稀土改性空心玻璃微珠复合材料的微观结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空心玻璃微珠(HGB)的表面功能化是提高HGB功能复合材料性能的关键。HGB可用于填充聚合物制备轻质高强复合材料,其关键是如何提高HGB和基体树脂之间的界面结合力。HGB也可作为载体,在其表面负载纳米材料构筑新型核壳复合结构,解决纳米材料易团聚、难分散的缺点,并可赋予HGB新的性能。本论文采用稀土材料对HGB进行表面改性,致力于研制HGB功能复合材料,对其开展微观结构和性能的研究。
     采用稀土镧络合物对HGB进行表面改性,通过溶液共混法制备PVDF/HGB复合材料,采用SEM、XRD、DSC测试方法研究PVDF/HGB复合材料的微观结构和结晶性能。SEM分析显示HGB经过稀土镧络合物表面改性后,与PVDF基体的界面结合力明显增强。XRD结果表明HGB的加入没有改变PVDF的结晶结构。采用Jeziorny法和Mo法对PVDF和PVDF/HGB复合材料的非等温结晶动力学进行了研究,结果表明:HGB抑制了PVDF的结晶,降低了复合材料的结晶速率。
     采用稀土离子对HGB进行表面改性,通过熔融共混法制备了PP/HGB、HDPE/HGB、PS/HGB和ABS/HGB四种复合材料,研究了复合材料的微观结构、力学性能和结晶性能。经稀土离子表面改性后的HGB与高分子基体树脂的界面结合力得到提高,复合材料的综合力学性能得到改善。硝酸钕表面改性的HGB可以促使PP产生少量β晶,但降低了PP的结晶速率。硝酸钕表面改性的HGB没有改变HDPE的晶型,其促使HDPE的相对结晶度增大。
     设计并制备了亚微米氧化锌包覆HGB复合结构,以HGB为载体,采用溶胶-凝胶法在HGB表面制备ZnO种子层,再在低温液相条件下,在生长液中生长有序的ZnO亚微米棒,制备得到ZnO包覆HGB复合结构。研究结果显示:在最佳反应条件下,HGB完全被ZnO亚微米棒包覆,ZnO亚微米棒具有良好的取向,截面呈六边形结构,平均直径为300~400nm,XRD分析表明ZnO亚微米棒为纤锌矿结构。ZnO种子层、生长液浓度和反应温度等条件影响复合结构的微观形貌。同时研究了稀土掺杂对HGB/ZnO复合结构的影响。
     采用均匀沉淀法制备稀土氧化物包覆HGB复合结构,控制适宜的生长液浓度、反应温度和反应时间等工艺参数可制备“梭形”纳米CeO_2包覆HGB复合结构,大部分CeO_2纳米棒垂直于HGB表面。同时制备并表征了HGB/Y2O_3、HGB/Dy_2O_3、HGB/Yb_2O_3和HGB/Y_2O_3:Eu~(3+)复合结构。
The key technology of hollow glass beads (HGB) composites is the surfacefunctionalization of HGB. The key to HGB filled polymer composites is how toimprove the interfacial bonding between HGB and matrix resin. The core-shellcomposite structure of HGB and nano-materials can solve the nanomaterialsdisadvantage of agglomerates and difficult to disperse. In this paper, the surfacemodification of the HGB was performed by using rare earth to committed to thedevelopment of the HGB functional composite material.
     PVDF/HGB composites were prepared by the method of solution blending usinglanthanum complex modified HGB. The morphology, structure and crystallizationkinetics of the PVDF and the PVDF/HGB composites were investigated by SEM,XRD and DSC, respectively. The results of SEM showed that the surface modificationof the HGB by using the lanthanum complex improved the interaction between theHGB and the PVDF. The results of XRD indicated alpha was the predominant phasein the PVDF and the crystal structure for the PVDF was not changed by the HGB. Inaddition, the Jeziorny and the Mo methods were used to analyze the non-isothermalcrystallization kinetics, the results indicated that the presence of the HGB decreasedthe crystallization rates of the PVDF.
     PP/HGB, HDPE/HGB, PS/HGB and ABS/HGB composites were prepared bythe method of melt blending using rare earth ions modified HGB, and themicrostructure, mechanical properties and/or crystalline performance of compositeswere studied. The results showed that the interfacial bonding between HGB andpolymer matrix could be significantly improved after superficial treatment of HGBwith the rare earth ion, and the mechanical properties of the composites wereimproved too. The results showed that the HGB modified by neodymium nitrate had anucleating effect on the matrix and promoted the formation of β-crystals ofpolypropylene, but the crystallization rate of polypropylene was decreased by addingHGB. In addition, the HGB modified by neodymium nitrate can increases thecrystallinity of HDPE.
     Uniform and oriented ZnO submicronrods on the surface of HGB werefabricated by using a seed growth process in aqueous solution of zinc nitrate andhexamethylenetetramine at low temperature. The structure and morphology ofas-obtained ZnO submicronrod-coated hollow glass microspheres (HGB/ZnO)composites were analyzed by using XRD and SEM. The results showed that all the HGB were coated with a well-aligned layer of ZnO submicronrods and the ZnOsubmicronrods possessed relatively uniform hexagonal rod structures and standperpendicular. Moreover, the ZnO submicronrods were affected by a variety ofgrowth conditions such as the ZnO seed layers and growth solution concentration andthe solution temperature. In addition, HGB/rare earth doped ZnO composites werestudied.
     Rare earth oxide coated HGB composites were prepared by using homogeneousprecipitation method. The “fusiform” nano-CeO_2coated HGB composites can befabricated under the optimal conditions. Most of CeO2nano-rods vertically in theHGB surface. In addition, the composites of HGB/Y2O3, HGB/Dy_2O_3, HGB/Yb_2O_3and HGB/Y_2O_3:Eu~(3+)were prepared and characterized, respectively.
引文
[1] Uda T, Jacob K T, Hirasawa M. Technique for enhanced rare earth separation[J].Science,2000,289(5488):2326
    [2]郑德.稀土助剂在塑料中的应用研究进展[J].国外塑料,2004,22(7):45
    [3]于莲,郭敏怡,郑德,等.稀土偶联剂对PP/CaCO3复合材料老化性能的影响[J].塑料工业,2005,33(8):60
    [4]欧阳强国,陈宇,郑德,等.稀土活化碳酸钙在U-PVC制品中的应用研究[J].塑料,2004,33(2):12
    [5]冯嘉春,陈鸣才,黄志镗,等.稀土化合物对LLDPE流变性能的影响[J].高分子材料科学与工程,2003,19:161
    [6]刘伯元,陈宇,郑德,等.新型稀土偶联剂在塑料制品中的应用研究[J].有色矿冶,2004,20:113
    [7]武德珍,白宗武.稀土偶联剂处理CaCO3填充PVC复合材料及其性能的研究[J].现代塑料加工应用,1995,8(1):10
    [8] Rehman S, Ullah R, Butt A M, et al. Strategies of making TiO2and ZnO visiblelight active[J]. Journal of Hazardous Materials,2009,170(2-3):560
    [9] Ji SL, Yin LL, Liu GD, et al. Synthesis of rare earth ions-doped ZnOnanostructures with efficient host-guest energy transfer[J]. The Journal ofPhysical Chemistry C,2009,113(37):16439
    [10]林贺,范新会,于灵敏,等.稀土元素掺杂对ZnO纳米线气敏性能的影响[J].西安工业大学学报,2010,30(4):372
    [11]Richard S. As china's rare earth r&d becomes ever more rarefied,otherstremble[J]. Science,2009,325(5946):1336
    [12]Wang X, Zhuang J, Peng Q, et al. A General Strategy for NanocrystalSynthesis[J]. Nature,2005,437:121
    [13]Yada M, Mihara M, Mouri S, et al. Rare earth (Er, Tm, Yb, Lu) oxide nanotubestemplated by dodecylsulfate assemblies[J]. Advanced Materials,2002,14(4):309
    [14]Li XZ, Wei XW, Ye Y. A simple method for forming amorphous rareearth-transition metal alloy nanotube arrays[J]. Journal of Non-Crystalline Solids,2011,355(45-47):2233
    [15]Romaguera-Barcelay Y, Moreira JA, Gonzalez-Aguilar G. Synthesis oforthorhombic rare-earth manganite thin films by a novel chemical solutionroute[J]. Journal of Electroceramics,2011,26(1-4):44
    [16] Troyanchuk I O, Karpinsky D V, Bushinsky M V. Phase transitions, magnetic andpiezoelectric properties of rare-earth-substituted BiFeO3ceramics[J]. Journal ofthe American Ceramic Society,2011,94(12):4502
    [17]许军舰,张庆敏,金钟,等.模板法合成含镧的层状无机-有机纳米复合材料[J].无机化学学报,2006,22(8):1411
    [18]Tang ZW, Zhou LQ, Wang F, et al. Synthesis,characterization and luminescencestudy of Eu (Ⅲ) tungstates and molybdates nanotubes using carbon nanotubes astemplates[J]. Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy,2009,72(2):348
    [19]Ayala P, Kitaura R, Nakanishi R. Templating rare-earth hybridization viaultrahigh vacuum annealing of ErCl3nanowires inside carbon nanotubes[J].Physical review B,2011,83(8):085407
    [20]Tan XH. Fabrication and properties of Sr2MgSi2O7:Eu2+,Dy3+nanostructures byan AAO template assisted co-deposition method[J]. Journal of Alloys andCompounds,2009,477(122):648
    [21]Kuang Q, Lin ZW, Lian W, et al. Syntheses of rare earth metal oxide nanotubesby the sol-gel method assisted with porous anodic aluminum oxide templates[J].Journal of Solid State Chemistry,2007,180(4):1236
    [22]Wu C F, Qin W P, Qin G S, et al. Photoluminescence from surfactant assembledY2O3:Eu nanotube [J]. Applied Physics Letters,2003,82(4):520
    [23]Yang Z, Huang Y, Dong B, et al. Template induced sol-gel synthesis of highlyordered LaNiO3nanowires[J]. Journal of Solid State Chemistry,2005,178(4):92
    [24]Xu A W, Fang Y P, You L P, et al. A simple method to synthesize Dy(OH)3andDy2O3nanotubes [J]. Journal of the American Chemical Society,2003,125(6):1494
    [25]Yan B, Xiao X Z. Hydrothermal synthesis, microstructure andphotoluminescence of Eu3+-doped mixed rare earth nano-orthophosphates[J].Nanoscale Research Letters,2010,5(12):1962
    [26]Wang X, Zhang J, Peng Q, et al. Hydrothermal synthesis of rare-earth fluoridenanocrystals[J]. Inorganic Chemistry,2006,45(17):6661
    [27]张建华,卢忠远,汪关才,等.激光惯性约束聚变(ICF)玻璃靶丸研究及进展[J].材料导报,2006,20(3):265
    [28]邱龙会,魏芸,傅依备,等.液滴法制备空心玻璃微球中初始液滴的定量形成[J],高校化学工程学报,2001,15(3):217
    [29]Downs RL, Ebner MA,Miller WJ. Hollow glass microsphere by Sol-Geltechnology, Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronic andSpecialty Shapes, Park Ridge: Noyes Publications,1988.335
    [30]Hoppe ML. Large glass shell from GDP shell[J]. Fusion Technology,2000,38(1):42
    [31]吴湘锋.空心微珠的制备及其高强轻质树脂基复合材料的结构与性能研究:
    [博士学位论文],天津;天津大学,2012
    [32]Nakamura Y,Gutoh T. Surface treatment of inorganic particles with silanecoupling agent having mercapto group and interfacial structure of filledelastomer[J].Manufacturing and Applications of Composites,2006,5:343
    [33]Prikryl R, Cech V, Kripal L, et al. Adhesion of pp-VTES films to glass substratesand their durability in aqueous environments[J]. International Jouranal ofAdhesion and Adhesives,2005,25(2):121
    [34]Cech V, Inagaki N, Vanek J, et al. Plasma-polymerized versus polycondensed thinfilms of vinyltriethoxysilane[J]. Thin Solid Films,2006,502(1-2):181
    [35]Liang JZ, Li RKY. Effect of filler content and surface treatment on the tensileproperties of glass-bead-filled polypropylene composites[J]. PolymerInternational,2000,49(2):170
    [36]Sever K, Sarikanat M, Yoldas S, et al. Effects of fiber surface treatments onmechanical properties of epoxy composites reinforced with glass fabric[J].Journal of Materials Science,2008,43(13):4666
    [37]Hu X, Xu HS, Li ZM. Morphology and properties of poly(L-Lactide)(PLLA)filled with hollow glass beads[J].Macromolecular Materials and Engineeriing,2007,292(5):646
    [38]Zhu L, Xu XH, Song N, et al. Optical, rheological and thermal properties ofhollow glass bead filled isotactic polypropylene[J]. Polymer Composites,2009,30(10):1371
    [39]薛颜彬,邱桂学,吴波震,等.玻璃微珠填充PP结构与性能研究[J].塑料科技,2007,35(5):34
    [40]Yang W, Liu ZY, Shan GF, et al. Study on the melt flow behavior of glass beadfilled polypropylene[J]. Polymer Testing,2005,24(4):490
    [41]杨伟,史炜,谢邦互,等.玻璃微珠改性聚丙烯的熔融、结晶与形态[J].高分子材料科学与工程,2005,21(2):249
    [42]Yuan Q, Jiang W, An LJ, et al. Effects of reinforcement filler and temperature onthe stability of β-crystal in glass bead filled polypropylene[J]. Materials Scienceand Engineering,2006,415(1-2):297
    [43]Liang JZ, Li FH. Measurement of thermal conductivity of hollowglass-bead-filled polypropylene composites[J]. Polymer Testing,2006,25(4):527
    [44]Patankar SN, Kranov YA. Hollow glass microsphere HDPE composites for lowenergy sustainability[J]. Materials Science and Engineering A,2010,527(6):1361
    [45]Bai SL, Chen JK, Huang ZP, et al. The role of the interfacial strength in glassbead filled HDPE[J]. Journal of Materials Science Letters,2000,19(17):1587
    [46]Ashton-Patton MM, Hall MM, Shelby JE. Formation of low densitypolyethylene/hollow glass microspheres composites[J]. Journal ofNon-Crystalline Solids,2006,352(6-7):615
    [47]梁基照,李国耀.玻璃微珠表面处理对LDPE复合材料拉伸性能的影响[J].复合材料学报,2000,17(1):19
    [48]Ding YF, He JS, Zhang J, et al. Rheological hybrid effect in nylon6/liquidcrystalline polymer blends caused by added glass beads[J]. journal ofnon-newtonian fluid mechanics,2006,135(2-3):166
    [49]孙向东,孙旭东,张慧波,等.空心玻璃微珠填充MC尼龙复合材料的研究[J].工程塑料应用,2005,33(1):7
    [50]Yung KC, Zhu BL, Yue TM, et al. Preparation and properties of hollow glassmicrosphere-filled epoxy-matrix composites[J]. Composites Science andTechnology,2009,69(2):260
    [51]Park SJ, Jin FL, Lee CJ. Preparation and physical properties of hollow glassmicrospheres reinforced epoxy matrix resins[J]. Materials Science andEngineering,2005,402(2):335
    [52]Lee J, Yee AF. Inorganic particle toughening II: toughening mechanisms of glassbead filled epoxies[J]. Polymer,2001,42(2):589
    [53]Fu WY, Yang HB, Yu QJ, et al. Preparation and magnetic properties ofSrFe12O19/SiO2nanocomposites with core-shell structure[J]. Materials Letters,2007,61(11-12):2187
    [54]Homola AM, Lorenz MR, Sussner H, et al. Ultrathin particulate magneticrecording media[J]. Journal of Applied Physics,1987,61(8):3898
    [55]Wu SJ, De Jonghe LC. Alumina-coated hollow glass spheres/alumina composites[J]. Journal of Materials Science,1997,32(22):6075
    [56]Kim SS, Kim ST, Ahn JM, et a1. Magnetic and microwave absorbing propertiesof Co-Fe thin films plated on hollow ceramic microspheres of low density[J].Journal of Magnetism and Magnetic Materials,2004,271(1):39
    [57]Shukla S, Seal S, Rahaman Z, et a1. Electroless copper coating of cenospheresusing silver nitrate activator[J]. Materials Letters,2002,57(1):151
    [58]王宇,张骁勇,毛丽,等.空心玻璃微珠化学镀银的研究[J].材料科学与工程学报,2004,22(5):75
    [59]唐耿平,程海峰,赵建峰,等.空心微珠表面改性及其吸波特性[J].材料工程,2005,(6):11
    [60]Catledge SA, Vohra YK, Mirkarimi PB. Low temperature growth ofnanostructured diamond on quartz spheres[J]. Journal of Physics D-AppliedPhysics,2005,38(9):1410
    [61]李寅彦,毛昌辉,杨志民,等.空芯玻璃微球表面改性及其介电性能研究[J].稀有金属,2005,29(3):257
    [62]Ebener S, Winter W. Reactions and phase transformation in SiO2-ZrO2Sol-Gelcoated alumina powder[J]. Jouranal of the European Ceramic Society,1996,16(11):1179
    [63]Liu XD, Tokura S, Haruki M, et a1. Surface modification of nonporous glassbeads with chitosan and their adsorption property for transition metalions[J].carbohydrate polymers,2002,49(2):103
    [64] Slomkowski S, Miksa B, Chehimi MM, et a1. Inorganic-organic systems withtailored properties controlled on molecular, macromolecular and microscopicleve1[J]. reactive&functional polymers,1999,41(1-3):45
    [65]Yamashita H, Nose H, Kuwahara Y, et al. TiO2photocatalyst loaded onhydrophobic Si3N4support for efficient degradation of organics diluted inwater[J]. Applied Catalysis A: General,2008,350(2):164
    [66]Shen Q, Zhang W, Hao Z, et al. A study on the synergistic adsorptive andphotocatalytic activities of TiO2xNx/Beta composite catalysts under visible lightirradiation[J]. Chemical Engineering Journal,2010,165(1):301
    [67]Ratiu C, Manea F, Lazau C, et al. Electrochemical oxidation of p-aminophenolfrom water with boron-doped diamond anodes and assisted photocatalytically byTiO2-supported zeolite[J]. Desalination,2010,260(1-3):51
    [68]Elina P, Marina K, Sergei P, et al.. Photocatalytic oxidation of humic substanceswith TiO2-coated glass micro-spheres[J]. Environmental Chemistry Letters,2004,2(3):123
    [69]Li JW, Wu XF, Xu XH. Preparation and characterisation of ZnO nanorodarray-coated hollow glass microsphere composites[J].Micro&Nano Letters,2012,7(4):363
    [70]Liu XD, Tokura S, Haruki M, et al.. Surface modification of nonporous glassbeads with chitosan and their adsorption property for transition metalions[J].Carbohydrate Polymers,2002,49(2):103
    [71]Sihvola AH, Ermutlu ME. Shielding effect of hollow chiral sphere[J].Transactions on Electromagnetic Compatibility,2007,9(3):219
    [72]Gerald WE. Damping of electromagnetic waves by small spheres suspended in aninsulator[J]. Antennas and Propagation Society International Symposium,2009,2072(3-4):1075
    [73]Singh N, Singh K J, Singh K, et al. Comparative study of lead borate and bismuthlead borate glass systems as gamma radiation shielding materials[J]. NuclearInstruments and Methods in Physics Research B,2004,225(3):305
    [74]EI-Sayed Abdo A, Ali MAM, Ismail MR. Natural fibre high-densitypolyethylene and lead oxide composites for radiation shielding[J]. RadiationPhysics and Chemistry,2003,66(3):185
    [75]Hayashi T, Tobita K, Ikeda K, et al. Neutronics assessment of advanced shieldmaterials using metal hydride and borohydride for fusion reactors[J]. FusionEngineering and Design,2006,81(8):1285
    [76]Sakurai Y, Sasaki A, Kobayashi T. Development of neutron shielding materialusing metathesis-polymer matrix[J]. Nuclear Instruments and Methods in PhysicsResearch A,2004,522(3):455
    [77]Fan GH, Geng L,Wang GS, et al. A Novel radiation protectionmaterial:BaAbO3/Al composite[J]. Materials and Design,2009,30(3):862
    [78]Feng YC, Geng L, Fan GH, et al. The properties and microstructure of hybridcomposites reinforced with WO3particles and Al18B4BO33whiskers by squeezecasting[J]. Materials and Design,2009,30(9):3632
    [79]Koichi O. Neutron shielding material based on colemanite and epoxy resin[J].Radiation Protection Dosimetry,2005,115(4):258
    [80]Wang YJ, Cariso F. Template synthesis of stimuli-responsive nanoporouspolymer-based spheres via sequential assembly[J]. Chemistry of Materials,2006,18(17):4089
    [81]Li B, Yuan J, An ZG, et al. Effect of microstructure and physical parameters ofhollow glass microsphere on insulation performance[J]. Materials Letters,2011,65(12):1992
    [82]Tsai IS, Kuo YC. The study of the low K of PTFE composites with hollow glassspheres[J]. Journal of Industrial Textiles,2011,40(3):261
    [83]Guptaa N, Maharsia R, Jerro HD. Enhancement of energy absorptioncharacteristics of hollow glass particle filled composites by rubber addition[J].Materials Science and Engineering A,2005,395(1-2):233
    [84]Chen P, Zhang J, He JS. Increased flow property of polycarbonate by addinghollow glass beads[J]. Polymer Engineering and Science,2005,45(8):1119
    [85]Patankar SN, Kranov YA. Hollow glass microsphere HDPE composites for lowenergy sustainability[J]. Materials Science and Engineering A,2010,527(6):1361
    [86]Salimi A, Yousefi AA. Conformational changes and phase transformationmechanisms in PVDF solution-cast films[J]. Journal of Polymer Science PartB-Polymer Physics,2004,42(18):3487
    [87]Benz M, Euler WB. Determination of the crystalline phases of poly(vinylidenefluoride) under different preparation conditions using differential scanningcalorimetry and infrared spectroscopy[J]. Journal of Applied Polymer Science,2003,89(4):1093
    [88]Esterly DM, Love BJ. Phase transformation to β-poly(vinylidene fluoride) bymilling[J]. Journal of Polymer Science Part B-Polymer Physics,2004,42(1):91
    [89]Kim YJ, Ahn CH, Lee MB, et al. Characteristics of electrospun PVDF/SiO2composite nanofiber membranes as polymer electrolyte[J], Materials Chemistryand Physics,2011,127(1-2):137
    [90]Kim YJ, Ahn CH, Choi MO. Effect of thermal treatment on the characteristics ofelectrospun PVDF-silica composite nanofibrous membrane[J]. European PolymerJournal,2010,46(10):1957
    [91]An NL, Liu HZ, Ding YC, et al. Preparation and electroactive properties of aPVDF/nano-TiO2composite film[J]. Applied Surface Science,2011,257(9):3831
    [92]O’Bryan G, Yang EL, Zifer T, et al. Nanotube Surface Functionalization Effectsin Blended Multiwalled Carbon Nanotube/PVDF Composites[J]. Journal ofApplied Polymer Science,2011,120(3):1379
    [93]Mohamadi S, Sharifi-Sanjani N. Investigation of the Crystalline Structure ofPVDF in PVDF/PMMA/Graphene Polymer Blend Nanocomposites[J]. PolymerComposites,2011,32(9):1451
    [94]Hwang HY, Kim DJ, Kim HJ, et al. Effect of nanoclay on properties of porousPVdF membranes[J]. Transactions of Nonferrous Metals Society of China,2011,21(1): s141
    [95]Bhatt AS, Bhat DK, Santosh MS. Crystallinity, Conductivity, and magneticproperties of PVDF-Fe3O4composite films[J]. Journal of Applied PolymerScience,2011,119(2):968
    [96]Yang WH, Yu SH, Sun R, et al. Nano-and microsize effect of CCTO fillers onthe dielectric behavior of CCTO/PVDF composites[J]. Acta Materialia,2011,59(14):5593
    [97]Song JB, Lu CH, Xu D. The effect of lanthanum oxide (La2O3) on the structureand crystallization of poly(vinylidenefluoride)[J]. Polymer International,2010,59(7):954
    [98]Xue YJ, Cheng XH. Effect of rare earth elements′surface treatment on tensileproperties and microstructure of glass fiber-reinforced polytetrafluoroethylenecomposites[J]. Journal of Applied Polymer Science,2002,86(7):1667
    [99]Cheng XH, Xue YJ, Xie CY. Friction and wear of rare-earth modified glass-fiberfilled PTFE composites in dry reciprocating sliding motion with impact loads[J].Wear,2002,253(7-8):869
    [100] Gao K, Hu XG, Dai CS, et al. Crystal structures of electrospun PVDFmembranes and its separator application for rechargeable lithium metal cells[J].Materials Science and Engineering B,2006,131(1-3):100
    [101] Lü WJ, Zhu XL, Zhang YM, et al. Crystallization behavior of rare-earthdoped luminous pigment/polyamide6composites[J]. Journal of MacromolecularScience-Physics,2007,46(5):949
    [102] Avrami M. Kinetics of phase change I general theory[J]. Journal of ChemicalPhysics,1939,7(12):1103
    [103] Avrami M. Kinetics of phase change II transformation-time relations forrandom distribution of nuclei[J]. Journal of Chemical Physics,1940,8(2):212
    [104] Ozawa T. Kinetics of non-isothermal crystallization[J]. Polymer,1971,12(3):150
    [105] Kim SH, Ahn SH, Hirai T. Crystallization kinetics and nucleation activity ofsilica nanoparticle-filled poly(ethylence2,6-naphthalate)[J]. Polymer,2003,44(19):5625
    [106] Jeziorny A. Parameters characterizing the kinetics of the non-isothermalcrystallization of poly (ethylene terephthalate) determined by d.s.c[J].Polymer,1978,19(10):1142
    [107] Liu TX, Mo ZS, Wang SE, et al. Nonisothermal melt and cold crystallizationkinetics of poly(aryl ether ether ketone ketone)[J]. Polymer Engineering andScience,1997,37(3):568
    [108]莫志深.一种研究聚合物非等温结晶动力学的新方法[J].高分子学报,2008,(7):656
    [109]黄震,唐建国,王瑶,等.有机稀土络合物表面包覆改性纳米SiO2填充PP的流变行为[J].塑料,2010,39(5):24
    [110]林水东,吴粦华,丁马太,等. PP-g-MMA对PP/W力学性能和非等温结晶的影响[J].功能材料,2010,41(5):922
    [111] Xue YJ, Cheng XH. Effect of rare earth elements’ surface treatment ontensile properties and microstructure of glass fiber-reinforcedpolytetrafluoroethylene composites[J]. Journal of Applied Polymer Science,2002,86(7):1667
    [112] Lehmann B, Karger Kocsis J. Isothermal and Non-isothermal CrystallizationKinetics of PCBT and PBT Polymers as Studied by DSC[J]. Journal of ThermalAnalysis and Calorimetry,2009,95(1):1
    [113]张斌,周科朝,黄苏萍,等. HAP/HDPE/UHMWPE复合材料的制备和表征[J].中南大学学报(自然科学版),2008,39(1):23
    [114]谢普,于杰,秦军,等. HDPE/GN非等温结晶动力学研究[J].炭素技术,2010,29(5):15
    [115] Balkan O, Demirer H. Mechanical properties of glass bead-andwollastonite-filled isotactic-polypropylene composites modified withthermoplastic elastomers[J]. Polymer Composites,2010,31(7):1285
    [116] Kim DJ, Kang JY, Kim KS. Preparation of TiO2thin films on glass beads bya rotating plasma reactor[J]. Journal of Industrial and Engineering Chemistry,2010,16(6):997
    [117] Ozmen M, Can K, Akin I, et al. Surface modification of glass beads withglutaraldehyde: Characterization and their adsorption property for metal ions[J],Journal of Hazardous Materials,2009,171(1):594
    [118] Jradi K, Daneault C, Chabot B. Chemical surface modification of glass beadsfor the treatment of paper machine process waters[J]. Thin Solid Films,2011,519(13):4239
    [119] Kim SC, Lee DK. Preparation of TiO2-coated hollow glass beads and theirapplication to the control of algal growth in eutrophic water[J]. MicrochemicalJournal,2005,80(2):227
    [120] Ozgur U. Alivov YaI, Liu C, et al. A comprehensive review of ZnOmaterials and devices[J]. Journal of Applied Physics,2005,98(4):041301
    [121] Wang HB, Wang H, Wang XN, et al. Organic co-decomposition method forthe synthesis of Mn and Co doped ZnO submicrometer crystals:Photoluminescence and magnetic properties[J]. Phys Status Solidi A,2011,208(10):2393
    [122] Comini E, Baratto C, Faglia G, et al. Single crystal ZnO nanowires as opticaland conductometric chemical sensor[J]. Journal of Physics D: Applied Physics,2007,40(23):7255
    [123] Hussain I, Bano N, Hussain S, et al. Study of intrinsic white light emissionand its components from ZnO-nanorods/p-polymer hybrid junctions grown onglass substrates[J]. Journal of Materials Science,2011,46(23):7437
    [124] Li Y, Li WF, Xu G, et al. ZnO microcolumns originated from self-assemblednanorods[J]. Journal of Materials Science,2008,43(5):1711
    [125] Liu ZF, E L, Ya J, et al. Growth of ZnO nanorods by aqueous solutionmethod with electrodeposited ZnO seed layers[J]. Applied Surface Science,2009,255(12):6415
    [126] Segawa H, Sakurai H, Izumi R, et al. Low-temperature crystallization oforiented ZnO film using seed layers prepared by sol–gel method[J]. Journal ofMaterials Science,2011,46(10):3537
    [127] Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO fromaqueous solutions[J]. Advanced Materials,2003,15(5):464

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700