可控还原氧化石墨烯及其复合材料的制备与SERS性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面增强拉曼散射(SERS)是一种具有表面选择性的增强技术,它将会使吸附于某种特定基底上的探针分子的拉曼信号强度得到几个数量级的增强,这项技术的发展极大的推动了拉曼光谱在不同的科研领域和材料结构分析等领域的应用。对于SERS,尽管做过很多的实验研究和理论模拟,但其增强机理仍然存在许多争议,迄今为止都没有一个合理的模型可以对目前存在的多种增强机制进行完整的描绘。通常,被广泛接受的两种机制是电磁机制(EM)和化学机制(CM)。电磁增强机制是由于表面等离子基元被入射光激发所引起的,近几十年中已被研究的较为深入。然而,化学增强机理的根源以及其对SERS的贡献仍然存在争议,因为它和电磁增强同时出现。因此,在对化学增强机制的研究中,寻找一种不存在电磁增强只存在化学增强且独立可调的基底至关重要。
     石墨烯是由单层碳原子堆垛而成的蜂窝状晶体层,具有理想的二维结构,是一种具有多项优异性能的特殊材料。石墨烯具有相当光滑的表面,并且在可见光范围内其表面光学透过率可达95%以上,另外,石墨烯的表面等离子基元可达到太赫兹,可见,石墨烯是研究化学增强机理的理想基底。本论文采用氧化还原法制备石墨烯,不同还原程度的氧化石墨烯做基底来研究其SERS性能的变化,并且对GO/Au纳米复合材料做基底时GO所起的作用进行了分析。
     本论文第一部分采用Hummers方法获得氧化石墨,经过超声剥离,采用水热法对氧化石墨烯进行还原。分别在酸性条件和碱性条件下通过调节还原温度和还原时间制备不同还原程度的石墨烯,经研究发现,酸性条件下氧化石墨烯的还原速率低于碱性条件,并且两种体系中获得的还原氧化石墨烯样品去除的含氧官能团种类不同。我们采用具有剧烈的荧光效应的罗丹明6G(R6G)分子作为探针分子,对氧化石墨烯和还原的氧化石墨烯进行了拉曼增强效应检测,发现酸性和碱性条件下尽管移除的含氧官能团不同,但拉曼散射峰的强度均减弱,这说明GO中各种含氧官能团对其表面所吸附分子的SERS性能均有贡献,因而只要氧化石墨烯的官能团数量变化,分子拉曼散射信号就会改变。另外还原GO可以抑制探针分子的荧光背底,且随着官能团数量的减少荧光信号降低。
     贵金属纳米材料是表面增强拉曼散射常用的基底,它具有优良的物理、化学性能,具有较强的拉曼增强效果。我们知道,分子的拉曼增强散射信号强度依赖于增强区域内分子的数量,但具有苯环结构的分子却很难在贵金属表面吸附,这就限制了拉曼增强的效果。另外,在传统的SERS体系中,金属基底与探针分子直接作用,二者不可避免的相互产生影响,这将使被检测分子的荧光产生或增大或淬灭的现象,人们难以得到本征拉曼散射信号。为了获得一种增强活性高、荧光淬灭效果好、并且表面对不同结构的分子均具有较强吸附性的SERS基底,我们将具有SERS活性、具有较好的荧光淬灭效果并且对芳香结构的分子具有高的亲和性的氧化石墨烯(GO)与Au纳米粒子进行复合,作为拉曼增强的基底,采用浓度为8×10~(-5)M/L的罗丹明6G(R6G)和浓度为1×10~(-4)M/L的2-疏基吡啶(2-MPy)作为探针分子。研究发现:无法在金纳米颗粒表面吸附的R6G分子在加入GO之后则产生SERS效应,并且GO的含量对分子产生的荧光背底有较大的影响;2-MPy作为探针分子时,GO的加入基本没有改变拉曼散射强度,只是被检测分子的拉曼、荧光信噪比增大一个数量级。这部分实验结果说明在石墨烯基金属纳米复合材料的SERS基底中,GO在金属表面和探针分子之间起到了连接桥梁的作用,并且能够使分子产生的荧光得到有效的淬灭。
Surface-enhanced Raman scattering (SERS) is an surface alternativeenhancement technique, it will increase the raman intensities of molecules adsorbed ata certain substrate up to several orders of magnitude, and it greatly promotes the application oframan spectroscopy used for scientific researching and characterizing the structure ofmaterials. For SERS, though there are numerous experimental and theoretical workson it, there are also many controversies about the mechanism and no complete pictureof the enhancement mechanism is available even now. Normally, the two widelyaccepted mechanisms are electromagnetic mechanism (EM) and chemical mechanism(CM). EM is mainly due to the surface plasmons excited by the incident light, andwas achieced some results now. However, the origin and the role of the chemicalenhancement are constantly under debate because of its enhancement with theelectromagnetic enhancement. It is, therefore, important to find a substrate that doesnot possess the electromagnetic enhancement, retaining the chemical enhancementalone and independently tunable.
     Graphene, has the ideal2D structure with a monolayer of carbon atoms packedinto a honeycomb crystal plane, is a special material with many spark stellarperformance. Considering graphene, first, its surface is relatively smooth in despite offluctuations that follow from the under lying substrate. Second, the opticaltransmission through the graphene surface in the visible range is higher and is morethan95%. Besides, the surface plasmon on graphene is in the range of terahertz ratherthan in the visible range. So,on the basis of these considerations, graphene does notsupport EM. On the other hand, for CM graphene has possibilities. This paper wasprepared graphene by Chemical methods, the different reduced degrees of grapheneoxide used as substrates to study its SERS performance, and we analyzed the role ofGO in GO/Au nanocomposites when it used for SERS substrate.
     In the first part, we synthesized the graphite oxide by the Hummer method,through ultrasound, hydrothermal method was used to reduced graphene oxide(GO). Respectively, under acidic condition and alkaline condition, graphene with differentreduction degrees was obtained by adjusting the reduction temperatures and times. Itis found that the reduction rate of the graphene oxide under acidic condition is slowerthan the alkaline conditions, and the removal of oxygen functional groups aredifferent at this two systems. Rhodamine6G (R6G) with intense fluorescent effectused for probe molecule, and we used GO and reduced GO as substrates for Ramanenhancement experiments, found that the Raman signal intensity became weak withthe reduction degree improving, and the removal of oxygen functional groups weredifferent, but Raman scattering peak positions did not change, indicating that theinteraction between the SERS substrate and the probe molecule have not connectionwith the types of oxygen functional groups in GO, whereas it only impacted by thedegree of the reduction GO, and restore the more thorough, the weaker signalintensities. In addition, reduced GO can inhibit the fluorescence background of theprobe molecules, indicating that reduced GO has fluorescence quenching effect.
     The noble metal nanomaterials are commonly used as SERS substrate, they haveexcellent physical and chemical properties, and have strong Raman enhancementactivities. As we know, the Raman scattering signal intensity of molecular depends onthe number of molecules in the enhanced region, but metal surface is difficutlt toadsorb the molecules with benzene ring structure, which limits the Ramanenhancement effect. In the traditional SERS system, metal substrates contact with theprobe molecules directly, there must be exist interactions between both, which willmake the fluorescence background of moleculars to change and difficult to getthisintrinsic Raman scattering signal. In order to obtain an SERS substrate, whichinclude high enhanced activity, perfect fluorescence quenching effect and its surfacehas a strong adsorption for different molecules, therefore, we synthesized GO and Aunanoparticles. The graphene-based nanocomposite used as SERS substrate, andadopted Rhodamine6G (R6G,8×10~(-5)M/L) and2-mercaptopyridine (2-MPy,1×10~(-4)M/L) as probe molecules. The study found that: R6G molecules unable adsorbedon the surface of gold nanoparticles, but Raman signals appear after added into theGO and content of GO influences the molecular fluorescence background greatly. 2-MPy as a probe molecule, the Raman scattering intensity is virtually unchanged andonly suppress the fluorescence signal after added into the GO, indicateing that in thegraphene-based nanocomposite substrate, GO plays as a bridge to connect betweenthe metal surface and the probe molecules, and it has fluorescent quenching effect.
引文
[1]廖长明.碳[M].北京人民出版社,1978:1.
    [2] Kroto H W, Heath,J R, O’Brien S C, et al. C60: Buckminster fullerence [J]. Nature,1985,318:162-163.
    [3] Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58.
    [4] Zhu H W, Suenaga K, Wei J Q, et al. A strategy to control the chirality of single-walled carbon nanotubes[J]. Journal of Crystal Growth,2008,310(24):5473-5476.
    [5]李宗鹏.等离子体增强化学气相沉积方法制备碳纳米管及其表征[D].吉林大学,2008,5:8-10.
    [6] Cai A J, Li F J, Liu H B, et al. Graphite inercalation compounds synthesized byamolten salt method[J]. New Carbon Mater,2004,19(1):28-32.
    [7] Peierls R E. Quelques proprietes typiques des corpses solides[J]. Ann.I.H. Poincare,1935,5(3):177-222.
    [8] Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in AtomicallyThin Carbon Films[J]. Science,2004,306(5696):666-669.
    [9] Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphenesheets[J]. Nature,2007,446:60-63.
    [10] Lshigami M, Chen J H, Cullen W G, et al. Atomic structure of graphene on SiO2[J].Nano Lett.,2007,7(6):1643-1648.
    [11]成会明.纳米碳管制备、结构、物性及应用[M].化学工业出版社,2002:10-15.
    [12] Zhou T, Wang X, Liu X, et al. Influence of multi-walled carbon nanotubes on thecure behavior of epoxy-imisdzole system[J]. Carbon,2009,47(4):1112-1118.
    [13] Slonczewski J C, Weiss P R. Band structure of graphite[J]. Phys.Rev,1958,109(2):272-279.
    [14] Katsnelson M I. Zitterbewegung, Chirality and minimal conductivity in graphene[J].Eur Phys.J.B,2006,51(2):157-160.
    [15] Tworzydlo J, Trauzettel B, Titov M, et al. Quantum-limited shot noise in graphene[J].Phys.Rev.Lett,2006,96:246802.
    [16] Novoselov K S, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature,2005,438:197-200.
    [17] Service R F. Carbon Sheets an Atom Thick Give Rise to Graphene Dreams[J].Seience,2009,324:875-877.
    [18] Tombros N, Csaba J, Mihaitaetal P. Electronic spin transport and spin precession insingle graphene layers at room temperature[J]. Nature,2007,448:571-574.
    [19] Su R K, Siu G C, Chou X. Barrier penetration and Klein Paradox[J]. J Phys A,1993,26(4):1001-1005.
    [20] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic Properties and in trinsicStrength of monolayer graphene[J]. Science,2008,321(5887):385-388.
    [21] Gomez-Navarro C, Burghard M, Kern K. Elastic properties of chemically derivedsingle graphene sheets[J]. Nano Lett.,2008,8(7):2045-2049.
    [22] Booth T J, et al. Macroscopic Graphene Membranes and Their ExtraordinaryStiffness[J]. Nano Lett.,2008,8(8):2442-2446.
    [23] Poot M, van der Zant HSJ. Nanomechanical properties of few-layer graphenemembranes[J]. Appl. Phys. Lett.,2008,92(6),063111-3.
    [24] Bunch J S, et al. Impermeable atomic membranes from graphene sheets[J]. NanoLett.,2008,8(8):2458-2462.
    [25] Li Z Q, Henriksen E A, Jiang Z, et al. Dirac charge dynamics in graphene byinfrared spectroscopy[J]. Nature Phys,2008,4(7):532-535.
    [26] Yu S, Kang M, Chang H, et al. Bright fluorescent nanodiamonds: no photobleachingand low cytotoxicity[J]. J.Am.Chem.Soc.2005,127(50):17604-17605.
    [27] Cao L, Wang X, Meziani M, et al. Carbon dots for multiphoton bioimaging[J].J.Am.Chem.Soc.,2007,129(37):11318-11319.
    [28] Chae H, Siberio-Perez D, Kim J, et al. A route to high surface area, porosity andinclusion of large molecules in crystals[J]. Nature,2004,427(6974):523-527.
    [29] Dedkov Y S, Fonin M, Rudiger U. Rashba effect in the graphene/Ni (111) system[J].Phys.Rev.Lett.,2008,100(10):107602.
    [30] Gao M, et al. Tunable interfacial properties of epitaxial graphene on metalsubstrates[J]. Appl. Phys. Lett.,2010,96(5):05310901.
    [31] Pan Y, Shi D X, Gao H J. Formation of graphene on Ru (0001) surface[J]. C Phys,2007,16(11):3151-3153.
    [32] Pan Y, Zhang H G, Shi D X, et al. Highly Ordered, Millimeter-Scale, Continuous,Single-Crystalline Graphene Monolayer Formed on Ru (0001)[J]. Adv. Mat.,2009,21(27):2777-2780.
    [33] Vazquez AL, Calleja F, Borea B, et al. Periodically rippled graphene: Growth andspatially resolved electronic structure[J]. Phys.Rev.Lett.,2008,100(5):05680701.
    [34] Harald G, Konrad H, Bernhard K et al. Carbon Incorporation in Pd(111) by Adsor-ption and Dehydrogenation of Ethene[J]. J.Phys.Chem.B,2006,110(10):4947-4952.
    [35] David J K, Steffen W, Linda J B. A Theoretical Study of Carbon Chemisorption onNi(111) and Co(0001) Surfaces[J]. Journal of Catalysis,1998,178(2):540-554.
    [36] Srivastava S K, Shukla A K, Vankar V, et a1. Growth, structure and field emissioncharacteristics of petal like carbon nano-structured thin films [J]. Thin Solid Films,2005,492(1-2):124-130.
    [37] Wang J J, Zhu M Y, Outlaw R A, et a1. Synthesis of carbon nanosheets by inductive-ly coupled radio-frequency plasma enhanced chemical vapor deposition[J]. Carbon,2004,42(14):2867-2872.
    [38] Li X S, Cai W W, Colombo L, et al. Evolution of graphene growth on Ni and Cu bycarbon isotope labeling [J]. Nano Lett.,2009,9(12):4268-4272.
    [39] Boyanovsky D, Blankenbecler R, et al. Physical origin of topological mass in2+1dimensions[J]. Nuclear Phys B.,1986,270:483-505.
    [40] Hummers W S, Offeman R E. Preparation of Graphitic Oxide[J]. J.Am.Chem.Soc.,1958,80(6):1339.
    [41] Staudenmaier, L Ber Dtsch. Syntheses of graphite oxide are described in Staudenma-ier[J]. Chem.Ges.,1898,31(2):1481-1487.
    [42] Brodie B C. On the atomic weight of graphite[J]. Phil.Trans.R.Soc.Lond.,1859,149:249-259.
    [43] Eyong H, Klinowski J, Forster M, et al. A new structure model of graphite oxide[J].Chem.Phys.Lett.,1998,287(1-2):53-56.
    [44] Schniepp HC, Li JL, McAllister MJ, et al. Functionalized single graphene sheetsderived from splitting graphite oxide[J]. J.Phys.Chem.B,2006,110(17):8535-8539.
    [45]张云霞.物联网商业模式探讨[J].电信科学,2010,(4):6-11.
    [46] Watcharotone S, Dmit riy A D, Stank ovich S, et al. Graphene silica composite thinfilms as transparent conductors[J]. Nano Lett,2007,7(7):1888-1892.
    [47] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based compositematerials[J]. Nature,2006,442:282-286.
    [48] Liao L, Lin Y C, Bao M, et al. High-speed graphene transistors with a self-alignednanowire gate[J]. Nature,2010,467(7313):305-308.
    [49] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nat. Mater.,2008,7(11):845-854.
    [50] Ataca C, Akturk E, Ciraci S. Hydrogen storage of calcium atoms adsorbed on graph-ene: First principles plane wave calculations[J]. Phys Rev B,2009,79(041406):124-128.
    [51] Priseilla K A, Chen W, Andrew T S W, et al. Solution-gated epitaxial graphene as PHsensor[J]. J Am Chem Soc,2008,130(44):14392-14393.
    [52] Bunch J S, Arend M Z, Scott V, et al. Electromechanical resonators from graphenesheets[J]. Science,2007,315(5811):490-493.
    [53] Efremov E V, Ariese F Gooijer. Achievements in resonance Raman spectroscopy:Review of a technique with a distinct analytical chemistry potential[J]. Anal.Chim.Acta,2008,606(2):119-134.
    [54] Moskovits, M J. Surface enhanced Raman spectroscopy: a brief retrospective[J].Raman Spectrosc.,2005,36(6-7):485-496.
    [55] Otto A, Mrozek I, Grabhorn H, Akemann W. Surface-enhanced Raman scattering[J].J.Phys: Condens. Matter,1992,4(5):1143-1212.
    [56] Fleischm M, Hendra P J, Mcquilla A J. Raman spectra of pyridine adsorbed at asilver electrode[J]. Chem.Phys.Lett.,1974,26(2):163-166.
    [57] Mo Y J, Wacheter P, et al. Raman scattering of molecules adsorbed on a rough alsurface Solid State[J]. J.Phys.Chem.Solids,1995,56(7):975-980.
    [58] Mc Call S L, Platzman P M, Wolff P. Surface enhanced Raman scattering[J]. A.Phys.Lett.,1980,77(5):381-383.
    [59] Haynes C L, MeFarland A D, Duyne R P V. Surface-enhanced Raman Spectrosc-opy[J]. Anal.Chem.,2005,77(17):338-346.
    [60] Albrecht M G, Creighton, J A. Anomalously intense Raman spectra of pyridine at asilver electrode[J]. J.Am.Chem.Soc.,1977,99(15):5215-5217.
    [61] Sanda P N, Warlaumont J M, Demuth J E, Tsang, J C Christmann, K Bradley.Surface-Enchanced Raman Scattering from Pyridine on Ag (111)[J]. J.A.Phys.Rev.Lett.,1980,45(18):1519-1523.
    [62] Pettenkofer C, Eikmans J, Erturk U, Otto A. On the Nature of SERS Active Sites[J].Surf. Sci.,1985,151:9-36.
    [63] Otto A. Surface-enhanced Raman scattering:“Classical”and“Chemical”origins[J].Appl.phys.,1984,55:289-418.
    [64] Campion A, Kambhampati. Surface-enhanced Raman scattering[J]. Chem.Soc.Rev.,1998,27:241-250.
    [65] Creighton J A, Blatehford C G, Albreeht M G. Plasma resonance enhancement ofRaman scattering by pyridine adsorbed on silver or gold sol particles of sizecomparable to the excitation wavelength[J]. J.Chem.Soc.Faraday.Trans2.,1979,75(0):790-798.
    [66] Plieth W J. Electrochemical Properties of Small Clusters of Metal Atoms and TheirRole in Surface Enhanced Raman scattering[J]. J. Phys. Chem,1982,86(16):3166-3170.
    [67] Royo, Furtak T E. Characterization of surface Complexes in Enhanced RamanScattering[J]. J. Chem. Phys,1984,81(9):4168-4175.
    [68] Lin X M, Cui Y, Xu Y H, Ren B, Tian Z Q. Surface-enhanced Raman spectroscopy:substrate-related issues[J]. Anal.Bioanal.Chem.,2009,394(7):1729-1745.
    [69] Zhang R Y, Pang D W, Zhang Z L, et al. Investigation of ordered ds-DNA monolay-ers on gold electrodes[J]. J.Phys.Chem.B,2002,106(43):11233-11239.
    [70] Wang J, Zhang P, et al. Surface-enhanced resonance raman study on adsorption ofcyanine dye onto silver chloride colloids[J]. J.Phys.Chem.,1988,92(7):1942-1945.
    [71] Rowe I E, Chank C V. Ultrahigh-Vacuum Studies of Enhanced Raman Scatteringfrom Pyridine on Ag Surfaces[J]. Phys.Rev.Lett.,1980,44(26):1770-1773.
    [72] Gi X, Dong J. Stable silver substrate prepared by the nitric acid etching method for asurface-enhanced Raman scattering study[J]. Anal. Chem.,1991,63(20):2393-2397.
    [73] Freeman R G, Hommer M B, Grabar K C, et al. Ag-clad Au nanoparticles: Novelaggregation, optical, and surface-enhanced Raman scattering Properties[J]. J.Phys.Chem.,1996,100(2):718-724.
    [74] Blatchford C G, Campbell J R, Creighton J A. Plasma resonance-enhanced ramanscattering by absorbates on gold colloids: The effects of aggregation[J]. Surf.Sci.,1982,120(2):435-455.
    [75] Liao P F, Bergman J G, Chemla D S, et al. Surface-enhanced Raman scattering frommicrolithographic silver particle surfaces[J]. Chem.Phys.Lett.,1981,82(2):355-359.
    [76]高书燕,张树霞,杨恕霞,张洪杰.表面增强拉曼散射活性基底[J].化学通报,2007.
    [77] Xie L M, Ling X, Fang Y, Zhang J, Liu Z F. Graphene as a substrate to suppressfluorescence in resonance raman spectroscopy [J]. J.Am.Chem.Soc.,2009,131(29):9890-9891.
    [78] Ling X, Xie L M, Fang Y, Xu H, Zhang H L, Kong J, Dresselhaus M S, Zhang J, LiuZ F. Can Graphene Be Used as a Substrate for Raman Enhancement?[J]. Nano Lett.,2010,10(2):553-561.
    [79] Naeyoung Jung, Andrew C, Crowther, Namdong Kim, Philip Kim and Louis Brus.Raman Enhancement on Graphene:Adsorbed and Intercalated Molecular Species[J].ACS Nano,2010,4(11):7005-7013.
    [80]庄为平,高小平,张鹏翔,莫育俊.第三届全国光散射学术会议论文集[C].南开大学出版社,1985.
    [81] Yu X, Cai H, Zhang W, Li X, Pan N, et al. Tuning Chemical Enhancement of SERSby Controlling the Chemical Reduction of Graphene Oxide Nanosheets[J]. ACSNano,2011,5(2):952-958.
    [82] Wang L F, Yang F H, Yang R T, Miller M A. Effect of Surface Oxygen Groups inCarbons on Hydrogen Storage by Spillover[J]. Ind.Eng.Chem.Res.,2009,48(6):2920-2926.
    [83] Balapanuru J, Yang J X, Xiao S, Bao Q, et al. A Graphene Oxide-Organic Dye IonicComplex with DNA-Sensing and Optical Limiting Properties[J]. Angew.Chem.Int.Ed.,2010,122(37):6549-6553.
    [84] Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X. Environment friendly method toproduce graphene that employs vitamin C and amino acid[J]. Chem.Mater.,2010,22(7):2213-2218.
    [85] Zhu C, Gao S, Fang Y, Dong S. Reducing Sugar: New Functional Molecules for theGreen Synthesis of Graphene Nanosheets[J]. ACS Nano,2010,4(4):2429-2437.
    [86] Fan Z, Wang K, Wei T, Yan J, Song L, Shao B. An environmentally friendly andefficient route for the reduction of graphene oxide by aluminum powder[J]. Carbon,2010,48(5):1686-1689.
    [87] Zhou M, Wang Y L, Zhai Y M, Zhai J F, Ren W, Wang F, Dong S. ControlledSynthesis of Large-Area and Patterned Electrochemically Reduced Graphene OxideFilms[J]. J.Chem.Eur.J.,2009,15(25):6116-6120.
    [88] Zhou Y, Bao Q, Tang L A L, Zhong Y, Loh K P. Hydrothermal dehydration for the“green” reduction of exfoliated graphene oxide to graphene and demonstration oftunable optical limiting properties[J]. Chem.Mater.,2009,21(13):2950-2956.
    [89] Futamata M, Maruyama F, Ishikawa M. Adsorbed Sites of Individual Molecules onAg Nanoparticles in Single Molecule Sensitivity Surface-Enhanced RamanScattering[J]. J.Phys.Chem.B,2004,108(35):13119-13127.
    [90] Chiang T-C, Seitz F. Photoemission spectroscopy in solids[J]. Ann Phys2001,10(1-2):61-74.
    [91] Yumitori S. Correlation of C1s chemical state intensities with the O1s intensity inthe XPS analysis of anodically oxidized[J]. Journal of materials science,2000,35(1):139-146.
    [92] Arbeloa F L, Gonzalez I L, Ojeda P R, Arbeloa I L. Aggregate formation ofrhodamine6G in aqueous solution [J]. J.Chem.Soc.Faraday.Trans2.,1982,78(7):989-994.
    [93] Sackmann M, Materny A. Surface enhanced Raman scattering (SERS)-aquantitativeanalytical tool?[J]. J.Raman Spectrosc.,2006,37(1-3):305-310.
    [94] Tiwari V S, Oleg T, Darbha G K, Hardy W, Singh J P, Ray P C, Non-resonanceSERS effects of silver colloids with different shapes [J]. Chem.Phys.Lett.,2007,446(1-3):77-82.
    [95] Baldwin J A, Vlckova B, Andrews M P and Butler I S. Surface-enhanced ramanscattering of mercaptopyridines and pyrazinamide incorporated in silver colloidadsorbate films[J]. Langmuir,1997,13(14):3744-3751.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700