.[J]. Bull. Mater. Sci., 1994,17(5): 533-550
    63 郭常心,李碧林。发光学报,2001,22(30):223-226
    64 王世敏,许祖勋,傅晶。纳米材料制备技术[M]。北京:化学工业出版社,2002
    65 徐甲强,潘庆谊,孙雨安等。纳米氧化锌的乳液合成、结构表征与气敏性能[J]无机学报,1998,14(3):355-359
    66 Nemec P, M Ikesd, Rohovec J, et al. Light-controlled Growth of CdSe Nanocrystalline Films Prepared by Chemical Deposition [J]. Material Science and Engineering, 2000, B69-70:500-504
    67 瞿华峰,李建保,欧阳可青等。t-ZrO2-TiO2固溶体纳米粉的制备[J]。清华大学学报(自然科学版),2003,43(6):758-761
    68 沃恒洲,胡献国,胡淑丽等。均匀沉淀法制备纳米二硫化钼粉末的研究[J]。合肥工业大学学报,2003,26(4):486-489
    69 杨晓娟,刘尔生,陈耐生等。几种尖晶石复合氧化物纳米粉体的制备及气敏性[J]。Chinese Journal of Applied chemistry,1998,(5):14-17
    70 郑典模,苏学军。化学沉淀法制备纳米SiO2的研究[J]。南昌大学学报(工科版),2003,25(2):39-41
    71 潘庆谊,徐甲强,刘宏民等。微乳液法SnO2材料的合成、结构与气敏性能[J]。无机材料学报,1999,14(1):85-88
    72 江贵长,官文超,郑启新。苯乙烯/甲基丙烯酸-二氧化钛纳米微球的性能[J]。华中科技大学学报(自然科学版),2003,31(11):98-100
    73 Qmgsheng Wu, Nengwu Zheng, Yadong Li, et al. Preparation of Nanosized Semiconductor CdS Particles by Emulsion Liquid Membrane with o- phenanthroline as Mobile Carder [J]. Journal of Membrane Science, 2000,172:199-201
    74 李小兵,刘竞超。纳米粒子与纳米材料[J]。塑料,1999,28(1):19-22
    75 张泰。纳米材料的制备技术及进展[J]。辽宁化工,1999,28(1):3-8
    76 张而耕,王志文。溶胶-凝胶法制备纳米SiO2超细粉体[J]。机械工程材料,2002,26(12):32-34
    77 刘静波,王智民,郑春萍等。镧掺杂钛酸钡纳米晶陶瓷元件的湿敏特性[J]。功能材料与器件学报,2000,6(2):106-110
    78 李蓉萍,辛颖。纳米TiO2敏感特性的研究[J]。传感技术,2002,21(11);57-60
    79 Sanz N, Baldeck P L, Ibaneza. Organic Nanocrstals Embedded in Sol2gel Glasses ForOp ticalApp lications[J].SyntheticMetals, 2000, 115:229-234
    80 Shaofeng Yang, Yanhua L Iu, Yupeng Guo, et al. Preparation of Ruffle Titania Nanocrystals byL iquid Method at Room Temperature [J]. Material Chemistry and Physics, 2002, 77:501-506
    81 薛天峰,胡季帆,秦宏伟等。掺铝ZnO纳米粉的制备与气敏特性研究[J]。金属功能材料,2003,10(4):20-23
    82 Lifsh Itz E, Dag I, Litv In I, et al. Optical Propertics of Cdse Nanoparticle Films Preponed by Chemical Deposition and Sol-gel Methods J]. Chem Phys Lett, 1998, 288 (2-4): 188-196
    83 Kenichihashizume, Martin Vacha, Toshirotan I. Preparation and Optical Properties of Capped-CdSe Nanocrystals[J]. Journal of Luminescence, 2000, 87-89:402-404
    84 Zhang Baolong, Chert Baishun, Shi Keyu, et al. Prepareaion and Characterization of Nanocrystal Grain TiO2 PorousMicrosphere [J]. App lied Catalysis B: Enviromental, 2003, 40:253-258
    85 Yujun Bai, Zhenggang Liu, Xiangang Xu, et al. Preparation of InN Nanocrystals by Solvo-thermal Method[J]. Journal of Crystal Growth, 2002, 241:189-192
    86 张元广,陈友存。在油酸表面活性剂中制备高晶度纳米CaCO3微晶[J]。化学世界 没,2003,(5):243-245
    87 Qian Y T, Su Y. Hydrothermal Preparation and Characterization of Nanocrystalline Powder of Spha Lerite [J]. Mater Res Bull. 1995, 30 (5): 601-605
    88 李东风,贾振斌,魏雨。尖晶石型软磁铁氧体纳米材料的制备研究进展[J]。电子元件与材料,2003,22(6):37-40
    89 姚志强,王琴,钟炳。超临界流体干燥法制备锰锌铁氧体超细粉末[J]。磁性材料与器件,1998,29(1):69
    90 Faraday M. Philos.Trans. Roy. Soc. London, Ser. A, 1857, 147:145
    91 Henglein A, Giersig M. Formation of colloidal silver nanoparticles capping action of citrate[J]. J. Phys. Chem., B 1999, 9533
    92 Link S, Wang Z L, El-Sayed M A. Aolly formation of gold-silver nanopariticles and the dependence of the plasmon absorption on their composition [J]. J. Phys. Chem., 1999, 103:3529
    93 Brust M, Walker A, Bethell D, et al. Synthesis of thiol derivatised gold nanoparticles in a two-phase liquid-liquid system [J]. Chem, Soc. Chem. Commun., 1994, 801
    94 Wang S, Li Y L, Du C M, et al. Self-organization of gold nanoparticles protected by 9-(5-thiopentyl)-carbazolE[J].Chinese Chemical Letters, 2001, 12(12): 1141-1144
    95 onezawa T, Onoue S, Kimizuka N. Formation of uniform fluorinated gold nanoparticles and their highly ordered hexagonally packed monolayer[J]. Langmir, 2001,17(8): 2291-2293
    96 Yonezawa T, Yasui K, Kimizuka N. Controlled formation of smaller gold nanoparticles by the use of four-chained disulfide stabilizer[J]. Langmuir, 2001, 17(2): 271-273
    97 Tetsu Yonezawa, Toyoki Kunitake. Practical preparation of anionic mercaptoligand-stablized gold nanoparticles and their immobilization [J]. Physicochemical and Engineering Aspects, 1999, 149:193-199
    98 Selvakannan P R, Mandal S, Pasdcha R, et al. One-step synthesis of hydrophobized gold nanoparticles of controllable size by the redution of aqueous chloroaurate ions by hexadecylaniline at the liquid-liquid interface [J]. Chemical Communications, 2002, 9(13): 1334-1335
    99 Dai X H, Tan Y W, Xu J. Formation of gold nanoparticles in the presence of o-anisidine and the dependence of thestructure of poly (o-anisidine) on synthetic condtions[J]. Langrnuir, 2002, 18(23): 9010-9016
    100 Gardea T L L, Tiemann K J, Gomez G, et al. Gold nanoparticle obtained by bio-precipitation from gold(Ⅲ)solution[J]. Nanopart. Res., 1999, 1 (3): 397-404
    101 Dykma L A, Lyakhov A A, Bogaytev V A, et al. Synthesis of colloidal gold using high-molecular weight reducing agents [J]. Colloid. J, 1998, 60(6): 700-704
    102 兰新哲,金志浩,赵西成等。PVP保护还原法制备纳米金溶胶[J]。稀有金属材料与工程,2003,32(1):50-53
    103 Jie Zheng, Jeffrey T. Petty, and Robert M. Dickson, High Quantum Yield Blue Emission from Water-Soluble Au8 Nanodots, J. Am. Chem. Soc. 2003, 125:7780-7781
    104 Gangli Wang, Rui Guo, Gregory Kalyuzhny, Jai-Pil Choi, and Royce W. Murray, NIR Luminescence Intensities Increase Linearly with Proportion of Polar Thiolate Ligands in Protecting Monolayers of Au38 and Au140 Quantum Dots J. Phys. Chem. B 2006, 110: 20282-20289
    105 Marco Montalti, Nelsi Zaccheroni, Luca Prodi, Niamh O'Reilly, and Smart L. James. Enhanced Sensitized NIR Luminescence from Gold Nanoparticles via Energy Transfer from Surface-Bound Fluorophores , J. Am. Chem. Soc., 2007, 129:2418-2419
    106 何峰等。制备超细金属粉末的新型电解法[J]。金属学报,2000,(6):6591
    107 刘传绍,张冬梅,赵波,焦锋,高国富。纳米材料的制备与加工技术进展[J]。《新技术新工艺》·材料与表面处理技术,2006,4:119-122
    108 严海标,陈名华,郦华兴。聚合物/无机纳米复合材料的进展[J]。石化技术与应用,1999,17:118-120
    109 董均,杨宏昀,李春忠等。气相燃烧合成纳米SiO2颗粒的工艺条件研究[J]。化学世界,2003,(3):119-121
    110 魏少红,牛新书,蒋凯。WO3纳米材料的NO2气敏特性[J]。传感技术,2002,21(11):11-17
    111 王尔德,于振兴,刘祖岩。纳米晶复合物Mg-Ni-V2O5储氢性能研究[J]。功能材料,2002,33(3):280-282
    112 于振兴,王尔德,刘祖岩等。纳米晶复合Mg-Ni-Cr2O3的吸放氢性能[J]。中国有色金属学报,2002,12(4):743-748
    113 胡季帆,隋振贵,陆宏良等。TiO2纳米微粉及生物染料的光催化降解[J]。功能材料,2003,34(3):336-337
    114 Tsuzuki T, Nakash Ima P N H, Mccorm Ick P G. Conf Optoelectron Microelectron Mater Devices Proc [C].Meeting Date, 1998, 403-406
    115 Chenmou Zheng, Xinmin Zhang, Zhengping Qiao, et al. Preparation and Characterization of Nanocrystal V2O5 [J]. Journal of Solid State Chemistry, 2001, 159: 181-185
    116 邓忠民,洪友士,朱晨。SPD纳米材料制备方法及其力学特性[J]。力学进展,2003,33(1):56-63
    117 Zhernakov Vs, Latysh V V, Stolyarov V V, et al. The Developing of Nanostructured SPD Ti for Structureal Use[J]. Scripat Matedalia, 2001, 44:1771-1774
    118 Val Iev R Z. SPD Processing and Properties of Metastable Nanostructured Alloys[J]. Materials Science Forum, 2000,8:773-778
    119 Huang J Y, Zh I Y T, J Iang H, et al. Microsturctures and Dislocation Configuration and Straightening [J]. Acta Materialia, 2001, 49:1497-1505
    120 陈彩风,陈志刚。超声场中湿法制备纳米粉末的原理和方法[J]。机械工程材料,2003,27(4):30-32
    121 王菊香,潘进。超声电解法制备超细金属粉的研究[J]。金属功能材料,1997,3:115-118
    122 Bin Li,Yi Xie, Jiaxing Huang, et al. A Novel Method for the Preparation of Ⅲ-Ⅴ Semiconductors: Sonochemical Synthesis of InP Nanocrystals [J]. Ultrasonics Sonochemistry, 2001, 8:331-334
    123 赵愚,余海湖,姜德生。技术创新与全球纳米自组装技术的发展[J]。科技进步与对策,2002,19(5):75-77
    124 Yin SY, Wang ZL. Preparation of Self-assembled Cobalt Nanocrystal Arrays [J]. Nanostructured Material, 1999, 11 (7): 845-852
    125 Chen SJ and Chang HT. Nile Red-Adsorbed Gold Nanoparticles for Selective Determination of Thiols Based on Energy Transfer and Aggregation. Anal. Chem., 2004, 76(13): 3727-3734
    126 X. Zhou and J. Zhou. Improving the Signal Sensitivity and Photostability of DNA Hybridizations on Microarrays by Using Dye-Doped Core-Shell Silica Nanoparticles. Anal. Chem., 2004, 76(18): 5302-5312
    127 T. Matsuya, S. Tashiro, N. Hoshino, N. Shibata, Y. Nagasaki and K. Kataoka. A Core-Shell-Type Fluorescent Nanosphere Possessing Reactive Poly(ethylene glycol) Tethered Chains on the Surface for Zeptomole Detection of Protein in Time-Resolved Fluorometric Immunoassay. Anal. Chem., 2003, 75(22): 6124-6132
    128 H. Li and L. J. Rothberg. DNA Sequence Detection Using Selective Fluorescence Quenching of Tagged Oligonucleotide Probes by Gold Nanoparticles. Anal. Chem., 2004, 76(18): 5414-5417
    129 N. Nath and A. Chilkoti. Label-Free Biosensing by Surface Plasmon Resonance of Nanoparticles on Glass: Optimization of Nanoparticle Size. Anal. Chem., 2004, 76(18): 5370-5378
    130 L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West. A Whole Blood Immunoassay Using Gold Nanoshells. Anal.Chem., 2003, 75(10): 2377-2381
    131 K. Asian, J. R. Lakowicz and C. D. Geddes. Nanogold Plasmon Resonance-Based Glucose Sensing. 2. Wavelength-Ratiometric Resonance Light Scattering. Anal. Chem., 2005, 77(7): 2007-2014
    132 Shu-Fang Cheng and Lai-Kwan Chau. Colloidal gold-modified optical fiber for chemical and biochemical sensing. Anal. Chem., 2003, 75(1): 16-21
    133 W. E. Doering and S. Nie. Spectroscopic Tags Using Dye-Embedded Nanoparticles and Surface-Enhanced Raman Scattering.Anal. Chem., 2003, 75(22): 6171-6176
    134 D. S. Grubisha, R. J. Lipert, H. Y. Park, J. Driskell and M. D. Porter. Femtomolar Detection of Prostate-Specific Antigen: An Immunoassay Based on Surface-Entranced Raman Scattering and Immunogold Labels. Anal. Chem., 2003, 75(21): 5936-5943
    135 K. Faulds, W. E. Smith and D. Graham. Evaluation of Surface-Enhanced Resonance Raman Scattering for Quantitative DNA Analysis. Anal. Chem., 2004, 76(2): 412-417
    136 C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane and T. Huser. Intracellular pH Sensors Based on Surface-Enhanced Raman Scattering. Anal. Chem., 2004, 76(23): 7064-7068
    137 J. Kneipp, H. Kneipp, W. L. Rice and K. Kneipp. Optical Probes for Biological Applications Based on Surface-Enhanced Raman Scattering from Indocyanine Green on Gold Nanoparticles. Anal. Chem., 2005, 77(8): 2381-2385
    138 C. J. Orendorff, A. Gole, T. K. Sau and C. J. Murphy. Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers: Sandwich Architecture and Nanoparticle Shape Dependence. Anal. Chem., 2005, 77(10): 3261-3266
    139 R. Baron, M. Zayats and I. Willner. Dopamine-, L-DOPA-,Adrenaline-, and Noradrenaline-Induced Growth of Au Nanoparticles: Assays for the Detection of Neurotransmitters and of Tyrosinase Activity. Anal. Chem., 2005, 77(6): 1566-1571
    140 S.-Y. Lin, C.-H. Chen, M.-C. Lin and H.-F. Hsu. A Cooperative Effect of bifunctionalized Nanoparticles on Recognition: Sensing Alkali Ions by Crown and Carboxylate Moieties in Aqueous Media. Anal. Chem., 2005, 77(15): 4821-4828
    141 J. Liu and Y. Lu. Adenosine-Dependent Assembly of Aptazyme Functionalized Gold Nanoparticles and Its Application as a Colorimetric Biosensor. Anal. Chem., 2004, 76, 1627-1632
    142 K. Glynou, P. C. Ioarmou, T. K. Christopoulos and V. Syriopoulou. Oligonueleotide- Functionalized Gold Nanoparticles as Probes in a Dry-Reagent Strip Biosensor for DNA Analysis by Hybridization. Anal. Chem., 2003, 75(16): 4155-4160
    143 S. Liu, Z. Zhang, and M. Han. High-Affinity Capture of Proteins by Diamond Nanoparticles for Mass Spectrometric Analysis. Anal. Chem., 2005, 77(8): 2595-2600
    144 Lakowicz, J.R., Gryczynski, I., Gryczynski, Z. and Murphy C.J. Luminescence Spectral Properties of CdS Nanoparticles. Phys. Chem. B, 1999, 103: 7613-7620
    145 T. Andrew Taton, Robert C. Mucic, Chad A. Mirkin and Robert L. Letsinger [J]. The DNA-Mediated Formation of Supramolecular Mono- and Multilayered Nanoparticle Structures. Am. Chem. Soc., 2000, 122:6305-6306
    146 T. Andrew Taton, Chad A. Mirkin, Robert L. Letsinger. Scanometric DNA array detection with nanoparticle probes. Science, 2000, 289(5485): 1757-1760
    147 T. Andrew Taton, Gang Lu and Chad A. Mirkin. Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. J. Am. Chem. Soc., 2001, 123(21): 5164-5165
    148 Robert A. Reynolds, Chad A. Mirkin and Robert L. Letsinger. A gold nanoparticle/latex microsphere-based colorimetric oligonucleotide detection method. Pure Appl. Chem., 2000, 72:229-235
    149 Nidhi Nath and Ashutosh Chilkoti. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surfaceAnal. Chem., 2002, 74(3): 504-509
    150 Z.-F. Zhang, H. Cui, C.-Z. Lai and L.-J. Liu. Gold Nanoparticle Catalyzed Luminol Chemiluminescence and Its Analytical Applications. Anal. Chem., 2005, 77(10): 3324-3329
    151 K.-C. Ho, E-J. Tsai, Y.-S. Lin and Y.-C. Chen. Using Biofunctionalized Nanoparticles To Probe Pathogenic Bacteria. Anal. Chem., 2004, 76(24): 7162-7168
    152 Y.-S. Lin, P.-J. Tsai, M.-F. Weng and Y.-C. Chen. Affinity Capture Using Vancomycin-Bound Magnetic Nanoparticles for the MALDI-MS Analysis of Bacteria. Anal. Chem., 2005, 77(6): 1753-1760
    153 X. L. Kong, L. C. L. Huang, C.-M. Hsu, W.-H. Chen, C.-C.Han and H.-C. Chang. High-Affinity Capture of Proteins by Diamond Nanoparticles for Mass Spectrometric Analysis. Anal.Chem., 2005, 77(1): 259-265
    154 Y. Cai, W.-P. Peng and H.-C. Chang. Ion Trap Mass Spectrometry of Fluorescently Labeled Nanoparticles. Anal. Chem., 2003, 75(8): 1805-1811
    155 G. M. Gross, D. A. Nelson, J. W. Grate and R. E. Synovec. Monolayer Protected Gold Nanoparticles as a Stationary Phase for Open Tubular Gas Chromatography. Anal. Chem., 2003, 75(17): 4558-4564
    156 P. Spegel, L. Schweitz and S. Nilsson. Selectivity toward Multiple Predetermined Targets in Nanoparticle Capillary Electrochromatography. Anal. Chem., 2003, 75(23): 6608-6613
    157 M.-F. Huang, Y.-C. Kuo, C.-C.g Huang and H.-T. Chang. Separation of Long Double-Stranded DNA by Nanoparticle-Filled Capillary Electrophoresis. Anal. Chem., 2004, 76(1): 192-196
    158 L. Yang, E. Guihen, J. D. Holmes, M. Loughran, G. P. O' Sullivan and J. D. Glennon. Gold Nanoparticle-Modified Etched Capillaries for Open-Tubular Capillary Electrochromatography. Anal. Chem., 2005, 77(6): 1840-1846
    159 Brus L. Quantum crystallites and nonlinear optics. Appl. Phys. A., 1991, 53:465-474
    160 Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor.particles. Chem. Rev. 1989, 89:1861-1873
    161 Ramsden, J. J. and Gratzel, M. Photoluminescence of Small CdS Particles. J. Chem. Soc., Faraday Trans. 1984, 80:919-933
    162 Weller, H., Koch, U., Gutie'rrez, M. and Henglein, A. Ber. Bunsenges. Phys. Chem. 1984, 88:649-656
    163 Kuczynski, J. P., Milosavijevic, B. H. and Thomas, J. K. Effect of the synthetic preparation on the photochemical behavior of colloidal CdS. J. Phys. Chem. ,1983, 87: 3368-3370
    164 Rossetti, R., Nakahara, S. and Brus. Quantum size effects in the redox potentials, Resonance Raman spectra and electronic spectra of CdS crystallites in aqueous solution. L. E. J. Chem. Phys., 1983, 79(2): 1086-1088
    165 Peng X G, Schlamp M C, Kadavanich A V, Alivisatos A P. Epitaxial growth of highly luminescent CdSe/CdS core/sheU nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc., 1997, 119(30):7019-7029
    166 Dabbousi B O, Rodriguez Viejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M G. (CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Optical and Structural Characterization of a Size Series of Highly Luminescent Materials. J. Phs. Chem. B., 1997,101(46): 9463-9475
    167 Alivisatos A P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phs. Chem., 1996, 100(31): 13226-13239
    168 S. S. Ghosh, P. M. Kao, A. W. McCue, H. L. Chappelle. Use of maleimide-thiol coupling chemistry for efficient syntheses of oligonucleotide-enzyme conjugate hybridization probes. Bioconjugate Chem., 1990, 1 (1): 71-76
    169 A. Bardea, A. Dagan, I. Ben-Dov, B. Amit, I. Willner. Amplified Microgravimetric Quartz-Crystal-Microbalance Analyses. Chem.Commun., 1998, 7:839-840
    170 F. Patolsky, K. T. Ranjit, A. Lichtenstein, I.Willner. Dendritic Amplification of DNA Analysis by Oligonucleotide-Functionalized Au-Nanoparticles. Chem. Commun., 2000, 12:1025-1026
    171 H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C.Sundar, F. V. Mikulec, M. G. Bawendi. Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein. J. Am. Chem. Sot., 2000, 122:12142-12150
    172 Yongfen Chen and Zeev Rosenzweig. Luminescent CdS quantum dots as selective ion probes. Anal. Chem., 2002, 74(19):5132-5238
    173 M. Gao, S. Kirstein, H. Mo"hwald, A. L. Rogach, A. Kornowski, A. Eychmu"ller, and H. Weller. J. Phys. Chem. B 1998, 102:8360-8363
    174 Diaz D, Robles J, Ni T, Castillo-Blum SE, Nagesha D, Alvarez-Fregoso OJ, Kotov NA. Conformation of ethylhexanoate stabilizer on the surface of CdS nanoparticles. J. Phys. Chem. B 1999, 103:9859-9866
    175 C. Landes, M. Braun, C. Burda and M. A. El-Sayed. Observation of Large Changes in the Band Gap Absorption Energy of Small CdSe Nanoparticles Induced by the Adsorption of a Strong Hole Acceptor. J. Phys. Chem. B 2001, 105:2981-2986
    176 Landes C, Braun M, Burda C, El-Sayed MA. The Effect of Surface Adsorption on the Hyper- Rayleigh Scattering of Large and Small CdSe. J. Phys. Chem. B 2001, 105: 10554-10558
    177 Horvath, O. Quenching of CdS fluorescence with benzyl alcohol via transmembrane diffusion in dihexadecyl phosphate vesicles. Langmuir 1999, 15(11): 279-281
    178 Bavykin, D. V.; Savinov, E. N.; Parmon, V. N. Surface Effects on Regularities of Electron Transfer in CdS and CdS/CuxS Colloids as Studied by Photoluminescence Quenching. Langrnuir 1999, 15:4722-4727
    179 Lianos P, Thomas J K. Chem. Phys. Letter., 1986, 125 (3):299-302
    180 Isarov AV, Chrysochoos J. Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles: Surface modification with copper (Ⅱ) ions. Langrnuir, 1997, 13(12): 3142-3149
    181 Rahina Mahtab, Jessica P. Rogers and Catherine J. Murphy. Preferential Adsorption of a "Kinked" DNA to a Neutral Curved Surface: Comparisons to and Implications for Nonspccific DNA-Protein Interactions. J. Am. Chem. Soc. 1995, 117:9099-9100
    182 Joseph R. Lakowicz, Ignacy Gryczynski, Zygrnunt Gryczynski, Kazimicrz Nowaczyk and Catherine J. Murphy. Time-resolved spectral observations of cadrnium-enriched cadmium sulfide nanoparticlcs and the cffccts of DNA oligomcr binding. Analytical Biochemistry, 2000, 280(1): 128-136
    183 Chan WC and Nic S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385): 2016-2015
    184 Bruchcz M. Jr., Moronne M., Gin P, Weiss S and Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385): 2013-2016
    185 Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem., 1996, 100:13226-13239
    186 Rahina Mahtab, Sheldon M. Scalcy, Simona E. Hunyadi, Brian Kinard, Tyler Ray, Catherine J. Murphy. Influence of the nature of quantum dot surface cations on interactions with DNA. J. Inorg. Biochem, 2007, 10:1016
    187 R. Mahtab, H.H. Harden, C.J. Murphy. Temperature- and salt-dependent binding of long DNA to protein-sized quantum dots: Thermodynamics of 'inorganic protein-DNA interactions. J. Am. Chem. Soc., 2000, 12:14-17
    188 R. Mahtab, C.J. Murphy. Probing DNA structure with nanoparticles. Methods Mol. Biol., 2005, 303:179-190
    189 L.D. Williams, L.J. Maher Ⅲ. Electrostatic mechanisms of DNA deformation. Annu. Rev. Biophys. Biomol. Struct., 2000, 29:497-521
    190 D.M.J. Lilley (Ed.), Structural Interactions, IRL/Oxford University Press, New York, 1995
    191 Gregory P. Mitchell, Chad A. Mirkin and Robert L. Letsinger. Programmed Assembly of DNA Functionalized Quantum Dots. J. Am. Chem. Soc., 1999, 121 (35): 8122-8123
    192 Han S V, Lin J Q, Zhou F M, et al. Oligonucleotide-Capped Gold Nanoparticles for Improved Atomic Force Microscopic Imaging and Enhanced Selective in Polynucleotide Detection[J]. Biochem. Biophys Res Commun, 2000, 279:265-269
    193 孙秀兰,赵晓联,汤坚。纳米金溶胶形成过程的可见光吸收光谱研究。无锡轻工业大学报,2004,(4):86-89
    194 吴维明,蔡强,陈裕泉。纳米金在生物检测中的应用。国外医学生物医学工程分册,2003,26(5):193-197
    195 Seelender,J. A., Brown C.W. Colloidal gold filtrates as metal substrates for surface-enhanced infrared absorption spectroscopy. Anal.Chem., 1999, 71(10): 1963-1966
    196 Storhoff J J, Lizards A A, Music RC Mir kin C A, Let singer R L, Schatz G C. J.Am.Chem.Soc., 2000, 122:4640
    197 Faulk WP, Taylor GM. An immune-colloidal method for the electron microscopy [J]. Immunochemistry, 1971, 8:1080-1084
    198 Dasher G. Localization of gold in biological fissure: A photochemical method for light and electron microscopy. Histo-chemistry, 1981, 71 (1): 81-88
    199 Spielberg, Kabala CM, Ryder, et al. Field testing and comparative evaluation of rapid, visually read screening, assays for antibody to human immunodeficiency virus [J] Lancet, 1989, 11:580-584
    200 James J, Storhoff, Robot Elephantine, Robert C, Music, et al. One-Pot Colorimetric Differentiation of Polynucleotide with Singles Base Imperfections Using Gold Nanoparticles probes. J.Am.Chem.Soc., 1998, 120:1959-1964
    201 Young Jin Kim, Robot C .Johnson Joseph .T Hupp. Gold-Nan particle based sensing of "Spectroscopic ally Silent" Heavy metal Ions. Nano Letters, 2001, 41 (4): 165-167
    202 朱健,王永昌,王勤。胶体金纳米颗粒的表面等离子体发射特性。光谱学与光谱分析,2003,23(5):958-961
    203 朱健,王永昌,王勤。胶体金纳米颗粒的荧光光谱特性。光子学报,2003,32(13): 357-360
    204 朱健,王永昌。金纳米颗粒的紫外、蓝紫光波段光致荧光特性。光谱学与光谱分析,2005,25(2):235-238
    205 Brust M., Walker M., Bethell D., Schiffrin D. J., Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. J. Chem. Soc., Chem. Commun., 1994, 15:801-802
    206 Scott R. W. J., Wilson O. M., Crooks R. M. Synthesis, Characterization, and Applications of Dendrimer-Encapsulated Nanoparticles. J. Phys. Chem. B, 2005, 109(2): 692-704
    207 Tao Huang and Royce W. Murray, Visible Luminescence of Water-Soluble Monolayer-Protected Gold Clusters. J. Phys. Chem. B 2001, 105:12498-12502
    208 Wilcoxon J. P., Martin J. E., Parsapour F., Wiedenman B., Kelley D. F. Photoluminescence from nanosize gold clusters. J. Chem. Phys. 1998, 108:9137-9143
    209 Gangli Wang, Tao Huang, Royce W. Murray, Laurent Menard and Ralph G. Nuzzo, Near-IR Luminescence of Monolayer-Protected Metal Clusters. J. Am. Chem. Soc. 2005, 127:812-813
    210 Stephan Link, Andrew Beeby, Simon FitzGerald, Mostafa A. El-Sayed, T. Gregory Schaaff and Robert L. Whetten, Visible to Infrared Luminescence from a 28-Atom Gold Cluster. J. Phys. Chem. B 2002, 106:3410-3415
    211 Tomalia D. A. Dendrimer Molecules. Sci. Am. 1995, 272:62-66
    212 Frens G. Controlled Nucleation for the Regulation of the Particle Size in Monodispersed Gold Suspensions. Nat.Phys.Sci., 1973, 241:20-22
    213 吴维明,陈裕泉。纳米金离子的生物组装技术与光学检测技术研究。传感技术学报,2003,1:21-23
    214 Himmelhaus M, Takei H. Cap-shaped gold nanoparticles for an Optical biosensor[J]. Sensors and Actuators B, 2000, 63:20-24
    215 C.J.Murphy. Optical sensing with quantum dots [J]. Anal. Chem., 2002, 74: 520A-526A
    216 巩雄,郭永,杨宏秀,陈文驹。纳米材料及其光学性质[J]。化学通报,1998,3(1):19-21
    217 Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281 (5385): 2016-2018
    218 林章碧,苏星光,张家骅,金钦汉。纳米粒子在生物分析中的应用。分析化学,2002,30(2):237-241
    219 Jwa-Min Nam, C Shad Thaxton, Chad A Mirkin. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science,Washington, 2003,301 (5641): 1884
    220 Raymond M. Schiffelers, Aslam Ansari, Jun Xu, Qin Zhou. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Research.Oxford, 2004, 32(19): 149
    221 Latha M. Santhakumaran, Thresia Thomas,T. J. Thomas. Enhanced cellular uptake of a triplex-forming oligonucleotide by nanoparticle formation in the presence of polypropylenimine dendrimers. Nucleic Acids Research.Oxford, 2004, 32(7): 2102
    222 李庆福,黄世华,刘舒曼,张希清。ZnO:Eu3~+纳米晶的制备及其光谱分析。激光与红外,2003,33(2):145-147
    223 翟永清等。Gd203:Eu纳米晶的制备及其光谱性质研究。光谱学与光谱分析,2003,23(2):236-238
    224 J.A.Aseencio, Y.Mejia, H.B.Liu, C.Angeles and G.Canizal. Bioreduction Synthesis of Eu-Au Nanoparticles. Langrnuir, 2003, 23(19): 5882-5886
    225 凌绍明,蒋治良,闭献树,义祥辉。Ag/AgCl纳米粒子的制备及其共振散射光谱研究。光谱学与光谱分析,2001,21(6):819-821
    226 沈兴海,高宏成。纳米微粒的微乳液制备法。化学通报,1995,11:6-9
    227 张慰萍,尹民。稀土掺杂的纳米发光材料的制备和发光。发光学报,2000,21(4):314-319
    228 Mattoussi H, Mauro J M, Goldman E R, Anderson G P, Sundar V C, Mikulec F V, Bawendi M G. Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein. J. Am. Chem. Soc., 2000, 122(49): 12142-12150
    229 J.N.Miller, T.A.Ahmad, A.F.Fell. Derivative fluorescence spectroscopy [J]. Anal. Proc., 1992, 19(1): 37-41
    230 J.N. Miller. Recent Advances in Molecular Luminescence Analysis [1]. Proc. Anal. Div. Chem. Soc., 1979, 16(6): 203-208
    231 Kicker, L.J. Mol. Cell. Nanoscopic DNA Probe Technique. Probes, 1997, 11: 33-38
    232 Gene Probes I, Haines, B.D, Higgins, S.J,Ed.. Academic Press,Inc.,San Diego,CA, 1992
    233 Tyagi,S., Kramer F.R. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol, 1996, 14(3): 303-308
    234 Kume T. Interaction between localized and propagating surface plasmons: Ag fine particles on Al surface. Solid State Communication [J], 1995, 93(2):171-175
    235 Rao C N R ,Kulkami Gu ,Thomas P J ,et al. Metal nano- particle and their assemblies[J]. Chem Soc Rev, 2000,29:27-35
    236 Mafune F, Kohnoj,Takeda Y, et al. Formation of gold nano-particles by laser ablation in aqueous solution of surfactant[J]. J Phys Chem B, 2001, 105(22): 5114-5120
    237 胡瑞省,刘善堂,朱涛等。金纳米粒子通过形成Au-s键的组装[J]。物理化学学报,1999,15(11):961-964
    238 Dykman L A, Lyakhov A A, Bogatytev V A, et al. Synthesis of coIloidal gold using high-molecular-weight reducing agents [J]. Colloid J,1998,60(6): 700-704
    239 Gardeatorresdeyl L,Tiemann Kj, Gomez G, et al. Gold nanoparticle obtained by bio-precipitation from gold (Ⅲ) solutions[J]. J Nanopart Res, 1999, 1(3): 397-404
    240 KadirAslan, Joseph R. Lakowicz and Chris D. Geddes. Metal-enhanced fluorescence using anisotropic silver nanostructures: critical progress to date. Anal Bioanal Chem, 2005, 382(4): 926-933
    241 段春英,周静芳。银纳米颗粒的制备及表征。化学研究,2003,14(3):18-21
    242 Philip Ball, Laura Garwin. Science at the atomic scale [J]. Nature, 1992, 355:761-766
    243 M.Moskovits. Surface-enhanced spectroscopy [J]. Rev.Mod. Phs., 1985, 57:783-826
    244 J.Malicka, I. Gryczynski, J.R. Lakowicz. DNA hybridization assays using metal-enhanced fluorescence [J]. Biochemical and Biophysical Research Communications, 2003, 306:213-218
    245 C.D. Geddes, J.Rl Lakowicz. Metal-enhanced fluorescence [J]. Jorunal of Fluorescence, 2002, 12(2): 212-219
    246 J.Malicka, I. Gryczynski, J.Y.Fang, J.Kusba, J.R.Lakowicz. Photostability of Cy3 and Cy5-labeled DNA in the presence on metallic silver particles [J]. Journal of Fluorescence, 2002, 12(3-4): 439-447
    247 A. Parfenov, I.Gryczynski, J.Malicka, C.D.Geddes, J.R. Lakowicz. Enhanced Fluorescence from fluorophores on fractal silver surfaces [J]. J.Phys.Chem.B, 2003, 107: 8829-8833.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700