乙醇—水团簇分子的光谱学特征及分子结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用荧光光谱分析技术,结合量子力学和量子化学理论对乙醇—水溶液中的团簇分子结构进行了研究。在讨论了乙醇—水溶液中新分子的空间取向特征、平面结构特点以及电子能级变化规律的基础上,得到了该分子结构的物理模型和空间结构信息,进而反演了团簇分子的结构。
     通过对乙醇—水溶液荧光光谱特征的实验研究,得到了乙醇—水团簇分子的三种可能类型,并从荧光量子产率和光吸收度等方面对三种可能的分子结构进行了理论研究。从数学上推导了乙醇和水形成配合物的结合常数,推断配合物分子的可能结构为:5个乙醇分子和6个水分子间通过氢键相连形成环式或链式结构;一个乙醇分子和两个水分子间隔相连形成的团簇结构;或一个乙醇分子和5个水分子相互连接形成新分子结构。
     通过对乙醇—水溶液偏振荧光光谱的检测,计算了该荧光的偏振度和分子各向异性度,表征了分子的空间取向行为,认为乙醇—水溶液中的团簇分子是在较大程度上具有固定取向的有序结构。理论分析认为氢键不仅对分子团簇的空间结构产生影响,而且对分子中的电子轨道也产生了影响,表现为分子的偶极矩和极性(偏振)特性的变化。
     通过对长波方向上宽展谱峰的实验和理论研究,得到了处于基态和激发态的团簇分子间形成激基缔合物的结论。在求解荧光强度随时间衰变过程方程的基础上,从理论上分析了形成激基缔合物的光物理过程。利用密度泛函理论计算了乙醇—水团簇分子电子跃迁的理论值。利用碰撞复合物和激基缔合物的形成机制研究了团簇分子基态能级发生改变的过程,进而对溶液的发光机制进行了定量研究。
     利用量子化学、量子力学并结合含时密度泛函理论反演了乙醇—水团簇分子的结构:多个乙醇和水分子在溶液中由氢键相连形成了环式或链式结构,且具有镶嵌型的平面结构特点和高度有序的空间结构特征。
     本文的研究结果可为分子间团簇结构的研究,以及乙醇分子与生物组织相互作用的研究提供理论和实验依据。
Based on the experimental results of the fluorescence spectrum, the molecularstructure of ethanol-water clusters have been studied by using the theories of quantummechanics and quantum chemistry. The physical model and the structure information of thecluster molecules have been presented and concluded after a detailed discussion on thespatial orientation character, the planar structure feature as well as the change rule ofenergy levels. Furthermore, the cluster molecular structures have been inversed.
     From the experimental results of fluorescence spectral characteristic of ethanol-watersolutions with different concentrations, a further theoretical study on the quantum yield andlight absorbency give the results of the bonding number n to form MR_n clusters ofethanol and water molecules. It is concluded that there are three possible cluster structures:five ethanol molecules and six water molecules connect with each other to form a ring orchain structures through the hydrogen bond, an ethanol molecule and two water moleculesform the chain structure with hydrogen bond, and an ethanol molecule and five watermolecules link mutually to form a new molecular structure.
     Based on the polarized fluorescence spectrum of ethanol-water solution, thepolarization degree and molecular anisotropy have been calculated and the molecularspatial orientation behavior has been characterized as well. As a result, it was consideredthat the cluster molecule in the solution has an ordered structure with a fixed orientation toa large extent. The theoretical analysis reveals that the hydrogen bond not only influencesthe spatial structure of cluster, but also affects the molecular energy levels, representing bythe change in the molecular dipole moment and the polarity.
     It is concluded that the clusters form the excimer by the excited state molecules andthe ground state molecules based on a broad and featureless fluorescent spectrum at longStokes shift. By solving decay process of the fluorescence intensity, the possiblephotophysical process of the excimer formation was analyzed theoretically. Furthermore,all the ground and excited energy levels of water molecule, ethanol molecules and theclusters were calculated by density functional theory (DFT) and the theoretical electrontransition value of the cluster was obtained accordingly. The change process of the energylevels and the luminescence mechanism of the solution have been presented by studying the formation mechanism of the excimer and the collision compound of two clusters in theground state.
     The structure of ethanol-water cluster molecule was inversed using the quantumchemistry, the quantum mechanics and the time dependent density functional theory(TDDFT). The conclusion is that several ethanol molecules and water molecules haveconnected into ring or chain structure through hydrogen bonds, with inlaid planar structurecharacteristic and a spatial structure characteristic with high degree of order.
     The research consequences may offer a theoretical and experimental reference tostudy the intermolecular cluster structure, as well as the interaction between ethanolmolecule and biological tissue.
引文
1 J.-H. Guo, Y. Luo, A.Augustsson, J.E.Rubensson, C.Sathe, H.Agren, H.Siegbahn and J.Nordgren. X-Ray Emission Spectroscopy of Hydrogen Bonding and Electronic Structure of Liquid Water. Phys. Rev. Lett. 2002 89(13): 137402-1—4
    2 A.H.Narten, H. A.Levy. Observed Diffraction Pattern and Proposed Models of Liquid Water. Science 1969 165(3892): 447—454
    3 A.H.Narten, W. E.Thiessen, L.Blum. Atom Pair Distribution Functions of Liquid Water at 25circC from Neutron Diffraction. Science. 1982 217(4564):1033—1034
    4 W.L.Vos, L.W. Finger, R.J. Hemley and H.K.Mao. Novel H2-H2O Clathrates at high pressures. Phys.Rev.Lett. 1993 71(19):3150—3153
    5 A.G.Paul, P.G. Marie. The nature of the 'free' OH groups in water, Journal of Raman Spectroscopy. 1986 17(4):341—344
    6 F. H.Stillinger. Water Revisited. Science. 1980 209(4455): 451—457
    7 F. H.Stillinger, R. Aneesur. Improved simulation of liquid water by molecular dynamics. J. Chem. Phys. 1974 60(4): 1545—1557
    8 K. Liu, J.D.Cruzan and R.J.Sankally. Water clusters. Science. 1996 271(5251):929—933
    9 K. Liu, M.G.Brown, J.D.Cruzan and R.J.Saykally. Vibration-rotation tunneling spectra of the water pentamer: structure and dynamics. Science. 1996 271(5245):62—64
    10 R.V. Mark, D.C. Jeff, D.L. Don, M. G.Brown, K. Liu and R. J.Saykally. Pseudorotation in water trimer isotopomers using terahertz laser spectroscopy. J.Phys.Chem.A. 1997 101 (48): 9032—9041
    11 J.D.Cruzan, M. R.Viant, M. G.Brown, and R. J.Saykally.Terahertz Laser Vibration-Roation Tunneling Spectroscopy of the Water Tetramer. J. Phys. Chem. A. 1997 101 (48), 9022—9031
    12 A. L. Sobolewski,W. Domcke. Photochemistry of water: The (H_2O)_5 cluster. J. Chem. Phys. 2005 122:184320—184325
    13 K. Liu, M. G. Brown, J. D. Cruzan, and R. J. Saykally. Terahertz Laser Spectroscopy of the Water Pentamer: Structure and Hydrogen Bond Rearrangement Dynamics. J. Phys. Chem. A. 1997 101 (48):9011—9021
    14 R.Ludwig. Hexamers: From Covalently Bound Organic Structures to Hydrogen Bonded Water Clusters.Chem.Phys.Chem. 2000 1(1):53 —56
    15 B.Barbielline and A.Shukla, Ab initio calculations of the hydrogen bond, Phys.Rev.B.2002 66:235101-1-235101-5
    16 J. A. David. Proton and deuteron position preferences in water clusters: An ab initio study. J. Chem. Phys. 2005 123:244309-244318
    17 M.V.Femandez-Serra and E. Artacho. Network equilibration and first-principles liquid water. J.Chem.Phys. 2004 121(22):11136—11144
    18 P.Jedlovszky, M.Mezei, R.Vallauri. A molecular level explanation of the density maximum of liquid water from computer simulations with a polarizable potential model. Chemical Physics Letters. 2000, 318(1):155-160
    19 C.Lee, D.Vanderbilt, K.Laasonen, R.Car and M.Parrinello. Ab initio studies on the structural and dynamical properties of ice. Phys.Rev.B. 1993 47(9):4863—4872
    20 E.D.Isaacs, A.Shukla, P.M.Platzman, D.R.Hamann, B.Barbielline and C.A.Tulk. Conalencey of the Hydrogen Bond in Ice:A Direct X-Ray Measurement. Phys.Rev.Lett. 1999 82(3):600— 603
    21 E. L. Gromnitskaya, O. V. Stal'gorova, V. V. Brazhkin, and A. G. Lyapin. Ultrasonic study of the nonequilibrium pressure-temperature diagram of H2O ice. Phys. Rev. B. 2001 (64): 094205-094220
    22 A.Nilsson, H.Ogasawara, M.Cavalleri, D.Nordlund and M.Nyberg. The hydrogen bond in ice probed by soft x-ray spectroscopy and density functional theory. J.Chem.Phys. 2005 122:154505-1-154505-9
    23 S.Takashi, O.Hideo and O.Ryumyo. Electronic Structures of Water and Ice. Journal of the Physical Society of Japan. 1977 42(1):152 —158
    24 S Kashtanov, A Augustsson, Y Luo, J H Guo and C Sathe. Local structures of liquid water studied by x-ray emission spectroscopy. Phys. Rev. B 2004 69:024201
    25 P. L. Silvestrelli and M. Parrinello. Water Molecule Dipole in the Gas and in the Liquid Phase. Phys. Rev. Lett. 1999 82 (16):3308—3311
    26 P. Jedlovszky and M. Mezei. Orientational Order of the Water Molecules Across a Fully Hydrated DMPC Bilayer: A Monte Carlo Simulation Study. J. Phys. Chem. B. 2001 105 (17):3614—3623
    27 A.J. Stone. Computation of charge-transfer energies by perturbation theoty. Chem. Phys. Lett. 1993 211(1):101 —109
    28 M. Bemasconi, P. L. Silvestrelli and M. Parrinello. Ab Initio Infrared Absorption Study of the Hydrogen-Bond Symmetrization in Ice. Phys. Rev. Lett. 1998 81 (6): 1235 —1238
    29 P. Jedlovszky. The local structure of various hydrogen bonded liquids: Voronoi polyhedra analysis of water, methanol, and HF. J. Chem. Phys. 2000 113(20): 9113—9121
    30 H. E. Stanley and J. Teixeira. Interpretation of the unusual behavior of H_2O and D_2O at low temperatures: Tests of a percolation model. J. Chem. Phys. 1980 73(7): 3404—3422
    31 I. Y. Shilov, B. M. Rode, V. A. Durov. Long range order and hydrogen bonding in liquid methanol: A Monte Carlo Simultio. Chemical physics. 1999 241: 75—80
    32 P. Jedlovszky and R. Vallauri. Structural properties of liquid HF: a computer simulation investigation. Molecular Physics. 1998 93(1): 15—24
    33 E. L. Gromnitskaya, O. V. Stal'gorova, O. F. Yagafarov, V. V. Brazhkin, A. G.. Lyapin and S. V. Popova. Ultrasonic study of the phase diagram of methanol. Journal of Experimental and Theoretical Physics Letters. 2004 80(9): 597—201
    34 S. K. Garg and D. W. Davidson. Wide-line nuclear magnetic resonance study of solid methanols. J. Chem. Phys. 1973 58(5): 1898—1904
    35 D. R. Allan, S. J. Clark, Marco J. P. Brugmans, Graeme J. Ackland and Willem L. Vos, Structure of crystalline methanol at high pressure. Phys. Rev B. 1998 58(18): 11809—11812
    36 B. H. Torrie, O. S. Binbrek, M. Strauss, I. P. Swainson. Phase Transitions in Solid Methanol. Journal of Solid State Chemistry. 2002 166(2): 415—420
    37 A. Anderson, B. Andrews, E. M. Meiering, B. H. Torrie. Raman and far-infrared study of the lattice vibrations of methanol. Journal of Raman Spectroscopy. 1988 19(2): 85—89
    38 B. H. Torrie, S. X. Weng, B. M. Powell, Structure of the alpha-phase of solid methanol. Molecular Physics. 1989 67(3): 575—581
    39 C. A. Herbst, R. L. Cook and H. E. King Jr. High-pressure viscosity of glycerol measured by centrifugal-force viscometry. Nature. 1993 361: 518—520
    40 R. L. Cook, H. E. King and D. G. Peiffer. Pressure-induced crossover from good to poor. solvent behavior for polyethylene oxide in water. Phys. Rev. Lett. 1992 69: 3072-3075
    41 T. Okuchi, G. D. Cody, H. K. Mao and R. J. Hemley. Hydrogen bonding and dynamics of methanol by high-pressure diamond-anvil cell NMR. J. Chem. Phys. 2005 122: 244509—244513
    42 A. Arencibia, M. Taravillo, F. J. Perez, J. Nunez and V. G, Baonza. Effect of Pressure on Hydrogen Bonding in Liquid Methanol. Phys. Rev. Lett. 2002 89(19): 195504-1—195504-4
    43 T. Yamaguchi, K. Hdaka, A. K. Soper. The structure of liquid methanol revisited: a neutron diffraction experiment at-80oC and+25oC. Molecular Physics. 1999 96(8): 1159—1168
    44 S. Bai and C. R. Youker. Pressure and temperature effects on the hydrogen-bond structures of liquid supercritical fluid methanol. J. Phys. Chem. A. 1998 102: 8641—8647
    45 W.L.Jorgensen and M.Ibrahim. Optimized intermolecular potential functions for liquid alcohols. J.Am. Chem. Soc. 1982 104 (373): 1276-1284
    46 P.A. Giguere and M.P.Gosselin. An electrostatic model for hydrogen bonds in alcohols. Journal of Solution Chemistry. 1988 17(ll):1007—1014
    47 S. Sarkar and R.N.Joarder et al. Molecular clusters in liquid ethanol at room temperature. J. Chem. Phys. 1994, 100(7): 5118-5122
    48 R.M.Lees and L.H.Xu. dark state illuminated:infrared spectrum and inverten torsional structure of the v_(11) out-of-plane CH3 -rocking mode of methanol, Phys. Rev. Lett. 2000 84:3815
    49 F. Franks and D. S. Reid. In water-A comprehensive treatise (edited by F. Franks) New York: Plenum,1973, Vol.2. Chap.5
    50 S.Okazaki, H.Touhara and K.Nakanish. Computer experiments of aqueous solutions. V. Monte Carlo calculation on the hydrophobic interaction in 5 mol % methanol solution, J. Chem. Phys. 1984 81(2):890-894
    51 S. Dixitl, A. K. Soper, J. L. Finney and J. Crain. Water structure and solute association in dilute aqueous methanol. Europhys. Lett. 2002 59 (3): 377—383
    52 S.Dixit, J. Crain, W. C. K. Poon, J. L. Finney and A. K. Soper. Molecular segregation observed in a concentrated alcohol-water solution. Nature. 2002 416: 829—832
    53 A. K. Soper and J. L. Finney. Hydration of methanol in aqueous solution, Phys. Rev. Lett. 1993 71(26):4348-4350
    54 S Dixit, W C K Poon and J Crain. Hydration of methanol in aqueous solutions: a Raman spectroscopic study. J. Phys.: Condens. Matter 2000 12(21): L323—L328
    55 S.K.Allison, J.P.Fox, R.Hargreaves and S.P.Bates. Clustering and microimmiscibility in alcohol-water mixtures: Evidence from molecular-dynamics simulations. Phys. Rev. B 2005 71:024201
    56 A.Laaksonen, P.GKusalik, I.M.Svishchev. Three-Dimensional Structure in Water-Methanol Mixtures. J. Phys. Chem. A. 1997 101:5910-5918
    57 J.Fidler, P.M.Rodger. Solvation structure around aqueous alcohols. J. Phys. Chem B. 1999 103: 7695-7703
    58 K.J.Tauer and W.N.Lipscomb. On the crystal structures, residual entropy and dielectric anomaly of methanol. Acta Cryst. 1952 5:606—612
    59 M.J.Ruiz, R.J.Jimenez-Rioboo, V.Tissen, M.A.Ramos, H.Schober .Brillouin scattering study of methanol-water solutions under pressure. physica status solidi (c) 2004 1(11): 3178—3181
    60 T.Sato, A.Chiba and R.Nozaki. Dielectric relexation mechanism and dynamical structures of the alcohol / water mixtures. Journal of Molecular Liquids. 2002 101(1): 99—111
    61 T. Sato and A.Chiba, Hydrophobic hydration and molecular association in methanol-water mixtures studied by microwave dielectric analysis, J. Chem. Phys. 2000 112(6):2924—2932
    62 G.J.Ackland and J.A.Guerin. Structure of an amphiphilic lattice gas, and its relationship to microclustering of methanol in water, Phys. Rev E. 2006 73: 021504
    63 L.Dougan, S.P.Bates, R.Hargreaves, J.P.Fox, J.Crain, J.L.Finney, V.Reat, A.K.Soper. Methanol-water solutions: a bi-percolating liquid mixture. Condensed Matter. 2004 1:0412436
    64 J. H.Guo,Y.Luo et al. Molecular structure of Alcohol-Water Mixture, Phys. Rev. Lett. 2003 91: 157401
    
    65 C.Talon, M.A Ramos and S.Vieira. Low-temperature specific heat of amorphous,orientational galss, and crystal phases of ethanol. Physical Review B 2002 66: 112201
    
    66 R.Laenen and C.Rauscher. Transient hole-burning spectroscopy of associated ethanol molecules in the infrared: structure dynamics and evidence for energy. J.Chem.Phys.1997 106: 8974-8980
    67 C. Cabrillo, F. J. Bermejo, M. Jimenez-Ruiz, M. T. Fernandez-Diaz, M. A. Gonzalez and D. Martin y Marero. Partial ordering of supercooled liquid ethanol into a rotator-phase crystal as an entropy-driven. Phys. Rev. B 2001 64:064206
    68 F. J. Bermejo, A. Criado, R. Fayos, R. Fernandez-Perea, H. E. Fischer ,E. Suard, A. Guelylah and J. Zuniga. Structural correlations in disordered matter: An experimental separation of orientational and positional contributions. Phys. Rev. B 1997 56:11536—11545
    69 P.Ayotte, R.S.Smith, G.Teeter, Z.Dohnalek, GA.Kimmel, and B.D.Kay. A Beaker without Walls: Formation of Deeply Supercooled Binary Liquid Solutions of Alcohols from Nanoscale Amorphous Solid Films. Phys. Rev. Lett. 2002 88: 245505
    70 A.Matic, C.Masciovecchio. Crystal-Like Nature of Acoustic Excitations in Glassy Ethanol, Phys. Rev. Lett. 2004 93: 145502
    71 S.Benkhof, A.Kudlik, T.Blochowicz and E.Rossler. Two glass transitions in ethanol: a comparative dielectric relaxation study of the supercooled liquid and the plastic crystal. J. Phys.: Condens. Matter 1998 10: 8155-8171
    72 M.A.Gonzalez, E.Enciso, F.J.Bermejo and M.Bee.Glassy dynamics in supercooled-liquid and glassy ethanol: A molecular dynamics study. Phys. Rev. B 2000 61:006654 (1-13)
    73 R.Brand, P.Lunkenheimer, U.Schneider, and A.Loidl. Excess wing in the dielectric loss of glass-forming ethanol: A relaxation process. Phys. Rev. B 2000 62:008878 (1-6)
    74 M.J.Ruiz, A.Criado, F.J.Bermejo, G.J.Cuello, F.R.Trouw, R.F.Perea, H.Lowen, C.Cabrillo and H.E.Fischer. Purely Dynamical Signature of the Orientational Glass Transition. Phys. Rev. Lett. 1999 83:2757-2760
    75 MARamos, S.Vieira, F.J.Bermejo , J.Dawidowski, H.E.Fischer, H.Schober, MAGonzalez, C.K.Loong and D.L.Price. Quantitative Assessment of the Effects of Orientational and Positional Disorder on Glassy Dynamics. Phys. Rev. Lett. 1997 78:82—85
    76 A.Criado, M.J.Ruiz, C.Cabrillo, F.J.Bermejo, M.Grimsditch, H.E.Fischer, S.M.Bennington and R.S.Eccleston. Role of low-frequency vibrations on sound propagation in glasses at intermediate temperature. Phys. Rev. B 2000 61:8778-8783
    77 C.Talon, MARamos, S.Vieira, G. J. Cuello, F.J.Bermejo, A.Criado, and M.L.Senent, S.M.Bennington, H.E.Fischer and H.Schober. Low-temperature specific heat and glassy dynamics of a polymorphic molecular solid. Phys. Rev. B 1998 58:000745
    78 M.Jimenez-Ruiz, M.A.Gonzalez, F.J.Bermejo, M.A.Miller, N.O.Birge, I.Cendoya and A.Alegria. Relaxational dynamics in the glassy , supercooled liquid, and orientationally disordered crystal phases of a polymorphic molecular material. Phys. Rev. B 1999 59: 009155(1-12)
    79 F. J. Bermejo, W. S. Howells, M. Jimenez-Ruiz, M. A. Gonzalez, D. L. Price, M. L. Saboungi and C. Cabrillo. Origin of the complex dielectric relaxation spectra of molecular glass formers. Phys. Rev. B 2004 69: 174201
    80 A. Criado, M. Jimenez-Ruiz, C. Cabrillo, F. J. Bermejo, R. Fernandez-Perea and F. R. Trouw. Rotational dynamics in the plastic-crystal phase of ethanol: Relevance for understanding the dynamics during the structural glass transition. Phys. Rev. B 2000 61:12082-12093
    81 D.R.Allan and S.J.Clark. Comparison of the high-pressure and low-temperature structures of ethanol and acetic acid. Phys. Rev B 1999 60: 6328-6334
    82 N.V.Surovtsev. Fast relaxation in the structural glass and glassy crystal of ethanol and cyano cyclohexane: a quasielastic light scattering study. J. Chem. Phys. 2003 119(23): 12399— 12408
    83 C.J.Benmore and Y.L.Loh. The structure of liquid ethanol: A neutron diffraction and molecular dynamics study. J. Chem. Phys. 2000 112(13):5877
    84 H.Shimizu, Y.Nakamichi, S.Sasaki. High-pressure Raman study of liquid and solid ethanol at pressures up to 17 GPa. Journal of Raman Spectroscopy. 1990 21(10): 703—704
    85 R.Laenen and C.Rauscher. A structural model for associated liquid ethanol developed from transient spectroscopy. J. Chem. Phys. 1997 107 (23): 9759
    86 M.E.Martin, M.L.Sanchez, F.J.Olivares del Valle, and M. A. Aguilar. A theoreticalstudy of liquid alcohols using averaged solvent electrostatic potentials obtained from molecular dynamics simulations: Methanol,ethanol and propanol. J. Chem. Phys. 2002 116(4):1613
    87 J.D.Weibel. Experimental and ab initio investigation of the O-H overtone vibration in ethanol. J. Chem. Phys. 2002 117(9): 4245
    88 R.S.Taylor and R.L.Shields, Molecular-dynamics simulations of the ethanol liquid-vapor interface, J. Chem. Phys. 2003 119(23): 12569-12576
    89 R.Ludwig, F.Weinhold and T.C.Farrar. Quantum cluster equilibrium theory of liquids: molecular clusters and thermodynamics of liquid ethanol. Molecular Physics 1999 97(4):465 -477
    90 B.D.Kay and A.W.Castleman. Molecualr beam electric deflection study of the hydrogen-bonded clusters (H_2O)_n ,(CH_3OH)_n and (C_2H_5OH)_n. J.Phys.Chem. 1985 89:4867 -4868
    91 K.M.Murdoch, T.D. Ferris, J.C.Wright, and T.C.Farrar. Infrared spectroscopy of ethanol clusters in ethanol-hexane binary solutions. J. Chem. Phys. 2002 116(13): 5717—5724
    92 M.Masella and J.P.Flament. A many-body model for alcohols: applications to the cyclic methanol/water hetero trimers, and to the (methanol)n, (ethanol)n and (t-butanol)n cyclic clusters (n=2-6). Molecular Physics. 1998 95(1):97 —106
    93 N.Nishi, S.Takahashi, M.Matsumoto, A.Tanaka, K.Muraya and T.Takamuku. Hydrogen bonding cluster formation and hydrophobic solute association in aqueous solution of ethanol. J.Phys.Chem. 1995 99:462-468
    94 L.Saiz, J.A.Padro and E.Guardia. Structure and dynamics of liquid ethanol. J.Phys.Chem.B 1997 101:78-86
    95 J. P.I. Hearn, R.V.Cobley, and B.J.Howard, High-resolution spectroscopy of induced chiral dimers: A study of the dimers of ethanol by Fourier transform microwave spectroscopy, J. Chem. Phys. 2005 123:134324
    96 E.M..Huisken. Vibrational Spectroscopy of Ethanol Molecules and Complexes Selectively Prepared in the Gas Phase and Adsorbed on Large Argon Clusters. J. Phys. Chem. A. 1997 101:7768-7777
    97 R.A.Provencal, R.N.Casaes, K.oth, C.N.Chapo, R.J.Saykally, G.S.Tsumper, and H.F.Schaefer. Hydrogen Bonding in Alcohol Clusters: A Comparative Study by Infrared Cavity Ringdown Laser Absorption Spectroscopy J. Phys. Chem. A 2000 104:1423 — 1429
    98 T.Haber, U.Schmitt and M.A.Suhm. FTIR-spectroscopy of molecular clusters in pulsed supersonic slit-jet expansions Phys. Chem. Chem. Phys. Vol.1, 1999:5573—5582
    99 V. Dyczmons. Dimers of ethanol, J. Phys. Chem. A2004 108 (11) :2080-2086
    100 T. Sato, A.Chiba and R.Nozaki. Dynamical aspects of mixing schemes in ethanol-water mixtures in terms of the excess partial molar activation free energy, enthalpy, and entropy of the dielectric relaxation process. J. Chem. Phys. 1999 110(5): 2508—2520
    101 T. S. van Erp and E. J. Meijer. Ab initio molecular dynamics study of aqueous solvation of ethanol and ethylene. J. Chem. Phys. 2003 118(19): 8831—8840
    102 A. B. Naim. Inversion of the Kirkwood-Buff theory of solutions Application to the water-ethanol system. J. Chem. Phys. 1977 67(11): 4884—4890
    103 M, Abu-samha, K. J. Brve, L. J. Sathre and T. D. Thomas. Conformational effects in inner-shell photoelecteron spectroscopy of ethanol. Phys.Rev.Lett. 2005 95:103002
    104 M. Paolantoni, B. M. Ladanyi. Polarizalility anisotropy relaxation in liquid ethanol: a molecular dynamics study. J. Chem. Phys. 2002 117(8):3856
    105 A. Rahmani, P. C. Chaumet, F. D. Fornel and C. Girard. Fluorescence Field propagator of a dressed junction: lifetime calculations in a confined geometry. Phys. Rev. A. 1997 56: 3245—3254
    106 赵南京,刘文清,崔志成等.用特征光谱荧光标记技术分析水中溶解有机物特性.光学学报.2005 25(5):687—690
    107 孙伟民,张建中,于蕾等.荧光寿命的快速傅里叶变换拟合方法.光学学报.2004 24(6):838—841
    108 周明华,隋成华.拟威尔分布密度函数在荧光寿命成像数据分析中的应用.光学学报.2005 25(6):835—840
    109 李庆国,汪和睦,李安之.分子生物物理学.第1版.北京:高教出版社,1992
    110 J.L.McHale.Molecular Spectrum.2003.北京:科学出版社
    111 陈国珍,黄贤智等.荧光分析方法.第2版.北京:科学出版社,1990
    112 四川大学工科基础化学教学中心、分析测试中心编著.分析化学.科学出版社,2001
    113 黄君礼,鲍治宇.紫外吸收光谱法及其应用.合肥:中国科技大学出版社.1992
    114 房喻,王辉.荧光寿命测定的现代方法与应用.化学通报,2001 64(10):631—636
    115 L. X. Song, X. K. Ke, Z. J. Guo. Study on Inclusion Behavior of Labeling CD Dimers With a Fluorescence Tracer to Small Peptide Derivatives. Acta Chimica Sinica. 2002 60(8): 1419—1427
    116 樊美公,佟振合,何勇.光化学基本原理与光子学材料科学.第一版.北京:科学出版社,2001
    117 宋思扬,楼士林.生物技术概论.第二版.北京:科学出版社.2003
    118 R C. Tuner, A. G. Mclerman, A. D. Bated, M. R. H. White. Instant Notes in Molecular Biology (photoengraving). The United Kingdom: BIOS scientific publishers limited, 2001
    119 王守业,徐小龙,刘清亮等.荧光光谱在蛋白质分子构象研究中的应用.化学进展,2001,96 13(4): 257—260
    120 Y. L. Mao, M. J. Huang and C. S. Wang. Temperature effect on emission lines and fluorescence lifetime of the~4F_(3/2) state of Nd:YVO_4. Chinese Optics Letters. 2004 2(2): 102—105
    121 饶海波,成建波,黄宗琳.Tb~(3+):YAG单晶荧光层中掺杂Ga~(3+)的荧光敏化作用.光学学报.2004 24(2):264—267
    122 陆同兴,路轶群.激光光谱技术原理与应用.第1版.合肥:中国科学技术大学出版社,1999
    123 刘莹,兰秀风,沈中华,陆建,倪晓武.激励光波长对乙醇溶液荧光光谱特性的影响.光谱学与光谱分析,2005,25(2):242—245
    124 Y. Liu, J. Lu, X. W. Ni. et. al. The Comparison of Fluorescent Spectra on Acetic Acid and Ethanol Solutions. SPIE. 2003 5254: 526—530
    125 Y. Liu, J. Lu, X. W. Ni. et. al. Investigation on the Wavelength Fluorescent Spectral Characteristic of Ethanol Solution Induced by Different UV-Light. SPIE. 2003 5254: 234—238
    126 四川大学分析测试中心.分析化学.北京:科学出版社,2001.229
    127 M. Paolantoni, B. M. Ladanyi Polarizability anisotropy relaxation in liquid ethanol: A molecular dynamics study. J. Chem.Phys. 2002,117(8): 3857—3873
    128 M. A. Gonzalez, E. Enciso, F. J. Bermejo, and M. Bee. Ethanol force fields: a molecular dynamics study of polarization effects on different phases. J. Chem. Phys.1999,Vol. 110 (16):8045-8058
    129 M. A. Miller and M. J. Ruiz et al. Comparison of the structural and orientational glass-transition dynamics in ethanol. Physical Review B 1998 57:6654
    130 杨之文.偏振光谱的测量及研究进展.光谱实验室.2003,20:815—820
    131 G.赫兹堡著王鼎昌译1986分子光谱与分子结构Ⅱ.多原子分子的红外光谱与喇曼光谱(北京:科学出版社)230
    132 A. J. Stone. Computation of charge-transfer energies by perturbation theory. Chem. Phys. Lett. 1993, 211(1): 101—109
    133 陈玉红,赵书城,刘玉孝.双电子原子基态波函数与能量的变分计算.兰州大学学报2004 40(2):36—38
    134 郝静安,郑浩平,Ga6N6团簇结构性质的理论计算研究.物理学报.2004 53(4):1044—1049
    135 贾文红,武海顺.GamPn和GamPn团簇结构及其光电子能谱的理论研究.物理学报.2004 53(4):1056—1062
    136 顾斌,金年庆,王志萍,曾祥华.用含时密度泛函理论计算钠原子跃迁光谱.物理学 报.2005 54 (10):4648—4653
    137 R. Dandel, G. Leroy, D. Peters and M. Sana. Quantum Chemistry. John Wiley & Sons. New York, 1983
    138 I. N. Levine. Quantum chemistry. Allyn and Bacon, Inc., New York, 1983: p466
    139 唐敖庆.量子化学.1982.北京:科学出版社
    140 徐光宪,黎乐民.,王德民.量子化学基本原理和从头计算法.1999.北京:科学出版社
    141 朱正和,俞华根.分子结构与分子势能函数.1997.北京:科学出版社
    142 G. Droppelmann, O. Bunernann, C. P. Schulz and F. Stienkemeier. Formation times of RbHe exciplexes on the surface of superfluid versus normal fluid helium nanodroplets. Phys. Rev. Lett., 2004 Vol. 93(2):023402-1—4
    143 D. Nettels, A. Hofer, P. Moroshkin, R. Muller-Siebert, S. Ulzega and A. Weis. Discovery of Dumbbell-Shaped Cs* Hen exciplexes in solid 4He. Phys. Rev. Lett., 2005 Vol. 94: 063001-1—4
    144 E. Hegazi, J. Supronowicz, J. B. Atkinson, and L. Krause. Predissociation and pooling effects in the laser-induced fluorescence spectrum of the HgZn excimer. Phys. Rev. A, 1990 Vol. 42: 002741-1—4
    145 K. Enomoto, K. Hirano, M. Kumakura, Y. Takahashi and T. Yabuzaki. Emission spectra of alkali-metal (K,Na,Li)-He exciplexes in cold helium gas. Phys. Rev. A, 2004 Vol. 69: 012501-1—8
    146 Y. Fukuyama, Y. Moriwaki and Y. Matsuo. Laser-induced fluorescence spectra of Ba+*-He 6exciplexes produced in cold He gas. Phys. Rev. A, 2004 Vol.69:042505-1—6
    147 C. B. Xu and C. H. Tung, Hydrophobic effect on photochemical and photophysical processes X. aggregation and excimer formation of 2,2'-Binaphtyl, a nonpolar molecule in aggregating solvent, Photographic Science and Photochemistry, 1990. 2
    148 A. Das, K. K. Mahato and T. Chakraborty. Observation of excipled emission from the mixed dimer of naphthalene and 2-methoxynaphthalene: A laser-induced fluorescence study in supersonic jet. J. Chem. Phys. 2001, Vol. 114(14):6107—6111
    149 W. T. Yip and D. H. Levy. Excimer/Exciplex Formation in van der Waals Dimers of Aromatic Molecules. J. Phys. Chem. 1996, 100(28): 11539—11545
    150 M. Mazzeo, D. Pisignano, F. Della Sala, J. Thompson, R. I. R. Blyth, G. Gigli, G. Sotgiu and G. Barbarella. Organic single-layer whit light-emitting diodes by exciplex emission from spin-coated blends of blue-emitting molecules. Applied Physics Letters, 2003 Vol. 82(3): 334—336
    151 L. C. Palilis, A. J. Makinen, M. Uchida and Z. H. Kafafi. Highly efficient molecular organic light-emitting diodes based on exciplex emission. Applied Physics Letters, 2003 Vol.82(7):2209—2211
    152 K.Hirano, K.Enomoto, M.Kumakura, Y.Takahashi and T.Yabuzaki. Emission spectra of Rb*Hen exciplexes in a cold 4He gas. Phys. Rev. A, 2003 Vol.68:012722-1—12
    153 W. Naumann. Fluorescence quenching by reversible excimer formation: kinetic study on the basis of generalized, non-Markovian rate equations. J.Chem.Phys.,1999, Vol. 111(6): 2415—2422
    154 侯灿淑,伍齐贤,陈永荣,余自力,罗美明,杨杰,王宁.聚苯硫醚砜激基缔合物荧光光谱的研究.四川大学学报1996 33(6):712—717
    155 W. Naumann. Fluorescence quenching by reversible excimer formation: kinetics and yield predictions for classical potential association-dissociation model. J.Chem.Phys. 2004 120 (20): 9618-9623
    156 章立民,张月平.聚β—乙烯基萘与1,4—二氰基形成的三分子激基复合物.光谱学与光谱分析.1992,12(4):5—10
    157 章立民,张月平,陈凯.时间分辨荧光光谱研究聚2—乙烯基苯与对苯二甲酸二甲脂形成的三分子激基复合物.中国科学B辑.1990 7 673-680
    158 M. Mazzeo, D. Pisignano, F. Della Sala, J. Thompson, R. I. R. Blyth, G. Gigli and R. Cingolani. Organic single-layer white light-emitting diodes by exciplex emission from spin-coated blends of blue-emitting molecules. Applied Physics Letters 2003 82(3): 334—336
    159 E. Hegazi, J. Supronowicz, J. B. Atkinson, and L. Krause. Predissociation and pooling effects in the laser-induced fluorescence spectrum of the HgZn excimer. Phys. Rev. A1990 42: 002741—002744
    160 E. Hegazi, J. Supronowicz, J. B. Atkinson and L. Krause. Laser-induced fluorescence from the F0-state of the HgZn excimer. Phys. Rev. A 1990 42: 002745—002750
    161 S. W. Buckner, R. A. Forlines and J. R. Gord. Liquid-phase thermometry based on fluorescence lifetimes of intramolecular excimers. Applied Spectroscopy,1999 Vol. 53(1): 115—119
    162 L. I Liu, K. H. Cheng and P. Somerharju. Frequency-resolved intramolecular excimer fluorescence study of lipid bilayer and nonbilayer phases. Biophysical Journal, 1993 Vol. 64(6): 1869-1877
    163 赵汉英,雷中立,宋法江,黄葆同.用激基缔合物荧光研究聚苯乙烯2聚甲基丙烯酸甲酯嵌段共聚物在溶液中的分子构型.应用化学1997 14(2):87—89
    164 S. W. Buckner, R. A. Forlines and J. R. Gord. Liquid-phase thermometry based on fluorescence lifetimes of intramolecular excimers. Applied Spectroscopy. 1999 53 (1): 115—119
    165 L. C. Palilis, A. J. Ma"kinen, M. Uchida and Z. H. Kafafi. Highly efficient molecular organic light-emitting diodes based on exciplex emission. Applied Physics Letters 2003 82(14): 2209—2211
    166 J. B. Briks. Theory and practice of scintillation counting. Pergamon, 1964
    167 刘天军,吴世康.α、ω—双香豆素长链化合物激基缔合物的研究.物理化学学报199612(8):677—683
    168 陈景荣,张宝文,曹怡.蒽—对二氰基乙烯基苯激基复合物.感光科学与光化学199513(2):111—116
    169 K. Hirano, K. Enomoto, M. Kumakura, Y. Takahashi, and T. Yabuzaki. Emission spectra of Rb*Heu exciplexes in a cold 4He gas. Physical Review A 2003 68:012722-1—12
    170 G. Droppelmann, O. Bu"nermann, C. P. Schulz and F. Stienkemeier. Formation Times of RbHe Exciplexes on the Surface of Superfluid versus Normal Fluid Helium Nanodroplets. Phys. Rev. Lett. 2004 93(2): 023402-1 023402-4
    171 E. Hegazi, J. Supronowicz, J. B, Atkinson, and L. Krause. Laser-induced fluorescence from the F0-state of the HgZn excimer. Phys. Rev. A 1990 42: 002745-002750
    172 潘多海,马永红.表面增强的分子间能量转移效应的机理研究.物理学报,1995Vol.44(12):1915—1920
    173 侯灿淑,伍齐贤,陈永荣,余自力,罗美明,杨杰,王宁.聚苯硫醚砜激基缔合物荧光光谱的研究.四川大学学报 1996 33(6):712—717
    174 于春雷,戴世勋,周刚,张军杰,胡丽丽,姜中宏,掺铒碲酸盐玻璃中的浓度猝灭机理研究,物理学报2005 54:3894
    175 李毛和,胡和方,祈长鸿.一种稀土离子发射截面的计算方法.光学学报,200121(5):626—629
    176 量子生物学及其应用 刘次全主编,高等教育出版社,1990,p81
    177 R. S. Mulliken et al.: Molecular Complexes: A Lecture and Reprint Volume. (John Wiley, New York), 1969
    178 R. L. Flurry. Molecular orbital theory of electron donor-acceptor complexes. Ⅰ. a simple semiempirical treatment. J. Phys. Chem., 1965, 69(6): 1927

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700