金纳米微粒的制备及光谱分析应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金纳米微粒及其薄膜具有特殊的光学、电学性质及良好的催化活性和生物分子亲和能力,在非线性光学器件和微电子器件的研制、催化以及分析科学等方面具有十分重要的研究意义和广泛的应用前景。本论文进行了金纳米微粒的制备新方法以及光谱分析应用研究,全文包括六个部分。
     第一章对金纳米微粒的制备方法、金纳米微粒的组装及其应用,特别是在分析化学中的应用进行了较为详尽的综述,在此基础上提出了自己拟进行的研究方向。引用文献203篇。
     第二章利用糖胺聚糖—肝素作还原剂和稳定剂,以HAuCl_4为前驱体,在水溶液中制备了肝素稳定的金纳米微粒。采用紫外—可见光谱、共振散射光谱、透射电子显微镜以及电泳技术对制备的金纳米微粒进行了测定和表征,探讨了反应物浓度比对金纳米微粒制备的影响。研究结果表明,制备的金纳米微粒带有负电性;可以通过改变肝素和HAuCl_4的浓度比,有效的对金纳米微粒的粒径大小和形貌进行控制。建立的制备方法简单易行,是一种对环境友好的绿色制备方法。
     第三章采用静电自组装技术,在玻璃基片上成功地组装了金纳米微粒的单层和多层薄膜。以原子力显微镜、紫外—可见光谱和拉曼光谱等分析技术对薄膜的形貌和光学特性进行了测定与表征。结果表明,相对于金纳米微粒溶液的吸收峰而言,自组装金纳米微粒薄膜的吸收峰发生了展宽和红移,并随着组装层数的增加,红移明显增大。单层膜中金纳米微粒呈紧密堆积排列,局部区域有缺陷,二层膜为一种致密的、连续的颗粒膜,单层膜的粗糙度较二层膜的大。拉曼光谱分析结果表明,薄膜具有表面拉曼散射增强效应。该组装薄膜可应用于表面增强拉曼光谱的研究和化学传感器的制备等。
     第四章研究了不同粒径金纳米微粒与荧光素钠的相互作用,发现金纳米微粒对荧光素纳具有荧光猝灭效应,探讨了荧光猝灭的机理和金纳米微粒荧光猝灭的粒径效应。结果表明,荧光猝灭程度与金纳米微粒的粒径大小有关,随着金纳米微粒粒径的减小,荧光猝灭程度增大。不同粒径的金纳米微粒对荧光素钠的猝灭符合Stern-Volmer方程,荧光猝灭常数随着金纳米微粒粒径的减小而增大。金纳米微粒对荧光素钠的猝灭作用为动态猝灭过程,不同温度下的猝灭常数分别为1.5×10~4 L/mol(25℃),1.7×10~4L/mol(35℃),1.9×10~4 L/mol(45℃)。
     第五章实验发现水溶液中金纳米微粒对NaBH_4还原亚甲基蓝的反应具有显著的催化作用。进行了金纳米微粒催化该反应体系的动力学研究,探讨了催化反应的机理,讨论了酸度、温度和不同类型的表面活性剂对该催化反应的影响。研究表明,金纳米微粒的催化作用是由于BH_4~-(给体)向亚甲基蓝(受体)进行电子转移时,金纳米微粒充当了电子转移的媒介参与了电子转移的过程。金的浓度在1.47×10~(-7)—2.36×10~(-6)mol/L之间时,催化反应初速率与金的浓度呈线性关系。阳离子和非离子表面活性剂的浓度低于临界胶束浓度时,催化反应初速率急剧增大;大于临界胶束浓度时,表面活性剂形成胶束,同催化剂竞争吸附反应物分子,使得催化反应初速率缓慢下降。阴离子表面活性剂与亚甲基蓝生成缔合物,阻碍了金纳米微粒催化NaBH_4还原亚甲基蓝的反应。
     第六章研究建立了一种以金纳米微粒为探针共振光散射(RLS)法测定维生素B_4的新方法。在弱酸性介质中(pH 4.2),金纳米微粒在635nm有一最大共振散射峰。加入微量维生素B_4后,金纳米微粒与维生素B_4通过静电引力结合,形成了粒径较大的聚集体,导致RLS强度显著增强。研究了体系的共振光散射光谱特征和反应适宜条件,探讨了共振光散射增强的机理。结果表明,维生素B_4浓度在0.1—5.0μg/mL时与散射强度(ΔI)呈线性关系,检测限(3σ)为12ng/mL,相对标准偏(RSD)为2.2%。该方法应用于片剂中维生素B_4的测定,结果满意。
Owing to the special optical and electrical properties, good catalytic activity and favorable biocompatibility, gold nanoparticle and its thin films have extensive application prospects in fabricating nonlinear optical and microelectronic devices, catalyzing, analytical science and etc. The new preparation method and applications in spectral analysis of gold nanoparticles were studied in this dissertation.
     The dissertation includes six parts:
     Chapter 1: The preparation, assembly, and analytical applications of gold nanoparticles were reviewed in detail.
     Chapter 2: A facile method for the preparation of gold nanoparticles in aqueous solution was developed by using glycosaminoglycan-heparin as reducing agent and HAuCl_4 as precursor. The properties of gold nanoparticles were characterized by UV-vis spectroscopy, resonance light scattering spectroscopy (RLS), transmission electron microscopy (TEM) and electrophoresis technology. The effects of reactant concentration ratio for the preparation of gold nanoparticles were investigated. The results showed that the gold nanoparticles carried negative charges in the aqueous solution and the size and shape of the gold nanoparticles could be controlled by changing the concentration ratio of the heparin and the HAuCl_4. Preparing gold nanoparticles in this way had environment-friendly characteristics, and it was a green preparation method.
     Chapter 3: The monolayer and multilayers of gold nanoparticles were constructed on the glass by electrostatic self-assembly method. The morphology and optical properties of thin films were characterized by AFM, UV-Vis spectroscopy and Raman spectroscopy. Plasmon absorbance peak of gold nanoparticles thin films were broad and red-shift compared with the gold nanoparticles in aqueous solution. As the layer increased, this feature strengthened and the peak shifted to longer wavelength. AFM images showed a close-packed array of gold nanoparticles in monolayer with small region defects. The 2-layers showed that the interparticle distance was very small to form a compact, continuous film on the glass slide. The roughness of gold nanoparticles monolayer was bigger than the 2-layers's. The measurements of the Raman spectrum of crystal violet indicated that the gold nanoparticles self-assembly thin film has the high SERS activity. Therefore, it can be used for the study of SERS and fabricating chemical sensors.
     Chapter 4: The Spectroscopic characteristic of interaction between fluorescein sodium and gold nanoparticles with different sizes was investigated via UV-vis and fluorescence spectrophotometry. It was found that gold nanoparticles quench the fluorescence of fluorescein sodium in water. The quenching mechanism and size-dependence quenching effect were discussed. The results showed that the degree of quenching was concerned with the size of gold nanoparticles. The smaller gold nanoparticles were efficient quenchers than the larger ones due to larger surface areas. It showed that the gold nanoparticles quenching of fluorescein sodium follows Stern-Volmer relation for plots of F_0/F against gold nanoparticles concentration. In additation, the results showed that the quenching of fluorescein sodium by gold nanoparticles was a dynamic quenching, and the quenching constants respectively were 1.5×10~4 L/mol (25℃) , 1.7×10~4 L/mol (35℃) and 1.9×10~4 L/mol (45℃) .
     Chapter 5: It was found that the gold nanoparticles have strong catalysis for the redox reaction between methylene blue and NaBH_4. The catalytic reaction kinetics was studied and the catalytic reaction mechanism was investigated. The effects of reaction temperature, solution acidity and different kinds of surfactants were discussed. It was indicated the gold nanoparticles provided a substrate via which electron transfer can easily occur between the reactants. The rate of catalytic reaction increased linearly with the concentration of catalyst for the reaction system catalyzed by the gold nanoparticles in the range of 1.47×10~(-7)—2.36×10~(-6) mol/L. A change of the initial rates was observed in cationic and nonionic surfactants above and below the critical micelle concentration. Anionic surfactants restrained the catalytic reaction due to the association reaction of surfactants with methylene blue.
     Chapter 6: A sensitive method for detecting Vitamin B_4 was proposed by resonance light scattering (RLS) spectroscopy with gold nanoparticles as probe. In a weak acid medium (pH4.2), the resonance light scattering spectrum of gold nanoparticles had a maximum peak at 635 nm and the RLS intensity was enhanced by trace amount of Vitamin B_4 due to forming aggregate with bigger diameters between gold nanoparticles and Vitamin B_4. The RLS spectral characteristics of gold nanoparticles-Vitamin B_4 system and the optimum conditions of the reaction were investigated. The mechanism for the enhancement of RLS was also discussed. The results showed that the enhancement of the RLS signal (△I) was proportional to the concentration of Vitamin B_4 in the range of 0.1—5.0μg/mL. The corresponding detection limit (3σ) was 12ng/mL, and the RSD was 2.2 %. The method was applied to the determination of Vitamin B_4 in tablets with satisfactory results.
引文
[1] Kubo R.. In Polarization. Paris: Press of the University of France, 1969, 325.
    [2] Denton R.. Electronic Heat Capacity and Susceptibility of Small Metal Particles. Phys. Rev. Lett., 1971, 26, 707-711.
    [3] Binnig G., Rohrer H., Gerber C. H. E., et al.. Surface Studies by Scanning Tunneling Microscopy. Phys. Rev. Lett., 1982, 49, 57-61.
    [4] Binnig G., Rohrer H.. Scanning Tunneling Microscopy-from Birth to Adolescence. Nobel Lecture, Dec 8, 1986.
    [5] Eigler D. M., Schweizer E. K.. Positioning Single Atoms with a Scanning Tunneling Microscope. Nature, 1990, 344, 524-526.
    [6] Andrievski R. A., Glezer A. M.. Size Effects in Properties of Nanomaterials. Scripta Mater., 2001, 44, 1621-1624.
    [7] 夏和生,王琪.纳米技术进展.高分子材料科学与工程,2001,17,1-6.
    [8] Calandra P., Giordano C., Longo A., Liveri T. V.. Physicochemical Investigation of Surfactant-Coated Gold Nanoparticles Synthesized in the Confined Space of Dry Reversed Micelles. Materials Chemistry and Physics, 2006, 98, 494-499.
    [9] Mafune F., Kohno J., Takeda Y., et al.. Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant. J Phys. Chem. B, 2001, 105, 5114-5120.
    [10] Sylvestre J. P., Kabashin A. V., Sachet E., Meunier M., Luong J. H. T.. Stabilization and Size Control of Gold Nanoparticles during Laser Ablation in Aqueous Cyclodextrins. J. Am. Chem. Soc., 2004, 126, 7176-7177.
    [11] Kabashin A. V., Meunier M., Kingston C., Luong J. H. T.. Fabrication and Characterization of Gold Nanoparticles by Femtosecond Laser Ablation in an Aqueous Solution of Cyclodextrins. J. Phys. Chem. B, 2003, 107, 4527-4531.
    [12] Vreugdenhil A. J., Pilatzke K. K., Parnis J. M.. Characterization of Laser Ablated Gold Nanoparticles Encapsulated in Epoxy Amine Crosslinked Sol-Gel Materials. Journal of Non-Crystalline Solids, 2006, 352, 3879-3886.
    [13] Mafune F., Kohno J-Y., Takeda Y., Kondow T.. Formation of Gold Nanonetworks and Small Gold Nanoparticles by Irradiation of Intense Pulsed Laser onto Gold Nanoparticles. J. Phys. Chem. B, 2003, 107, 12589-12596.
    [14] Mafune F., Kohno J.-Y., Takeda Y., Kondow T.. Growth of Gold Clusters into Nanoparticles in a Solution Following Laser-Induced Fragmentation. J. Phys. Chem. B, 2002, 106, 8555-8561.
    [15] Mafune F., Kohno J.-Y., Takeda Y., Kondow T.. Full Physical Preparation of Size-Selected Gold Nanoparticles in Solution: Laser Ablation and Laser-lnduced Size Control. J. Phys. Chem. B, 2002, 106, 7575-7577.
    [16] Frens G.. Controlled Nucleation for the Regulation of the Particle Monodisperse Gold Suspensions. Nature: Phys. Sci., 1973, 241, 20-22.
    [17] 兰新哲,金志浩,赵西成,苟林峰.PVP保护还原法制备纳米金溶胶.稀有金属材料与工程,2003,32,50-53.
    [18] Sun X. P., Zhang Z. L., Zhang B. L., et al.. Preparation of Gold Nanoparticles With Polyelectrolyte. Chin. Chem. Lett., 2003, 14, 866-869.
    [19] 孙旭平,黄明华,董绍俊,汪尔康.阴离子聚电解质保护的金纳米微粒的制备及表征.复旦学报(自然科学版),2004,43,477-481.
    [20] Yonezawa T., Sutoh M., Kunitake T.. Practical Preparation of Size-Controlled Gold Nanoparticles in Water. Chem. Lett., 1997, 7, 619-620.
    [21] Yonezawa T., Kunitake T.. Practical Preparation of Anionic Mercapto Ligand-Stabilized Gold Nanoparticles and Their Immobilization. Colloids Surf. A: Physicochem. Eng. Aspects, 1999, 149, 193-199.
    [22] Huang T., Murray R. W.. Visible Luminescence of Water-Soluble Monolayer-Protected Gold Clusters. J. Phys. Chem. B, 2001, 105, 12498-12502.
    [23] Chen S., Kimura K.. Synthesis and Characterization of Carboxylate-Modified Gold Nanoparticles Powders Dispersible in Water. Langmuir, 1999, 15, 1075-1082.
    [24] Wuelfing W. P., Gross S. M., Miles D. T., Murray R. W.. Nanometer Gold Clusters Protected by Surface-Bound Monolayers of Thiolated Poly (ethylene glycol) Polymer Electrolyte. J. Am. Chem. Soc., 1998, 120, 12696-12697.
    [25] Buining P. A., Humbel B. M., Philipse A. P., Verkleij, A. J.. Preparation of Functional Silane-Stabilized Gold Colloids in the (Sub)nanometer Size Range. Langmuir, 1997, 13, 3921-3926.
    [26] Sharma J., Mahima S., Kakade B. A., Pasricha R., Mandale A. B., Vijayamohanan K.. Solvent-Assisted One-Pot Synthesis and Self-Assembly of 4:Aminothiophenol-Capped Gold Nanoparticles. J. Phys. Chem. B, 2004, 108, 13280-13286.
    [27] Li X-M., Jong M. R. de, Inoue K., Shinkai S., Huskens J., Reinhoudt D. N.. Formation of Gold Colloids Using Thioether Derivatives as Stabilizing Ligands. J. Mater. Chem., 2001, 11, 1919-1923.
    [28] Liu J., Mendoza S., Roman E., Lynn M. J., Xu R., Kaifer A. E.. Cyclodextrin-Modified Gold Nanospheres. Host-Guest Interactions at Work to Control Colloidal Properties. J. Am. Chem. Soc., 1999, 121, 4304-4305.
    [29] Huang Y. J., Li D., Li J. H.. β-Cyclodextrin Controlled Assembling Nanostructures from Gold Nanoparticles to Gold Nanowires. Chemical Physics Letters, 2004, 389, 14-18.
    [30] Brust M., Walker M., Bethell D., Schiffrin D. J., Whyman R. J.. Synthesis of Thiol-Derivatized Gold Nanoparticles in a Two-Phase Liquid-Liquid System. J. Chem.Soc. Chem. Commun., 1994, 801-802.
    [31] Aliganga A. K. A., Duwez A.-S., Mittler S.. Binary Mixtures of Self-Assembled Monolayers of 1,8-Octanedithiol and 1-Octanethiol for a Controlled Growth of Gold Nanoparticles. Organic Electronics, 2006, 7, 337-350.
    [32] Xu W., Liu W., Zhang D., Xu Y., Wang T., Zhu D.. Synthesis, Characterization and Chemical Oxidation of 5-(N-pyrrolyl)pentanethiol Protected Gold Nanoparticles. Colloids. Surf. A: Physicochem. Eng. Aspects, 2002, 204, 201-209.
    [33] Carotenuto G., Nicolais L.. Size-controlled Synthesis of Thiol -Derivatized Gold Clusters. J. Mater. Chem., 2003, 13, 1038-1041.
    [34] Pengo P., Polizzi S., Battagliarin M., Pasquato L., P Scrimin.. Synthesis, Characterization and Properties of Water-Soluble Gold Nanoparticles with Tunable Core Size. J. Mater. Chem., 2003, 13, 2471-2478.
    [35] Jakob M., Levanon H., Kamat P. V.. Charge Distribution between UV-Irradiated TiO_2 and Gold Nanoparticles: Determination of Shift in the Fermi Level. Nano Lett., 2003, 3, 353-358.
    [36] Manna A., Imae T., Yogo T., Aoi K., Okazaki M.. Synthesis of Gold Nanoparticles in a Winsor Ⅱ Type Microemulsion and Their Characterization. J. Colloid Interface Sci., 2002, 256, 297-303.
    [37] Aliotta F., Arcoleo V., Buccoleri S., La Manna G., Liveri V. T.. Calorimetric Investigation on the Formation of Gold Nanoparticles in Water/AOT/n-heptane Microemulsions. Thermochim. Acta, 1995, 265, 15-23.
    [38] Arcoleo V., Liveri V. T.. AFM Investigation of Gold Nanoparticles Synthesized in Water/AOT/n-heptanes. Chem. Phys. Lett. 1996, 258, 223-227.
    [39] Porta F., Prati L., Rossi M., Scari G.. Synthesis of Au(O) Nanoparticles from W/O Microemulsions. Colloids Surf., 2002, 211, 43-48.
    [40] Doolittle J. W. Jr., Dutta P. K.. Influence of Microwave Radiation on the Growth of Gold Nanoparticles and Microporous Zincophosphates in a Reverse Micellar System. Langmuir, 2006, 22, 4825-4831.
    [41] Chiang C.-L.. Controlled Growth of Gold Nanoparticles in Aerosol-OT/Sorbitan Monooleate/Isooctane Mixed Reverse Micelles. J. Colloid Interface Sci., 2000, 230, 60-66.
    [42] Liu S., Weaver J. V. M., Save M., Armes S. P.. Synthesis of pH -Responsive Shell Cross-Linked Micelles and Their Use as Nanoreactors for the Preparation of Gold Nanoparticles. Langmuir, 2002, 18, 8350-8357.
    [43] Carrot G., ValmaletteJ. C., Plummer C. J. G., Scholz S. M., Dutta J., Hofmann H., Hilborn J. G.. Gold Nanoparticle Synthesis in Graft Copolymer Micelles. Colloid Polym. Sci., 1998, 276, 853-859.
    [44] Mandal M., Ghosh S. K., Kundu S., Esumi K., Pal T.. UV Photoactivation for Size and Shape Controlled Synthesis and Coalescence of Gold Nanoparticles in Micelles. Langmuir, 2002, 18, 7792-7797.
    [45] Kim H. S., Lee S. J., Kim N. H., Yoon J. K., Park H. K., Kim K.. Adsorption Characteristics of 1,4-Phenylene Diisocyanide on Gold Nanoparticles: Infrared and Raman Spectroscopy Study. Langmuir, 2003, 19, 6701-6710.
    [46] Schmid G. Klein N., Korste L., Kreibig U., Schonauer D.. Large Transition Metal Clusters-Ⅵ. Ligand Exchange Reactions on Au_(55)(PPh_3)_(12)Cl_6-the Formation of a Water Soluble Au_(55)Cluster. Polyhedron, 1988, 7, 605-608.
    [47] Rucareanu S., Gandubert V. J., Lennox R. B.. 4-(N, N-Dimethylamino)- pyridine-Protected Au Nanoparticles: Versatile Precursors for Water- and Organic-Soluble Gold Nanoparticles. Chem. Mater., 2006, 18, 4674-4680.
    [48] Hostetler M. J., Templeton A. C., Murray R. W.. Dynamics of Place-Exchange Reactions on Monolayer-Protected Gold Cluster Molecules. Langrnuir, 1999, 15, 3782-3789.
    [49] Simard J., Briggs C., Boal A. K., Rotello V. M.. Formation and pH-controlled Assembly of Amphiphilic Gold Nanoparticles. Chem. Commun., 2000, 1943-1944.
    [50] Zheng W., Maye M. M., Leibowitz F. L., Zhong C.-J.. Imparting Biomimetic Ion-Gating Recognition Properties to Electrodes with a Hydrogen-Bonding Structured Core-Shell Nanoparticle Network. Anal. Chem., 2000, 72, 2190-2199.
    [51] Song Y., Murray R. W.. Dynamics and Extent of Ligand Exchange Depend on Electronic Charge of Metal Nanoparticles. J. Am. Chem. Soc., 2002, 124, 7096-7102.
    [52] Wuelfing W. P., Zamborini F. P., Templeton A. C., Wen X., Yoon H., Murray R. W.. Monolayer-Protected Clusters: Molecular Precursors to Metal Films. Chem. Mater., 2001, 13, 87-95.
    [53] Miles D. T., Murray R. W.. Redox and Double-Layer Charging of Phenothiazine Functionalized Monolayer-Protected Clusters. Anal. Chem., 2001, 73, 921-929.
    [54] Young Jun Kim, Yoon Seok Yang, Seung-Chul Ha, Seong M. Cho, Yong Shin Kim, Hye Yoon Kim, Haesik Yang and Youn Tae Kim. Mixed-ligand Nanoparticles of Chlorobenzenemethanethiol and n-octanethiol as Chemical Sensors. Sensors and Actuators B: Chemical, 2005, 106, 189-198.
    [55] Brown K. R., Natan M. J.. Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surfaces. Langmuir, 1998, 14, 726-728.
    [56] Stremsdoerfer G., Perrot H., Martin J. R., Clechet P. J.. Autocatalytic Deposition of Gold and Palladium onto N-GAAS in Acid Media. J. Electrochem. Soc., 1988, 135, 2881-2885.
    [57] 朱梓华,朱涛,刘忠范,大粒径单分散金纳米粒子的水相合成,物理化学学报, 1999, 15, 966-970.
    [58] Jana N. R., Gearheart L., Murphy C. J.. Seeding Growth for Size Control of 5-40 mn Diameter Gold Nanoparticles. Langmuir, 2001, 17, 6782-6786.
    [59] Sau T. K., Murphy C. J.. Seeded High Yield Synthesis of Short Au Nanorods in Aqueous Solution. Langmuir, 2004, 20, 6414-6420.
    [60] San T. K., Murphy C. J.. Self-Assembly Patterns Formed upon Solvent Evaporation of Aqueous Cetyltrimethylammonium Bromide-Coated Gold Nanoparticles of Various Shapes. Langmuir, 2005, 21, 2923-2929
    [61] Lu L., Wang H., Zhou Y., Xi S., Zhang H., Hu J., Zhao B.. Seed-Mediated Growth of Large, Monodisperse Core-Shell Gold-silver Nanopartieles with Ag-Like Optical Properties. Chem. Commun., 2002, 144-145.
    [62] Esumi K., Suzuki A., Yamahira A., Torigoe K.. Role of Poly(amidoamine) Dendrimers for Preparing Nanoparticles of Gold, Platinum, and Silver. Langmuir, 2000, 16, 2604-2608.
    [63] Sun X. P., Jiang X., Dong S. J., Wang E. K.. One-Step Synthesis And Size Control of Dendrimer-Protected Gold Nanopartieles: A Heat-Treatment -Based Strategy. Macromol. Rapid Commun., 2003, 24, 1024-1028.
    [64] D’Aléo B. A., Williams R. M., Osswald F., Edamana P., Hahn U., et al.. Oligothia Dendrimers for the Formation of Gold Nanoparticles. Adv. Funct. Mater., 2004, 14, 1167-1177.
    [65] Sun X. P., Luo Y. L.. Size-controlled Synthesis of Dendrimer-protected Gold Nanoparticles by Microwave Radiation. Materials Letters, 2005, 59, 4048-4050.
    [66] Giersig M., Mulvaney P.. Preparation of Ordered Colloid Monolayers by Electrophoretic Deposition. Langmuir, 1993, 9, 3408-3413.
    [67] Brust M., Walker M., Bethell D., Schiffrin D. J., Whyman R. J.. Synthesis of Thiol-Derivatized Gold Nanoparticles in a Two-phase Liquid-Liquid System. J. Chem. Soc., Chem. Commun., 1994, 801-802.
    [68] Brust M., Fink J., Bethell D., Schiffrin D. J., Kiely C. J.. Synthesis and Reactions of Functionalised Gold Nanoparticles. J. Chem. Soc., Chem. Commun., 1995, 1655-1656.
    [69] Labande A., Ruiz J., Astruc D.. Supramolecular Gold Nanoparticles for the Redox Recognition of Oxoanions: Syntheses, Titrations, Stereoelectronic Effects, and Selectivity. J. Am. Chem. Soc., 2002, 124, 1782-1789.
    [70] Kobayashi A., Grey F., Williams R. S., et al.. Formation of Nanometerscale Grooves in Silicon with a Scanning Tunneling Microscope. Science, 1993, 259, 1724-1726.
    [71] Brust M., Kiely C. J.. Some Recent Advances in Nanostructure Preparation from Gold and Silver: A Short Topical Review. Colloids Surf. A: Physicochem. Eng. Asp., 2002, 202, 175-186.
    [72] Schmid G., Chi L. F.. Metal Clusters and Colloids. Adv. Mater., 1998, 10, 515-527.
    [73] Kitchin J. R., Barteau M. A., Chen J. G.. A Comparison of Gold and Molybdenum Nanoparticles on TiO_2(ll0)lx2 Reconstructed Single-Crystal Surfaces. Surf. Sci., 2003, 526, 323-331.
    [74] Binnig G., Quate C. F., Gerber C.. Atomic Force Microscope. Phys. Rev. Lett., 1986, 56, 930-933.
    [75] 白春礼,田芳,罗克.扫描力显微术[M],北京:科学出版社,2000
    [76] Arcoleo V., Liveri V. T.. AFM Investigation of Gold Nanoparticles Synthesized in Water/AOT/n-heptanes. Chem. Phys. Lett., 1996, 258, 223-227.
    [77] Li Q., Zheng J., Liu Z.. Site-Selective Assemblies of Gold Nanoparticles on an AFM Tip-Defined Silicon Template. Langmuir, 2003, 19, 166-171.
    [78] Zheng J., Chen Z., Liu Z.. Atomic Force Microscopy-Based Nanolithography on Silicon Using Colloidal Au Nanoparticles As a Nanooxidation Mask. Langmuir, 2000, 16, 9673-9676.
    [79] Lee K.-B., Lim J.-H., Mirkin C. A.. Protein Nanostructures Formed via Direct-Write Dip-Pen Nanolithography. J. Am. Chem. Soc., 2003, 125, 5588-5589.
    [80] Chandrasekharan N., Kamat P. V.. Improving the Photoelectrochemical Performance of Nanostructured TiO_2 Films by Adsorption of Gold Nanoparticles. J. Phys. Chem. B, 2000, 104, 10851-10857.
    [81] Yanagi H., Ohno T.. Nanofabrication of Gold Particles in Glass Films by AFM-Assisted Local Reduction. Langmuir, 1999, 15, 4773-4776.
    [82] Iacopino D., Ongaro A., Nagle L., Eritja R., Fitzmaurice D.. Imaging the DNA and Nanoparticle Components of a Self-Assembled Nanoscale Architecture. Nanotechnology, 2003, 14, 447-452.
    [83] Templeton A. C., Wuelfing W. P., Murray R. W.. Monolayer-Protected Cluster Molecules. Acc. Chem. Res., 2000, 33, 27-36.
    [84] Nakamura K., Kawabata T., Mori Y.. Size Distribution Analysis of Colloidal Gold by Small-Angle X-ray Scattering and Light Absorbance. Powder Technol., 2003, 131, 120-128.
    [85] Terrill R. H., Postlethwaite T. A., Chen C.-H., et al.. Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters. J. Am. Chem. Soc., 1995, 117, 12537-12548.
    [86] Van der Hulst H. C. Light Scattering by Small Metal Particles. New York : John Wiley & Sons, 1957.
    [87] Pastemack R.F., Bustamante C., Collings P. J., Giannetto A., Gibbs E. J.. Porphyrin Assemblies on DNA as Studied by a Resonance Light-scattering Technique. J. Am. Chem. Soc., 1993, 115, 5393-5399.
    [88] 蒋治良.金原子团簇的分频散射光谱研究.光子学报,2001,30,460-464.
    [89] 蒋治良,钟福新,李廷盛,等.绿色银纳粒子的共振散射光谱研究.化学学报,2001,59,438-442.
    [90] 蒋治良,赵保刚.CoFe_2O_2纳米粒子的共振散射光谱研究.光谱学与光谱分析,2002,22,615-618.
    [91] 蒋治良,李芳,李廷盛,等.共振散射光强度与金粒子粒径的关系.高等学校化学学报,2000,21,1488-1491.
    [92] 凌绍明,蒋治良.Ag/AgCl纳米粒子的制备及其共振散射光谱研究.光谱学与光谱分析,2001,21,819—821.
    [93] Koga K., Sugawara K.. Population Statistics of Gold Nanoparticle Morphologies: Direct Determination by HRTEM Observations. Surf. Sci., 2003, 529, 23-35.
    [94] Fenter P., Eberhardt A., Eisemberger P.. Self-Assembly of n-alkyl Thiols as Disulfides on Au(111). Science, 1994, 266, 1216-1218.
    [95] Tan Y., Li Y., Zhu D.. Fabrication of Gold Nanoparticles Using a Trithiol (Thiocyanuric Acid) as the Capping Agent. Langmuir, 2002, 18, 3392-3395.
    [96] Schimpf S., Lucas M., Mohr C., Rodemerck U., Brückner A., Radnik J., Hofmeister H., Claus P.. Supported Gold Nanoparticles: in Depth Catalyst Characterization and Application in Hydrogenation and Oxidation Reactions. Catal. Today, 2002, 72, 63-78.
    [97] Joseph Y., Besnard I., Rosenberger M., Guse B., Nothofer H.-G., Wessels J.-M., Ute W., Knop-Gericke A., Su D., Schlōgl R., Yasuda A., Vossmeyer T.. Self-assembled Gold Nanoparticles/Alkanedithiol Films: Preparation, Electron Microscopy, XPS-Analysis, Charge Transport, and Vapor-Sensing Properties. J. Phys. Chem. B, 2003, 107, 7406-7413.
    [98] Templeton A. C., Wuelfing W. P., Murray R. W.. Monolayer-Protected Cluster Molecules. Acc. Chem. Res., 2000, 33, 27-36.
    [99] Labande A., Ruiz J., Astruc D.. Supramolecular Gold Nanoparticles for the Redox Recognition of Oxoanions." Syntheses, Titrations, Stereoelectronic Effects, and Selectivity. J. Am. Chem. Soc., 2002, 124, 1782-1789.
    [100] Badia A., Demers L., Dickinson L., Morin F. G., Lennox R. B., Reven L.. Gold-Sulfur Interactions in Alkylthiol Self-Assembled Monolayers Formed on Gold Nanoparticles Studied by Solid-State NMR. J. Am. Chem. Soc., 1997, 119, 11104-11105.
    [101] Schmid G., Chi L. F.. Metal Clusters and Colloids. Adv. Mater., 1998, 10, 515-527.
    [102] Van Kempen H., Dubois J. G. A., Gerritsen J. W., Schmid G.. Small Metallic Particles Studied by Scanning Tunneling Microscopy. Physica B, 1995, 204, 51-56.
    [103] Dubois J. G. A., Gerritsen J. W., Shafranjuk S. E., Boon E. F. G., Schmid G., van Kempen.. Coulomb Staircases and Quantum Size Effects in Tunneling Spectroscopy on Ligand-Stabilized Metal Clusters. Europhys. Lett., 1996, 33, 279-284.
    [104] Badia A., Cuccia L., Demers L., Morin F., Lennox R. B.. Structure and Dynamics in Alkanethiolate Monolayers Self-Assembled on Gold Nanoparticles: A DSC, FT-IR, and Deuterium NMR Study. J. Am. Chem. Soc., 1997, 119, 2682-2692.
    [105] Schnabel U., Fischer C.-H., Kenndler E.. Characterization of Colloidal Gold Nanoparticles According to Size by Capillary Zone Electrophoresis. J. Microcolumn Sep., 1997, 9, 529-534.
    [106] Bzryadin A., Dekker C., Schmid G.. Electrostatic Trapping of Single Conducting Nanoparticles Between Nanoelectrodes. Appl. Phys. Lett., 1997, 71, 1273-1275.
    [107] Antoine R., Brevet P. F., Girault H. H., Bethell D., Schiffrin D. J.. Surface Plasmon Enhanced Non-Linear Optical Response of Gold Nanoparticles at the Air/Toluene Interface. Chem. Commun., 1997, 1901-1902.
    [108] Brust M., Stuhr-Hansen N., Nφrgaard K., Christensen J. B., Nielsen L. K., Bjornholm T.. Langmuir-Blodgett Films of Alkane Chalcogenide (S, Se, Te) Stabilized Gold Nanoparticles. Nano Lett., 2001, 1, 189-191.
    [109] Sastry M., Gole A., Patil V.. Lamellar Langmuir-Blogett Films of Hydrophobized Colloidal Gold Nanoparticles by Organization at the Air-Water Interface. Thin Solid Films, 2001, 384, 125-131.
    [110] Huang S., Tsutsui G., Sakaue H., Shingubara S., Takahagi T.. Experimental Conditions for a Highly Ordered Monolayer of Gold Nanoparticles Fabricated by the Langmuir-Blogett Methodology. J. Vac. Sci. Technol. B, 2001, 19, 2045-2049.
    [111] Kalinina M. A., Arslanov V. V., Tsar'kova L. A., Dolzhikova V. D., Rakhnyanskaya A. A.. Langmuir-Blogett Monolayers and Films of Alkylated Tetraazacrowns Containing Metal Ions and Nanoparticles. Colloid J., 2001, 63, 312-317.
    [112] Sbrana F., Parodi M. T., Ricci D., Di Zitti E.. Langmuir Films of Thiolated Gold Nanoparticles Transferred onto Functionalized Substrate: 2-D Local Organization. Mater. Sci. Eng. C, 2002, 22, 187-191.
    [113] Ravaine S., Fanucci G. E., Seip C. T., Adair J. H., Talham D. R.. Photochemical Generation of Gold Nanoparticles in Langmuir-Blodgett Films. Langmuir, 1998, 14, 708-713.
    [114] Swami A., Kumar A., Selvakannan P. R., Mandal S., Sastry M.. Langmuir-Blodgett Films of Laurylamine-Modified Hydrophobic Gold Nanoparticles Organized at the Air-Water Interface. J. Colloid Interface Sci., 2003, 260, 367-373.
    [115] Brown J. J., Porter J. A., Daghlian C. P., Gibson U. J. Ordered Arrays of Amphiphilic Gold Nanoparticles in Langmuir Monolayers. Langmuir, 2001, 17, 7966-7969.
    [116] Khomutov G. B., Kislov V. V., Gainutdinov R. V., Gubin S. P., Obydenov A. Y., Pavlov S. A., Sergeev-Cherenkov A. N., Soldatov E. S., Tolstikhina A. L., Trifonov A. S.. The Design, Fabrication and Characterization of Controlled-Morphology Nanomaterials and Functional Planar Molecular Nanocluster-Based Nanostructures. Surf. Sci., 2003, 532-535, 287-293.
    [117] 周学华,刘春艳,张志颖,江龙,李津如.有序纳米金颗粒的多层组装,感光科学与光化学,2004,22:251-258.
    [118] Freeman F. G., Grabar K. C., Allison K. J., et al.. Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates. Science, 1995,267, 1629-1632.
    [119] Grabar K. C., Freeman F. G., Hommer M. B., et al.. Preparation and Characterization of Au Colloid Monolayers. Anal. Chem, 1995, 67,735-743.
    [120] Grabar K. C., Allison K. J., Baker B. E., et al.. Two-Dimensional Arrays of Colloidal Gold Particles: An Flexible Approcch to Macroscopic Metal Surfaces. Langmuir, 1996, 12, 2353-2361.
    [121] Schmid G., Peschel S., Sawitowski T.. Two-Dimensional Arrangements of Gold Clusters and Gold Colloids on Various Surfaces. Z. Anorg. Allg.Chem.,1997,623,719-723.
    [122] 胡瑞省,刘善堂,朱涛,等.金纳米粒子通过形成Au-S键的组装.物理化学学报,1999,15,961-964.
    [123] Kumar A., Mandale A. B., Sastry M.. Sequential Electrostatic Assembly of Amine-derivatized Gold and Carboxylic Acid-derivatized Silver Colloidal Particles on Glass Substrates. Langmuir, 2000, 16, 6921-6926.
    [124] He J-A., Valluzzi R., Yang K., et al.. Electrostatic Multilayer Deposition of a Gold-dendrimer Nanocomposite. Chem. Mater., 1999, 11, 3268-3274.
    [125] Kolny J., Komowski A., Weller H.. Self-Organization of Cadmium Sulfide and Gold Nanoparticles by Electrostatic Interaction. Nano Lett.,2002, 2, 361-364.
    [126] Carroll J. B., Frankamp B. L., Rotello V. M.. Self-assembly of Gold Nanoparticles Through Tandem Hydrogen Bonding and Polyoligosilsequioxane POSS-POSS Recognition Processes. Chem. Commun., 2002, 1892-1893.
    [127] Gourishankar A., Shukla S., Pasricha R., Sastry M., Oanesh K. N.. DNA and PNA as Templates for Building Nanoassemblies via Electrostatic Complexation with Gold nanoparticles. Current Appl. Phys., 2005, 5,102-107.
    [128] Tilley R. D., Saito S.. Preparation of Large Scale Monolayers of Gold Nanoparticles on Modified Silicon Substrates Using a Controlled Pulling Methodology. Langmuir, 2003, 19, 5115-5120.
    [129] Schaaff T. G., Blom D. A.. Deposition of Au-Nanocrystals on TiO_2 Crystallites. Nano Lett., 2002, 2, 507-511.
    [130] Boccuzzi F., Chiorino A., Manzoli M.. FTIR Study of the Cationic Effects of CO Adsorbed on Gold Nanoparticles Supported on Titania. Surf. Sci.,2000, 454-456, 942-946.
    [131] Qian W., Lin L., Deng Y. J., Xia Z. J., Zou Y. H., Wong G. K. L.. Femtosecond Studies of Coherent Acoustic Phonons in Gold Nanoparticles Embedded in TiO_2 Thin Films. J. Appl. Phys., 2000, 87, 612-614.
    [132] Yang Y., Shi J., Huang W., Dai S., Wang L.. Preparation and Optical Properties of Gold Nanoparticles Embedded in Barium Titanate Thin Films. J. Mater. Sci., 2003, 38, 1243-1248.
    [133] Lengl G., Ziemann P., Banhart F., Walther P.. Anomalous Behavior of Gold Nanoislands on Top of SrTiO_3(001) During their Overgrowth by Thin YBaCuO Films. Physica C: Superconductivity, 2003, 390, 175-184.
    [134] Garcia-Serrano J., Pal U.. Synthesis and Characterization of Au Nanoparticles in Al_2O_3 Matrix. Hydrogen Energy, 2003, 28, 637-640.
    [135] Shon Y.-S., Choo H.. [60]Fullerene-Linked Gold Nanoparticles: Synthesis and Layer-by-Layer Growth on a Solid Surface. Chem. Commun., 2002,2560-2561.
    [136] Liu J., Alvarez J., Ong W., Kaifer A. E.. Network Aggregates Formed by C60 and Gold Nanoparticles Capped with γ-Cyclodextrin Hosts. Nano Lett., 2001, 1, 57-60.
    [137] Liu L, Wang T., Li J., Guo Z.-X., Dai L., Zhang D., Zhu D.. Self-Assembly of Gold Nanoparticles to Carbon Nanotubes Using a Thiol-Terminated Pyrene as Interlinker. Chem. Phys. Lett., 2003, 367,747-752.
    [138] Jiang K., Eitan A., Schadler L. S., Ajayan P. M., Siegel R. W., Grobert N., Mayne M., Reyes-Reyes M., Terrones H., Terrones M.. Selective Attachment of Gold Nanoparticles to Nitrogen-Doped Carbon Nanotubes. Nano Lett., 2003, 3, 275-277.
    [139] Giersig M., Mulvaney P.. Preparation of Ordered Colloid Monolayers by Electrophoretic Deposition. Langmuir, 1993, 9, 3408-3413.
    [140] Zhao S.-Y., Lei S.-B., Chen S.-H., Ma H.-Y., Wang S.-Y.. Assembly of Two-Dimensional Ordered Monolayers of Nanoparticles by Electrophoretic Deposition. Colloid Polym. Sci., 2002, 278, 682-686.
    [141] Pol V. G., Gedanken A., Calderro-Moreno J.. Deposition of Gold Nanoparticles on Silica Spheres: A Sonochemical Approach. Chem. Mater., 2003, 15, 1111-1118.
    [142] Dawson A., Kamat P. V. Complexation of Gold Nanoparticles with Radiolytically Generated Thiocyanate Radicals ((SCN)_2"). J. Phys. Chem. B., 2000, 104, 11842-11846.
    [143] Takeda Y., Kishimoto N., Nonlinear Optical Properties of Metal Nanoparticle Composites for Optical Applications. Nuclear Instruments and Methods in Phys Res B, 2003, 206, 620-623.
    [144] Wang P., Lu Y. H., Tang L., et al.. Surface-Enhanced Optical Nonlinearity of a Gold Film. Opt. Cornmun., 2004, 229, 425-429.
    [145] Shen Y. R.. The Principles of Nonlinear Optics. New York: John Wiley & Sons, 1984.
    [146] Ila D., Williams E. K., Sarkisov S., et al.. Formation of Metallic Nanoclusters in Silica by Ion Implantation. Nuclear Instrum and Methods in Phys Res B, 1998, 141, 289-293.
    [147] Yang Y., Hori M., et al.. Self-assembled 3-Dimensional Arrays of Au@SiO_2 Core-shell Nanoparticles for Enhanced Optical Nonlinearities. Surf. Sci., 2005, 579, 215-224.
    [148] Kondu Y., Takayanagi K.. Gold Nanobridge Stabilized by Surface Structure. PhysicaL Review letter, 1997, 79, 3455-3458.
    [149] Boccuzzi F., Chiorino A., Manzoli M.. Au/TiO_2 Nanostructured Catalyst: Effects of Gold Particle Sizes on CO Oxidation at 90K. Materials Science and Engineering : C, 2001, 15,215-217.
    [150] Boccuzzi F., Chiorino A., Manzoli M.. Au/TiO_2 Nanostructured Catalyst : Pressure and Temperature Effects on the FTIR Spectra of CO Adsorbed at 90K. Surface Science, 2002, 502-503, 513-518.
    [151] Dekkers M. A. P., Lippits M. J., Nieuwenhuys B. E.. Supported Gold/ MOX Catalysts for NO/H_2 and CO/O_2 Reactions. Catalysis Today, 1999,54, 381-390.
    [152] Haruta M.,Yamada N., Kobayashi T., et al.. Gold Catalysts Prepared by Coprecipitation for Low-temperature Oxidation of Hydrogen and of Carbon Monoxide. J. Catal., 1989, 115, 301-309.
    [153] Haruta M.. Novel Catalysts of Gold Deposition on Metal Oxides. Catalysis Surveys of Japan, 1997, 1, 61-73.
    [154] Uphade B. S., Yamada Y., Akita T., et al.. Synthesis and Characterization of Ti - MCM - 41 and Vapor-phase Epoxidation of Propylene Using H_2 and O_2 Over Au/Ti - MCM- 41. Applied Catalysis A: General, 2001, 215, 137-148.
    [155] Bond G. C.. Relativistic Effects in Coordination, Chemisorption and Catalysis. Journal of Molecular Catalysis A:, Chemical 2000, 156, 1-20.
    [156] Boccuzzi F., Chiorino A., Manzoli M., et al.. Gold, Silver and Copper Catalysts Supported on TiO_2 for Pure Hydrogen Production. Catalysis Today, 2002,75, 169-175.
    [157] Andreeva D., Idakiev V., Tabakova T., et al.. Low - temperature Water - gas Shift Reaction Over Au/CeO_2 Catalysts. Catalysis Today, 2002, 72,51-57.
    [158] Kondratenko E. V., Buyevskaya O., Baerns M.. Mechanistic Insights in the Activation of Oxygen on Oxide Catalysts for the Oxidative Dehydrogenation of Ethane from Pulse Experiments and Contact Potential Difference Measurements. Journal of Molecular Catalysis A: Chemical, 2000, 158, 199-208.
    [159] Centeno M. A., Paulis M., Montes M.. Catalytic Combustion of Volatile Organic Compounds on Au/ CeO_2/ Al_2O_3 and Au/ Al_2O_3 Catalysts. Applied Catalysis A: General, 2002, 234,65-78.
    [160] Sau T. K., Pal A., Pal T.. Size Regime Dependent Catalysis by Gold Nanoparticles for the Reduction of Eosin. J. Phys. Chem B, 2001, 105, 9266-9272.
    [161] Freund P L., Spiro M.. Colloidal Catalysis: the Effect of Sol Size and Concentration J. Phys. Chem., 1985, 89, 1074-1077.
    [162] Kopple K., Meyerstein D., Meisel D.. Mechanism of the Catalytic Hydrogen Production by Gold Sols. Hydrogen/Deuterium Isotope Effect Studies J. Phys. Chem., 1980, 84, 870-875.
    [163] Labande A., Astruc D.. Colloids as Redox Sensors: Recognition of H_2PO_4- and HSO_4 by Amidoferrocenylalkylthiol-Gold-Nanoparticles. Chem. Commun., 2000, 1007-1008.
    [164] Lin S.-Y., Liu S.-W., Lin C.-M., Chen C.-H.. Recognition of Potassium Ion in Water by 15-Crown-5 Functionalized Gold Nanoparticles. Anal. Chem., 2002, 74, 330-335.
    [165] Obare S. O., Hollowell R. E., Murphy C. J.. Sensing Strategy for Lithium Ion Based on Gold Nanoparticles. Langmuir, 2002, 18, 10407-10410.
    [166] Fantuzzi G., Pengo P., Gomila R., Ballester P., Hunter C. A., Pasquato L., Scrimin P.. Multivalent Recognition of bis- and tris-Zn-Porphyrins by N-Methylimidazole Functionalized Gold Nanoparticles. Chem. Commun., 2003, 1004-1005.
    [167] Mucic R. C., Storhoff J. J., Mirkin, et al.. DNA-Directed Synthesis of Binary Nanoparticle Network Materials. J. Am. Chem. Soc., 1998, 120, 12674-12675.
    [168] Storhoff J. J., Elghanian R., Mucic R. C., et al.. One-Pot Colorimetric Differentiation of Polynucleotides with Single Base Imperfections Using Gold Nanoparticle Probes J. Am. Chem. Soc., 1998, 120, 1959-1964.
    [169] Elghanian R., Storhoff J. J., Mucic R. C., et al.. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science, 1997, 277, 1078-1080.
    [170] Storhoff J. J., Lazarides A. A., Mucic R. C., et al.. What Controls the Optical Properties of DNA-linked Gold Nanoparticle Assemblies?J. Am. Chem. Soc., 2000, 122, 4640-4650.
    [171] Maxwell D. J., Taylor J. R., Nie S.. Self-assembled Nanoparticle Probes for Recognition and Detection of Biomolecules. J. Am. Chem. Soc., 2002,124, 9606-9612.
    [172] Zhou X., Zhou J.. Improving the Signal Sensitivity and Photostability of DNA Hybridizations on Microarrays by Using Dye-Doped Core-Shell Silica Nanoparticles. Anal. Chem., 2004, 76, 5302-5312.
    [173] Taton TA., Gang Lu , Mirkin CA.. Two Color Labeling of Oligonucleotide Arrays Via Size-selective Scattering of Nanoparticle Probes. J. Am. Chem. Soc., 2001, 123, 5164-5165.
    [174] Chen S. J., Chang H. T.. Nile Red-Adsorbed Gold Nanoparticles for Selective Determination of Thiols Based on Energy Transfer and Aggregation. Anal. Chem., 2004, 76, 3727-3734.
    [175] Nath N., Chilkoti A.. Label-Free Biosensing by Surface Plasmon Resonance of Nanoparticles on Glass: Optimization of Nanoparticle Size. Anal. Chem. 2004, 76, 5370-5378.
    [176] Li Zheng Ping, Duan Xin Rui, Liu Cheng Hui, Du Bao An. Selective Determination of Cysteine by Resonance Light Scattering Technique Based on Self-Assembly of Gold Nanoparticles. Anal. Biochem., 2006, 351, 18-25.
    [177] Liu Shaopu, Yang Zhuo, Liu Zhongfang, Kong Ling.. Resonance Rayleigh-Scattering Method for the Determination of Proteins with Gold Nanoparticle Probe. Anal. Biochem., 2006, 353, 108-116.
    [178] Matsui J., Akamatsu K., Nishiguchi S., Miyoshi D., Nawafune H., Tamaki K., Sugimoto N.. Composite of Au Nanoparticles and Molecularly Imprinted Polymer as a Sensing Material. Anal. Chem., 2004, 76, 1310-1315.
    [179] Matsui J., Akamatsu K., Hara N., Miyoshi D., Nawafune H., Tamaki K., Sugimoto N.. SPR Sensor Chip for Detection of Small Molecules Using Molecularly Imprinted Polymer with Embedded Gold Nanoparticles. Anal. Chem., 2005, 77, 4282-4285.
    [180] Crumbliss A. L., Perine S. C., Stonehuerner J., et al.. Colloidal Gold as a Biocompatible Immobilization Matrix Suitable for the Fabrication of the Enzyme Electrodes by Electrodeposition. Biotechnol. Bioeng., 1992, 40, 483-490.
    [181] Bharathi S., Lev O.. Sol-Gel-Derived Nanocrystalline Gold-Silicate Composite Biosensor. Anal. Commun., 1998, 35, 29-31.
    [182] Wang J., Pamidi P. V. A.. Sol-Gel-Derived Gold Composite Electrodes Anal. Chem., 1997, 69, 4490-4494.
    [183] Xiao Y., Ju H. X., Chen H. Y.. Direct Electrochemistry of Horseradish Peroxidase Immobilized on a Colloid/Cysteamine Modified Gold Electrode. Anal. Biochem., 2000, 278, 22-28.
    [184] Gu H. Y., Yu A. M., Chen H. Y.. Direct Electron Transfer and Characterization of Hemoglobin Immobilized on a Au Colloid/Cysteamine Modified Gold Electrode. J. Electroanal. Chem., 2001, 516, 119-126.
    [185] Crumbliss A. L., Stonehuerner J. G., Henkens R. W., et al.. A Carrageenan Hydrogel Stabilized Colloidal Gold Mufti-Enzyme Biosensor Electrode Utilizing Immobilized Horseradish Peroxidase and Cholesterol Oxidase/Cholesterol Esterase to Detect Cholesterol in Serum and Whole Blood. Biosens. Bioelectron., 1993, 8, 331-337.
    [186] Liu S. Q., Yu J. H., Ju H. X.. Renewable Phenol Biosensor Based on a Tyrosinase-Colloidal Gold Modified Carbon Paste Electrode. J. Electroanal. Chem., 2003, 540, 61-67.
    [187] Liu S. Q., Ju H. X.. Reagentless Glucose Biosensor Based on Direct Electron Transfer of Glucose Oxidase Immobilized Colloidal Gold Modified Carbon Paste Electrode. Biosens. Bioelectron., 2003, 19,177-183.
    [188] 唐芳琼,韦正,陈东,孟宪伟,苟立,冉均国.亲水金和憎水二氧化硅纳米颗粒对葡萄糖生物传感器响应灵敏度的增强作用.高等学校化学学报,2000,21,91-94.
    [189] 唐芳琼,孟宪伟,陈东,冉均国,苟立,郑昌琼.纳米颗粒增强的葡萄糖生物传感器.中国科学(B辑),2000,30,119-124.
    [190] 孟宪伟,唐芳琼,冉均国,苟立.纳米颗粒复合材料增强的葡萄糖生物传感器.化学通报,2001,6,365-367.
    [191] Faulk W. P., Taylar G. M.. An Immunocolloidal Method for the Electron Microscope. Immunochemistry, 1971, 8, 1081-1083.
    [192] Gechegan W. D.. Passive Gold Agglutination. An Alternative to Passive Hemagglutination. J. Immunol. Methods, 1980, 34, 11-21.
    [193] Spielberg F., Kabeya C. M., Ryder R.W., et al.. Field Testing and Comparative Evaluation of Rapid, Visually Read Screening Assays for Antibody to Human Immunodefiency Virus. Lancet, 1989, 1,580-584.
    [194] Kim J. H., Joung-Hwan C., Sig C.G., et al.. Conductimetric Membranestrip Immunosensor with Polyani-Line-Bound Gold Colloides as Singnal Generator. Biosensor&Bioelectronics, 2000, 14, 907-915.
    [195] Brainina K., Kozitsina A., Beikin J.. Electrochemical Immunosensor for Forest-Spring Encephalitis Based on Protein A Labeled with Colloidal Gold. Anal. Bioanal. Chem., 2003, 376, 481-485.
    [196] Tang D., Yuan R., Chai Y. et al.. A Novel Immunosensor Based on Immobilization of Hepatitis B Surface Antibody on Platinum Electrode Modified Colloidal Gold and Polyvinyl Butyral as Matrices via Electrochemical Impedance Spectroscopy. Bioelectrochemistry, 2004, 65,15-22.
    [197] Kitano H., Makino Y., Kawasaki H., et al.. Self-Assembled Monolayer of a Pepstatin Fragment as a Sensing Element for Aspartyl Proteases. Anal. Chem., 2005, 77, 1588-1595.
    [198] Nguyen R. A., Zeev R.. Development of an Aggregation-Based Immunoassay for Anti-Protein A Using Gold Nanoparticles. Anal.Chem., 2002, 74, 1624-1628.
    [199] Huang M. F., Kuo Y. C., Huang C. C., et al.. Separation of Long Double-Stranded DNA by Nanoparticle-Filled Capillary Electrophoresis. Anal. Chem., 2004, 76, 192-196.
    [200] Neiman B., Grushka E., Lev O.. Use of Gold Nanoparticles to Enhance Capillary Electrophoresis. Anal. Chem., 2001, 73, 5220-5227.
    [201] Pumera M., Wang J., Grushka E., et al.. Gold Nanoparticle-Enhanced Microchip Capillary Electrophoresis. Anal. Chem., 2001, 73, 5625-5628.
    [202] Gross G. M., Nelson D. A., Grate J. W., Synovec R. E.. Monolayer-Protected Gold Nanoparticles as a Stationary Phase for Open Tubular Gas Chromatography. Anal.Chem., 2003, 75, 4558-4564.
    [203] Teng C. H., Ho K. C., Lin Y. S., Chen Y. C.. Gold Nanoparticles as Selective and Concentrating Probes for Samples in MALDI MS Analysis. Anal. Chem., 2004, 76, 4337-4342.
    [1] Glynou K., Ioannou P. C., Christopoulos T. K., Syriopoulou V.. Oligonucleotide-Functionalized Gold Nanoparticles as Probes in a Dry-Reagent Strip Biosensor for DNA Analysis by Hybridization. Anal. Chem., 2003, 75,4155-4160.
    [2] Liu T., Tang J., Zhao H., Deng Y., Jiang L.. Particle Size Effect of the DNA Sensor Amplified with Gold Nanoparticles. Langmuir, 2002,18, 5624-5626.
    [3] Tian R-H., Rao T. N., Einaga Y., Zhi J-F.. Construction of Two-Dimensional Arrays Gold Nanoparticles Monolayer onto Boron-Doped Diamond Electrode Surfaces. Chem. Mater., 2006,18,939-945.
    [4] Abdelrahman A. I., Mohammad A. M., Okajima T., Ohsaka T. Fabrication and Electrochemical Application of Three-Dimensional Gold Nanoparticles: Self-Assembly. J. Phys. Chem. B., 2006,110, 2798-2803.
    [5] Nie B., Shortreed M. R., Smith L. M.. Quantitative Detection of Individual Cleaved DNA Molecules on Surfaces Using Gold Nanoparticles and Scanning Electron Microscope Imaging. Anal. Chem., 2006, 78, 1528-1534.
    [6] Raveendran P., Fu J., Wallen S. L.. Completely "Green" Synthesis and Stabilization of Metal Nanoparticles. J. Am. Chem. Soc, 2003, 125, 13940-13941.
    [7] Liu J-C, Anand M., Roberts C. B.. Synthesis and Extraction of β-D-Glucose-Stabilized Au Nanoparticles Processed into Low-Defect, Wide-Area Thin Films and Ordered Arrays Using CO_2-Expanded Liquids. Langmuir, 2006, 22, 3964-3971.
    [8] Sun X-M., Li Y-D.. Ag@C Core/Shell Structured Nanoparticles: Controlled Synthesis, Characterization, and Assembly. Langmuir, 2005, 21, 6019-6024.
    [9] Qi Z-M., Zhou H-S., Matsuda N., et al.. Characterization of Gold Nanoparticles Synthesized Using Sucrose by Seeding Formation in the Solid Phase and Seeding Growth in Aqueous Solution. J. Phys. Chem. B, 2004, 108,7006-7011.
    [10] Ales Panácek, Libor Kvítek, Robert Prucek, et al., Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity. J. Phys. Chem. B, 2006,110,16248-16253.
    [11] 曹洁明,郑明波,陆鹏等.利用还原性多糖合成银纳米粒子,化学学报,2005,63,1541-1544.
    [12] Huang H-Z., Yang X-R.. Synthesis of Chitosan-Stabilized Gold Nanoparticles in the Absence/Presence of Tripolyphosphate. Biomacromolecules, 2004,5,2340-2346.
    [13] Frens G.. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature: Phys. Sci., 1973, 241, 20-22.
    [14] 陈宗淇,王光信.胶体和表面化学,北京:高等教育出版社,2001,139.
    [15] Shipway A. N., Lahav M., Gabai R., et al.. Investigations into the Electrostatically Induced Aggregation of Au Nanoparticles. Langmuir, 2000, 16, 8789-8795.
    [16] Vander Zande B. M. I., Koper G. M., Lekkerkerker N. W.. Alignment of Rod-Shaped Gold Particles by Electric Fields. J. Phys. Chem. B, 1999,103, 5754-5760.
    [17] Mandal M., Ghosh S. K., Kundu S., Esumi K., Pal T.. UV Photoactivation for Size and Shape Controlled Synthesis and Coalescence of Gold Nanoparticle in Micelles. Langmuir, 2002,18, 7792-7797.
    [18] 王传义,刘春艳,沈涛.Au/TiO_2复合纳米粒子的研究—Ⅰ.制备与表征.科学通报,1998,43,268-272.
    [19] Mayya K. M., Jain N., Gole A., Langevin D., Sastry M.. Time-Dependent Complexation of Glucose-Reduced Gold Nanoparticles with Octadecylamine Langmuir Monolayers. J. Colloid Interface Sci., 2004, 270, 133-139.
    [20] He J., Kunitake T., Nakao A.. Facile In Situ Synthesis of Noble Metal Nanoparticles in Porous Cellulose Fibers. Chem. Mater., 2003, 15, 4401-4406.
    [1] Wang P., Lu Y. H., Tang L., et al.. Surface-Enhanced Optical Nonlinearity of a Gold Film. Opt. Cornmun., 2004, 229, 425-429.
    [2] Yang Y., Hori M., et al.. Self-Assembled 3-Dimensional Arrays of Au@SiO_2 Core-Shell Nanoparticles for Enhanced Optical Nonlinearities. Surf. Sci., 2005, 579, 215-224.
    [3] Grabar K. C., Freeman R. G., Hommer M. B., Natan M. J.. Preparation and Characterization of Au Colloid Monolayers. Anal. Chem., 1995, 67,735-743.
    [4] Grabar K. C., Smith P. C., Musick M. D., Davis J. A., Walter D. G., Jackson M. A., Guthrie A. P., Natan M. J.. Kinetic Control of Interparticle Spacing in Au Colloid-Based Surfaces: Rational Nanometer-Scale Architecture. J. Am. Chem. Soc., 1996,1148-1153.
    [5] Bharathi S., Lev O.. Sol-Gel-Derived Nanocrystalline Gold-Silicate Composite Biosensor. Anal. Commun., 1998,35, 29-31.
    [6] Crumbliss A. L., Stonehuerner J. G., Henkens R. W., et al.. A Carrageenan Hydrogel Stabilized Colloidal Gold Mufti-Enzyme Biosensor Electrode Utilizing Immobilized Horseradish Peroxidase and Cholesterol Oxidase/Cholesterol Esterase to Detect Cholesterol in Serum and Whole Blood. Biosens. Bioelectron., 1993,8,331-337.
    [7] Liu S. Q., Yu J. H., Ju H. X.. Renewable Phenol Biosensor Based on a Tyrosinase-Colloidal Gold Modified Carbon Paste Electrode. J. Electroanal. Chem., 2003, 540, 61-67.
    [8] Ulman A.. An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-assembly. Boston: Press, 1991,1-43.
    [9] Chen S. W.. Langmuir-Blodgett Fabrication of Two-Dimensional Robust Cross-Linked Nanoparticle Assemblies. Langmuir, 2001,17, 2878-2884.
    [10] Lee H., Kepley L. J., Mallouk T. E.. Adsorption of Ordered Zirconium Phosphonate Multilayer Films on Silicon and Gold Surfaces. J. Phys. Chem., 1988, 92, 2597-2601.
    [11] Nuzzo R. G., Fusco F. A., Allara D. L.. Spontaneously Organized Molecular Assemblies: Preparation and Properties of Solution Adsorbed Monolayers of Organic Disulfides on Gold Surfaces. J. Am. Chem. Soc., 1987,109,2358-2361.
    [12] Decher G., Hong J. D., Schmitt J.. Templating, Self-Assembly and Self-Organization. Thin Solid Films, 1992, 210, 831-835.
    [13] Decher G.. Fuzzy Nanoassemblies: Toward Layered Multicomposites. Science, 1997, 227,1232-1237.
    [14] Lvov Y., Ariga K., Ichinose I., et al.. Assembly of Multicomponent Protein Films by Means of Electrostatic Layer-by-Layer Adsorption. J. Am. Chem. Soc., 1995,117, 6117-6123.
    [15] Schmitt J., Decher G., Dressick W. J., et al.. Metal Nanoparticle/Polymer Superlattice Films: Fabricationand Control of Layer Structure. Adv. Mater., 1997,9, 61-65.
    [16] Kotov N. A., Dekfany I., Fendler J. H.. Layer-by-Layer of Electrolyte-Semiconductor Nanoparticle Composite Films. J. Phys. Chem., 1995,99,13065-13609.
    [17] Zhou X. C, Huang L. Q., Li S. F.. Microgravimetric DNA Sensor Based on Quartz Crystal Microbalance: Comparison of Oligonucleotide Immobilization Methods and the Application in Genetic Diagnosis. Biosens. Bioelectron., 2001,16, 85-95.
    [18] Arregui F. J., Liu Y. J., Matias I. R., Claus R. O.. Optical Fiber Humidity Sensor Using a Nano Fabry-Perot Cavity Formed by the Ionic Self-Assembly Method. Sensor. Actuat. B: Chem., 1999,59,54-59.
    [19] Stoeve P., Uasques V., Rabolt J. F.. Gas Transfer in Supported Films Made by Molecular Self-Assembly of Ionic Polymers. Thin Solid Films, 1996, 284/285, 708-712.
    [20] Linke-Schaetzel M., Bhise A. D., Gliemann H., Koch T., Schimmel T.. Self-Assembled Chromophores for Hybrid Solar Cells. Thin Solid Films 2004,451/452,16-21.
    [21] Pereira G. G.. Towards Nano-Scale Devices via Self-assembly. Curr. Appl. Phys., 2004,4, 255-258.
    [22] Wu A., Yoo D., Rubner M. F.. Solid-State Light-Emitting Devices Based On the Tris-Chelated Ruthenium (Ⅱ) Complex: 3. High Efficiency Devices via a Layer-by-Layer Molecular-level Blending Approach. J. Am. Chem. Soc., 1999,121,4883-4891.
    [23] Wang X. G., Chen J. H., Marturunkakul S.. Epoxy-based Nonlinear Optical Polymers Functionalized with Tricyanovinyl Chromophores. Chem. Mater., 1997,9,45-50.
    [24] Freeman R. G., Grabar K. C., Allison K. J.. Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates. Science, 1995, 267, 1629-1632.
    [25] Osawa M., Ikeda M.. Surface-Enhanced Infrared Absorption of p-Nitrobenwic Acid Deposited on Silver Island Films: Contributions of Electromagnetic and Chemical Mechanisms. J. Phys. Chem., 1991, 95, 9914-9919.
    [26] Kajiyama T., Oishi Y, Hirose F., Shuto K., Kuri T.. Direact Observation of Molecular Arrangements in Fatty Acid Monolayers with an Atomic Force Microscope, Langmuir, 1994,10,1297-1299.
    [27] Tamada K., Nagawa J., Nakanishi F., Abe K.. Structure and Growth of Hexyl Azobenzene Thiol SAMs on Au(111), Langmuir, 1998, 14, 3264-3271.
    [28] 余海湖,姜德生.金纳米粒子自组装薄膜的光谱学研究.光谱学与光谱分析,2002,52,511-514.
    [29] Fleischmann M., Hendra P. J., Raman Spectra of Pyridine Adsorbed at a Silver Electrode, Chem. Phys. Lett., 1974, 26,163-166.
    [30] Albrecht M. G., Creighton J. A.. Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode. J. Am. Chem. Soc., 1977, 99,5215-5217.
    [31] Pockrand I., Otto A.. Surface Enhanced Raman Scattering (SERS): Annealing the Silver Substrate. Solid State Communications, 1981, 38, 1159-1163.
    [32] Brolo A. G., Irish D. E., Szymanski G., Lipkowski J.. Relationship Between SERS Intensity and Both Surface Coverage and Morphology for Pyrazine Adsorbed on a Polycrystalline Gold Electrode. Langmuir, 1998, 14, 517-527.
    [1] Saunders A. E., Sigman M. B. Jr., Korgel B. A.. Growth Kinetics and Metastability of Monodisperse Tetraoctylammonium Bromide Capped Gold Nanocrystals. J. Phys. Chem. B, 2004,108,193-199.
    [2] Galletto P., Brevet P. F., Girault H. H., et al.. Enhancement of the Second Harmonic Response by Adsorbates on Gold Colloids: The Effect of Aggregation. J. Phys. Chem. B, 1999,103, 8706-8710.
    [3] Sayd B., Prashant V. K., Surat H.. Photoinduced Electron Transfer between Chlorophyll a and Gold Nanoparticles. J. Phys. Chem. B, 2005, 109, 716-723.
    [4] 沈理明,姚建林,顾仁敖.金纳米粒子的电化学合成及光谱表征.光谱学与光谱分析,2005,25,1998-2001.
    [5] Jin R., Wu G., Li Z., et al.. What Controls the Melting Properties of DNA-Linked Gold Nanoparticle Assemblies? J. Am. Chem. Soc., 2003, 125,1643-1654.
    [6] Thanh N. T. K., Rosenzweig Z.. Fabrication of Fluorescence Nanosensors by a Layer-by-Layer Adsorption of Polyelectrolytes on Gold Nanoparticles. Abstracts of Papers, 225th ACS National Meeting, March 23-27, 2003 (2003), Publisher: American Chemical Society, Washington, D. C.
    [7] Asian K., Perez-Luna V. H.. Nonradiative Interactions between Biotin-Functionalized Gold Nanoparticles and Fluorophore-Labeled Antibiotin Plasmonics, 2006,1,111-119.
    [8] Ray P. C., Fortner A., Griffin J., et al. Laser-Induced Fluorescence Quenching of Tagged Oligonucleotide Probes by Gold Nanoparticles. Chemical Physics Letters, 2005,414, 259-264.
    [9] Huang T, Murray R. W.. Quenching of [Ru(bpy)_3]~(2+) Fluorescence by Binding to Au Nanoparticles. Langmuir, 2002,18, 7077-7081.
    [10] Fan C. H., Wang S., Bazan G. C.. High-Efficiency Fluorescence Quenching of Conjugated Polymers by Gold Nanoparticles. Abstracts of Papers, 225th ACS National Meeting, New Orleans, LA, United States, March 23-27, 2003 (2003), Publisher: American Chemical Society, Washington, D. C.
    [11] Frens G.. Controlled Nucleation for the Regulation of the Particle Monodisperse Gold Suspensions. Nature: Phys. Sci., 1973, 241, 20-22.
    [12] Hayat M. A.. Colloidal Gold: Principles, Methods, and Applications, Academic Press: San Diego, CA, 1991.
    [13] Nabika H., Deki S.. Enhancing and Quenching Functions of Silver Nanoparticles on the Luminescent Properties of Europium Complex in the Solution Phase. J. Phys. Chem. B., 2003, 107,9161-9164.
    [14] Weitz D. A., Garoff S., Gersten J. I.. The Enhancement of Raman Scattering, Resonance Raman Scattering, and Fluorescence from Molecules Adsorbed on a Rough Silver Surface. J. Chem. Phys., 1983, 78, 5324-5329.
    [15] 朱建军,林西平,都有为.纳米结构材料,自然杂志,1999,21,315-318.
    [1] Haruta M., Yamada N., Kobayashi T., Iijima S.. Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide. Journal of Catalysis, 1989,115, 301-309.
    [2] Bond G. C.. Strategy of Research on Supported Metal Catalysts. Problems of Structure-Sensitive Reactions in the Gas Phase. Acc. Chem. Res., 1993, 26, 490-495.
    [3] Boccuzzi F., Chiorino A., Manzoli M.. Au/ TiO_2 Nanostructured Catalyst: Effects of Gold Particle Sizes on CO Oxidation at 90K. Materials Science and Engineering: C, 2001,15, 215-217.
    [4] Dekkers M. A. P., Lippits M. J., Nieuwenhuys B. E.. Supported Gold/ MOX Catalysts for NO/ H_2 and CO/O_2 Reactions. Catalysis Today, 1999, 54, 381-390.
    [5] Maye M. M., Lou Y., Zhong, C.-J.. Core-Shell Gold Nanoparticle Assembly as Novel Electrocatalyst of CO Oxidation. Langmuir, 2000,16,7520-7523.
    [6] Lou Y., Maye M. M., Han L., Luo J., Zhong C. J.. Gold-Platinum Alloy Nanoparticle Assembly as Catalyst for Methanol Electrooxidation. Chem. Commun., 2001,473-474.
    [7] Luo J., Maye M. M., Lou Y., Han L., Hepel M., Zhong C. J.. Catalytic Activation of Core-Shell Assembled Gold Nanoparticles as Catalyst for Methanol Electrooxidation. Catal. Today, 2002,77,127-138.
    [8] Minico S., Sciere S., Crisafulli C., Visco A. M., Galvano S.. FT-IR Study of Au/Fe_2O_3 Catalysts for CO Oxidation at Low Temperature. Catal. Lett., 1997,47, 273-276.
    [9] Nkosi B., Coville N. J., Hutchings G. J., et al.. Hydrochlorination of Aacetylene Using Gold Catalysts: A Study of Catalyst Deactivation. J. Catal., 1991,128, 366-377.
    [10] Bailie J. E., Hutchings G. J.. Promotion by Sufur of Gold Catalysts for Crotyl Alcohol Formation from Crotonaldehyde Hydromgenation. Chem Commun, 1999, 2151-2152.
    [11] Andreeva D., Idakiev V., Tabakova T., et al.. Low-Temperature Water-Gas Shift Reaction over Au/.alpha.-Fe_2O_3. J. Catal., 1996, 158, 354-355.
    [12] Freund P. L., Spiro M.. Colloidal Catalysis: The Effect of Sol Size and Concentration. J. Phys. Chem., 1985, 89, 1074-1077.
    [13] Kopple K., Meyerstein D., Meisel D.. Mechanism of the Catalytic Hydrogen Production by Gold Sols. Hydrogen/Deuterium Isotope Effect Studies. J. Phys. Chem., 1980, 84, 870-875.
    [14] Pal T., Sau T. K., Jana N. R.. Reversible Formation and Dissolution of Silver Nanoparticles in Aqueous Suffactant Media. Langmuir, 1997, 13, 1481-1485.
    [15] Fendler J. H., Atomic and Molecular Clusters in Membrane Mimetic Chemistry. Chem. Rev., 1987, 87, 877.
    [16] Pal T., De S., Jana N. R., Prodhan N., Mondal R., Pal A., Beezer A. E., Mitchel J.. Organized Media as Redox Catalysts. Langmuir, 1998, 14, 4724-4730.
    [17] Jana N. R., Sau T. K., Pal T.. Growing Small Silver Particle as Redox Catalyst. J. Phys. Chem. B, 1999, 103, 115-121.
    [18] Frens G.. Controlled Nucleation for the Regulation of the Particle Monodisperse Gold Suspensions. Nature: Phys. Sci., 1973, 241, 20-22.
    [19] Hayat M. A.. Colloidal Gold: Principles, Methods, and Applications, Ed [M]. San Diego: Academic Pres, 1991.
    [20] Bishop E.. Indicators [M], England: Pergamon Press, 1972, 453-454.
    [21] Bergmann K., O'Konski C.T.. Spectroscopic Study of Methylene Blue Monomer, Dimer, and Complexes with Montmorillonite J. Phys. Chem., 1963, 67, 2169-2177.
    [22] Miller D. S., McLendon G.. Quantitative Electrochemical Kinetics Studies of "Microelectrodes": Catalytic Water Reduction by Methyl Viologen/Colloidal platinum. J. Am. Chem. Soc., 1981, 103, 6791-6796.
    [23] Miller D. S., Bard A. J., McLendon G., Ferguson J.. Catalytic Water Reduction at Colloidal Metal "Microelectrodes". 2. Theory and Experiment. J. Am. Chem. Soc., 1981, 103, 5336-5341.
    [24] Seno M., Kousaka K., Kise H. Reduction of Methylene Blue with L-ascorbic Acid or L-cysteine in Micellar Systems. Bull Chem Soc Jpn, 1979, 52, 2970-2974.
    [25] Kiwi J., Gratzel M.. Projection, Size factors, and Reaction Dynamics of Colloidal Redox Catalysts Mediating Light Induced Hydrogen Evolution from Water. J Am Chem Soc, 1979, 101, 7214-7217.
    [26] 戎维仁.硼氢化钠溶液的分解和氢氧化钠在溶液中的稳定机理(英文),复旦学报(自然科学版),1998,37,276-278.
    [27] 李玲.表面活性剂与纳米技术[M],北京:化学工业出版社,2004,47-54.
    [1] Kim Y., Johnson R. C., Hupp J. T.. Gold Nanoparticle-Based Sending of "Spectroscopically Silent" Heavy Metal Ions. Nano Lett., 2001, 1,165-167.
    [2] Raschke G., Kowarik S., Franzl T., C Sonnichsen., Klar T.A., Feldmann J., Nichtl A., Kurzinger K.. Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering. Nano Lett., 2003, 3, 935-938.
    [3] Reynolds R. A., Mirkin C. A., Letsinger R. L.. A Gold Nanoparticle/Latex Microsphere-Based Colorimetric Oligonucleotide Detection Method. Pure Appl. Chem., 2000, 72, 229-235.
    [4] Zheng P. L., Xin R. D., Cheng H. L., Bao A. D.. Selective Determination of Cysteine by Resonance Light Scattering Technique Based on Self-Assembly of Gold Nanoparticles. Anal. Biochem., 2006, 351, 18-25.
    [5] Casella I. G., Destradis A., Desimoni E.. Colloidal Gold Supported onto Glassy Carbon Substrates as An Amperometric Sensor for Carbohydrates in Flow Injection and Liquid Chromatography. Analyst, 1996, 121,249-254.
    [6] Liu S. Q., Yu J. H., Ju H. X.. Renewable Phenol Biosensor Based on a Tyrosinase-Colloidal Gold Modified Carbon Paste Electrode. J. Electroanal. Chem., 2003, 540, 61-67.
    [7] Liu S. Q., Ju H. X.. Reagentless Glucose Biosensor Based on Direct Electron Transfer of Glucose Oxidase Immobilized Colloidal Gold Modified Carbon Paste Electrode. Biosens. Bioelectron., 2003, 19, 177-183.
    [8] Zhang J., Oyama M.. A Hydrogen Peroxide Sensor Based on the Peroxidase Activity of Hemoglobin Immobilized on Gold Nanoparticles-Modified ITO Electrode. Electrochimica Acta, 2004, 50, 85-90.
    [9] Brainina K., Kozitsina A., Beikin J.. Electrochemical Immunosensor for Forest-Spring Encephalitis Based on Protein A Labeled with Colloidal Gold. Anal. Bioanal. Chem., 2003, 376(4), 481-485.
    [10] Pastemack R.F., Bustamante C., Collings P. J., Giannetto A., Gibbs E. J.. Porphyrin Assemblies on DNA as Studied by a Resonance Light-Scattering Technique. J. Am. Chem. Soc., 1993, 115, 5393-5399.
    [11] Wang Y. T., Zhao F. L., Li K. A., Tong S.Y.. Molecular Spectroscopic Study of DNA Binding with Neutral Red and Application to Assay of Nucleic Acids. Anal. Chim. Acta., 1999, 396, 75-81.
    [12] Huang C. Z., Li Y. F., Hu X. L., Li N. B.. Three-Dimensional Spectra of the Long-Range Assembly of Nile Blue Sulfate on the Molecular Surface of DNA and Determination of DNA by Light-Scattering. Anal. Chim. Acta., 1999, 395, 187-197.
    [13] Liu S. P., Yang R., Liu Q.. Resonance Rayleigh Method for the Determination of Proteins with Orange-G. Anal. Sci., 2001, 17, 243-247.
    [14] Yao G., Li K. A., Tong S. Y.. Determination of Protein by its Enhancement Effect on the Rayleigh Light Scattering of Carboxyarsenazo. Talanta, 1999, 50, 585-594
    [15] Liu S. P., Liu Q., Liu Z. F. et al.. Resonance Rayleigh Scattering of Chromium(Ⅵ)-Iodide-Basic Triphenylmethane Dye Systems and Their Analytical Application. Anal. Chim. Acta., 1999, 379, 53-61.
    [16] Liu S. P., Liu Z. F., Luo H. Q.. Resonance Rayleigh Scattering Method for the Determination of Trace Amounts of Cadmium with lodide-Rhodamine Dye Systems. Anal. Chim. Acta., 2000, 407, 255-260.
    [17] Lu W., Huang C. Z., Li Y. F.. Novel Assay of Thiamine Based on its Enhancement of Total Internal Reflected Resonance Light Scattering Signals of Sodium Dodecylbenzene Sulfonate at the Water/Tetrachloromethane Interface. Anal. Chim. Acta., 2003, 475, 151-161.
    [18] Feng P., Shu W.Q., Huang C.Z., Li Y.F.. Total Internal Reflected Resonance Light Scattering Determination of Chlortetracycline in Body Fluid with the Complex Cation of Chlortetracycline-Europium-Trioctyl Phosphine Oxide at the Water/Tetrachloromethane Interface. Anal. Chem., 2001, 73, 4307-4312.
    [19] Zhang S. Z., Li N., Zhao F. L., Li K. A., Tong S.Y.. Molecular Spectroscopic Studies on the Interaction of Glycosaminoglycans with Brilliant Cresol Blue and its Analytical Application. Spectrochim. Acta. A, 2002, 58, 273-280.
    [20] Liu E. B., Xue B.C. Flow Injection Determination of Adenine at Trace Level Based on Luminol-K_2Cr_2O_7 Chemiluminescence in a Micellar Medium. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41, 649-653.
    [21] Naotaka K., Kenichiro N., Shuzo A.. Chemiluminescence Method for the Determination of Adenine after Reaction with Phenylglyoxal. Anal. Chim. Acta., 1993, 278, 275-278.
    [22] 申丽华,李晓霞,梁耀东,陈龙.鲁米诺-过氧化氢体系流动注射化学发光法测定维生素B_4.分析测试学报,2006,25,95-97.
    [23] Hidetaka Y., Chikao S., Manki P., Kiyoshi T.. Fluorometric Determination of Adenine and its Derivatives by Reaction with Glyoxal Hydrate Trimer. Anal. Biochem., 1972, 46, 123-128.
    [24] Umberto Mura, Maurizio Romano, Francesco Sgarrella, Pier Luigi Ipata. A Coupled Optical Assay for Determination of Adenine in Mixtures. Analytical Biochemistry, 1979, 98, 273-277.
    [25] 周海燕,朱晓玲,蔡纪青.紫外分光光度法测定维生素B_4片的含量.中国现代应用药学杂志,2001,18,138.
    [26] Preston M. R.. Determination of Adenine, Adenosine and Related Nucleotides at the Low Picomole Level by Reversed-Phase High-Performance Liquid Chromatography with FluorescenceDetection. Journal of Chromatography B: Biomedical Sciences andApplications, 1983, 275, 178-182.
    [27] 李小燕.高效液相色谱法测定维生素B_4片的含量.中国药品标准,2002,3.54-56
    [28] Tseng H. C., Dadoo R., Zare R. N.. Selective Determination of Adenine-Containing Compounds by Capillary Electrophoresis with Laser-lnduced Fluorescence Detection. Anal. Biochem., 1994, 222, 55-58.
    [29] Jin W. R., Wei H.Y., Zhao X.. Adsorption-Voltammetric Determination of Guanine, Guanosine, Adenine and Adenosine with Capillary Zone Electrophoresis Separation. Anal. Chim. Acta., 1997, 347, 269-274.
    [30] Percio A. M. Farias, Angela de Luca Rebello Wagener, Arnaldo Aguiar Castro. Ultratrace Determination of Adenine in the Presence of Copper by Adsorptive Stripping Voltammetry. Talanta, 2001, 55, 281-290.
    [31] Wang Z. H., Xiao S. F., Chen Y.. β-Cyclodextrin Incorporated Carbon Nanotubes-Modified Electrodes for Simultaneous Determination of Adenine and Guanine. J. Electroanal. Chem., 2006, 589, 237-242.
    [32] Frens G.. Controlled Nucleation for the Regulation of the Particle Monodisperse Gold Suspensions. Nature: Phys. Sci., 1973, 241, 20-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700